
System Architecture 
Specification Based 
on Behavior Models 
Mikhail Auguston, Clifford Whitcomb

Computer Science Department, Systems Engineering 
Department

Naval Postgraduate School
Monterey, California, USA

ICCRTS 2010



One of the major concerns in Systems Architecture 
design is the question of the behavior of the 
system.

We suggest an approach for building system 
behavior models based on the concepts of event 
and event traces.

This yields executable architecture models and the 
ability to reason about system’s behavior.

Motivation

2ICCRTS 2010



• To make architecture models executable on an abstract machine, so 
that it becomes possible early in the system development phase to 
perform testing and verification of the top level system design and to 
enable automatic assertion verification.

• To provide a method and tools for extracting multiple views from the 
architecture models (e.g. DODAF views).

• To provide the method for system stepwise refinement from the top 
level architecture models to the detailed design and implementation 
models, supported by tools for sanity checks and refinement 
consistency checks.

• To provide formalism for specifying system’s environment models, so 
that the system architecture can be tested and verified in the interaction 
with its environment, supporting the system safety assessment by 
identifying the hazard states that may emerge from such interaction. 

Objectives

3ICCRTS 2010



• An approach to formal software system architecture 
specification based on behavior models.

• The behavior of the system is defined as a set of events 
(event trace) with two basic relations: precedence and 
inclusion.

• The structure of event trace is specified using event 
grammars and other constraints organized into 
schemas. 

• The schema framework is amenable to stepwise 
architecture refinement, reuse, composition, 
visualization, and application of automated tools for 
consistency checks. 

Monterey Phoenix

4ICCRTS 2010



Event - any detectable action in 
system’s or environment’s behavior

Event trace - set of events with two 
basic relations, precedence
(PRECEDES) and inclusion (IN)

Basic Concepts

5ICCRTS 2010



The rule A:: B C; specifies the event trace    A:: (* B *); means an ordered sequence 
of zero or more events of the type B

IN  

PR EC EDES 

 
A 

B C 

A 

B 
B 

B

A::  (B | C); denotes alternative A:: { B, C };   denotes a set of events B and C 
without an ordering relation between them

 

C 

A 

B 
• Graph grammar
• Both basic relations are partial orderings
• Event trace is always directed acyclic graph

6ICCRTS 2010

Event grammar



Shooting_competition:: {* Shooting *};

Shooting:: (* Shoot *);

Shoot:: Fire ( Hit | Miss);

7ICCRTS 2010

Example of an Event Grammar



 

Shooting_Competition 

Shooting 

Shooting 

Shoot_a_gun 

Shoot_a_gun 

Fire Hit 

Fire Miss 

Fire Miss 

8ICCRTS 2010

Example of event trace



Simple_transaction
_____________________________
root TaskA:: Send;
root TaskB:: Receive;
root Transaction:: Send Receive;
_____________________________
TaskA, Transaction share all Send;
TaskB, Transaction share all Receive;

The schema defines 
a set of event 
traces, i.e. the 
behavior model 

TaskA TaskB 
Transaction 

Send Receive

Example of an event 
traceIf X, Y are root events, and Z is an event type

X, Y share all Z ≅ { v: Z | v IN X} = {w: Z | w IN Y}
9ICCRTS 2010

Schema



Multiple_synchronized_transactions
_____________________________
root TaskA::  (* Send *);
root TaskB::  (* Receive *);
root Connector::  (* Send Receive  *);
______________________________
TaskA, Connector share all Send;
TaskB, Connector share all Receive;

TaskA 

TaskB

Send 

Connector

Receive 

Receive 

Send 

Example of an event trace

10ICCRTS 2010

Simple pipe/filter architecture



Basic(S). This set contains only traces, which satisfy 
all schema’s constraints, and have only events and 
relations imposed by the schema’s grammar rules 
and Axioms. 

The process of generating traces from Basic(S) 
defines the semantics of the schema S.

Schema is executable if there exists an Abstract 
Machine able to generate all traces from Basic(S). 
The schema represents instances of behavior 
(event traces), in the same sense as Java source 
code represents instances of program execution. 

11ICCRTS 2010

Semantics of the schema



Alloy Analyzer is a good candidate for implementing the Phoenix Abstract 
Machine. This is a basic trace for Simple_transaction schema.

12ICCRTS 2010



Predicate
CONNECTED(X, Y)   exists a ((a IN X) and (a IN Y))

may be used to extract simple diagrams from the schemas:

Extraction of Views

13ICCRTS 2010



Client_server
________________________________
root Client::  {* Request *};
root Server::  {* Provide *};
root Connector::  Initialize  

{* ( Request Provide)  *} 
Close;

________________________________
Client,  Connector share all Request;
Server, Connector share all Provide;

Example. Client/Server architecture 

14ICCRTS 2010



The User schema represents the environment behavior in which the
Calculator operates.

User 
___________________________________
Use_calculator::   (* Perform_calculation *);

Perform_calculation:: 
Enter_number  
Enter_operator  
Enter_number 
Request_result;

Enter_number:: (+ Press_digit_button +) ;

Environment models



Calculator ______________________________________
Calculator_in_action::   (* Single_calculation *);

Single_calculation:: Get_number  Get_operator  Get_number
IF (Get_operator.operation == ‘+’) THEN

/ Single_calculation.result = 
Get_number[1].value + Get_number[2].value; /

ELSE
/ Single_calculation.result = 

Get_number[1].value – Get_number[2].value; /
Show_result;

Get_number::  / Get_number.value= 0; /
(* Get_digit 

/ Get_number.value =        
Get_number.value * 10 +   Get_digit.value;/  *) ;

Show_result::  /show_result(ENCLOSING Single_calculation.result );/ ;

System behavior model



he following schema defines the interaction between the User and the Calculator by 
tablishing a connection between events in the environment and in the system.

onnection
________________________________
ess_digit_button::  /Get_digit.value = Press_digit_button.value;/ 

Get_digit ;

nter_operator::        / Get_operator.operation = Enter_operator.operation;/
Get_operator;

equest_result:: Show_result;

he model of a calculator interacting with the environment.

ser_and_Calculator_________________________________
erge User, Calculator, Connection;

_________________________________
alculator, Connection share all Get_digit, Get_operator, Show_result;
ser, Connection share all Press_digit_button, Enter_operator, Request_result;

Merged Behavior



A counterexample for assertion:
not exists Slice(Generator_off, Radar_Working); 

Assertion checking: Warfighting Example

ICCRTS 2010


