Forsvarets forskningsinstitutt

Semantically Enabled QoS Aware Service Discovery and Orchestration for MANETs

			1.1

15th ICCRTS

Trude Hafsøe Frank T. Johnsen Marianne Rustad

Background

- SOA, implemented as Web services, is a key enabler for NEC
- The ability to find services dynamically is a requirement
 but challenging in dynamic settings
- At the same time, we need flexibility
 - clients must be able to access information in a manner that is suited to their needs and abilities

Background

- To achieve this we need:
 - a service discovery mechanism
 - support for automatic service selection and orchestration
 - support for QoS
- Combining all these needs raises a number of issues:
 - Semantic Web Services give flexibility, but are verbose
 - Tactical military networks have limited capabilities

Service Registries

Communication between client, registry and service:

- 1. Look-up/Search
- 2. Response
- 3. Contacting the service

Service Registries

The liveness problem

The availability problem

Non-registry solutions

- Fully decentralized mechanism:
 - Robustness: Resilience to partial failure of the network.
 - Liveness: An up to date view of available services.
- Decentralized solutions are "chatty":
 - Need to optimize data rate requirements!
 - Compression etc.

SAM

- Service Advertisements in MANETs (SAM)
 - Advertisements of available Web services
 - Support for additional metadata
 - Bandwidth efficient:
 - only transmits information that changes over time
 - static information is assumed to be pre-distributed

SAM Service Advertisements

- Advertisements contain the following data:
 - Position information (optional)
 - A list of services containing:
 - Service ID (required)

A hash over the static parts of a WSDL

Endpoint URL (required)

The dynamic part of the WSDL, i.e. service endpoint

• Metadata (optional)

Semantic data, etc.

Service Selection Challenges

- Operations vary in complexity
 - the number of units and their capabilities are difficult to predict.
- Different clients will use the same service in different ways
 - to define these differences we use QoS as a selection parameter

QoS in Mobile Services

- We divide QoS for mobile service in:
 - Static QoS
 - parameters that do not change
 - e.g. max resolution of an image
 - Dynamic QoS
 - parameters that can change
 - e.g. position of camera (mounted on a UAV)
- This requires an extended service description

Semantic Web Services in MANETs

- Web Services give:
 - manual selection of service type
 - best case: dynamically finds instances of known types
- Semantic Web Services give:
 - dynamically discover both service types and instances
 - dynamic orchestration
 - automated selection of instances
- OWL-S is a service ontology defined using OWL
 - We use a subset of OWL-S with a extended QoS description

Experimental Implementation

Conclusion and Future Work

- An experimental QoS aware semantically enabled service environment with:
 - SAM service advertisement distribution in dynamic networks
 - LiQ service discovery, selection and orchestration using semantic technology
 - Both aimed at non-register solutions
- Future work encompass
 - defining a further concepts in our QoS ontology
 - implementation of the QoS algorithm
 - further work on different degrees of matching