

Interruption Interview:

An approach to elicit situation assessment for an ill-defined task

Presented at 15th International Command & Control Research & Technology Symposium

Angela Tan, Shuli Yu, Boon Kee Soh Cognition and Human Factors Research Laboratory DSO National Laboratories Singapore

INTERRUPTION INTERVIEW

An interviewing technique where participants are interrupted in a simulated environment for the purpose of understanding how one

- •comprehends percepts in the environment and
- •projects these percepts into the future.

Influenced by

- •Klein's approach to Naturalistic Decision-Making (cognitive dimensions)
- •Endsley's theory of Situation Awareness (projection into the future)

MOTIVATION

"故曰知己知彼,百战百胜,不知己而知彼,一胜一负,不知彼不知己,每战必败。"

~ Art of War by Sun Tsu, around 500BC

"If you know the enemy and know yourself, you need not fear the result of a hundred battles."

~ Translation by Giles (1910)

OBJECTIVES

Project: Elicit cognitive processes related to assessing an intelligent adversary

- Types of predictions & relation to performance
- Basis of judgment
- Situational considerations
- Order of recursion

Paper: Methodology

- Design
- Execution
- Challenges
- Demonstrate its effectiveness

ENVIRONMENT

	Warfighting	Simulation —
Uncertain	Yes	Yes
Dynamic	Yes	Yes
Time Pressure	Yes	Yes
Limited resources	Yes	Yes
Stake	High	Limited

Modified COTS

Microsoft Rise of Nations

- •2 sided
- •Participants had limited resources.

TASK

PEOPLE. PASSION. INNOVATION.

Effectiveness of Tools: Does prediction performance affects task performance?

- •10 Participants x 4 Interruption Interviews
- 463 Predictions

	Participant level	Trial level
Prediction frequency correlates with game performance	(r(8) = .691, p=.027)	(r(38) = .318, p=.045)
Prediction accuracy does NOT correlates with game performance	(r(8) = .074, p=.840)	(r(38) =127, p=.434)

One does not have to be accurate in his prediction but he should make as many predictions about the enemy as possible!

INTERRUPTION INTERVIEW

OVERVIEW

Step 0: Preparation

Step 1: Pre-task planning

Step 2: Simulation and freezing

Step 3: Interruption

Step 4: Post-task comprehension

STEP 0: PREPARATION

Experiment Design

Coordination

Coordination

ENVIRONMENT

PEOPLE, PASSION, INNOVATION.

STEP 1: PRE-TASK PLANNING

People are not thrust into complex and ill-defined tasks without warning!

PLAN & PREDICT

Interview

STEP 2: SIMULATION & FREEZING

<u>rticipants</u>

mi-inform: Aware of freeze d interview but not aware of e ground rules

actice trial:

oifferent scenario

ess interviews

Experimenters

Semi-structured ground rules

- Calling and ending interruption
- Interval ~ 5min
- Not freezing during intense actions
- Signature question at the end of the interview

STEP 3: INTERRUPTION

Identify the situations gn questions situation. tributes of .g. location, tion, size)

record they unfold

Interview

STEP 4: POST-TASK COMPREHENSION

Comprehension

Predictions for next game

Debrief: Summary of events

EFFECT OF INTERRUPTION INTERVIEW

Participants felt that the interview gave them extra time to think about the problems.

However, results indicate no significant difference, t(9) = .843.

	Mean	SD
With Interruption Interview	8986	1541
Without Interruption Interview	9125	1554

Even if there is an effect, we were not too concern as the study was meant to be **exploratory**.

There were many other confounding variables. Examples:

- -Pace of the battle
- -Fatigue
- -Stress

Discussion

Supports in-depth analysis between psychological constructs for complex and ill-defined tasks

For exploratory studies only

Resource-intensive

Dependent on participant's ability to verbalise their thought

DSO

Q & A

Angela Tan (tlisin@dso.org.sg)

DSO

LITERATURE REVIEW (PROJECT)

MILITARY APPROACH

- Organisation
- •TTP (tactics, techniques, and procedures)

Intelligence Preparation of the Battlefield (FM100-

- 12): process of analyzing enemy threats
 - Define the battlefield environment
 - Describe the battlefield's effects
 - Evaluate the threat
 - Determine threat course of actions

Similar to the idea of Sun Tzu's foreknowledge through intelligence gathering

COMPUTATIONAL APPROACH

Intent Inferencing Process (Santos Jr 007, p12)

- Model the adversarial belief
- Incorporate dynamics & effects of the environment
- Generate possible goals and intents
- Compute most probable intent

BDI model structure of KIP (Nielsen, Crossman, and Jones, 2007, p.33)

7 PRINCIPLES OF ADVERSARIAL THINKING

- 1. Construct a model of opponent, O, based on past behaviours
- 2. Include O's model of own (proponent, P) model
- 3. Use O's model to infer O's plan and add to O's model
- 4. Use this model to infer likely actions and responses to P's actions
- 5. Combine P's model, O's model, and environment to make a decision about the best course of action
- 6. Use O's model to predict what O will not expect
- 7. Take steps to conceal own plans.

(Thagard 1992)

ENEMY INTENT SCHEMA

Components of enemy intent schema (Cohen, Thompson, Adelman, Bresnick, Shastri, & Riedel, 2000, p. 24)

Knowledge structure of enemy intent

 Principles and methods structures used to derive goals

Strategies used by commanders

- Proactive strategy
- Predictive strategy
- Reactive strategy