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Abstract

* Models to estimate the consequences of the Atmospheric Transport and
Dispersion (ATD) of chemical, biological, radiological, or nuclear (CBRN)
materials have been in development since the 1940s

— Even so, limitations remain in the abilities of these models to be used in
emergency situations (GAO, 2008)

« This paper describes our experiences in combining an optimization model
we have developed for evacuation decision support with existing plume
models, as well as geospatial tools and unique datasets, to provide an
initial enhanced response modeling tool

— A case study of a radiological event, its impacts, and implications for
evacuation policy are described

» Lessons learned from our experiences in integrating disparate tools and
datasets are discussed
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Motivation and Purpose

« Motivation
— Models to estimate the consequences of the Atmospheric Transport and
Dispersion (ATD) of chemical, biological, radiological, or nuclear (CBRN)
materials have been in development since the 1940s
— Even so, limitations remain in the abilities of these models to be used in
emergency situations (GAO, 2008 and 2003)

 Purpose
— To enhance existing Chemical, Biological, Radiological, and Nuclear (CBRN)
modeling tools to incorporate the ability to predict impact on critical
infrastructures and provide decision support for evacuation response

noblis.
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Noblis Sensor Network
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 Builds upon Noblis projects to integrate a network of commercial mobile radiation sensors
through a Service Oriented Architecture (SOA)

» A goal of this research: to demonstrate ATD models as user products utilizing the sensor
data 7
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Basic Elements of an ATD Model

A
Meteorology Inputs InputProcessing
Y
Terrain Data Atmospheric Health &
Transport & . Environmental, Response
Dispersion > Conlwncgmﬁt;ons ﬁ and > Decision
Model Infrastructure Support
Effects
Source Information
(Location, mode, v
nature, timing) A

Y

Deposition or
Chemical Conversion

 ATD models produce estimates of the movement and concentration of
contaminants over time

* Plume concentration and impact estimates can be further used in
decision support response models

 Models can be used in all phases of the emergency management cycle:

mitigation, preparedness, response, and recovery activities
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Approach and Plume Model

Approach: Develop capability to

estimate impact of CBRNE

events on critical infrastructures
— Use existing plume models

— Coordinate with existing Noblis
critical infrastructure impact
tools

Plume Model Selection Criteria

— Capability of model to analyze
RDD attack scenario for
demonstration by the Sensor
Network team (Cs-137)

— Ability to create graphical
depiction of plume area

— Model approved by government
authority

— Cost and availability
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Selected Model: HOTSPOT
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* Many (149) Atmospheric
Transport and Dispersion (ATD)
models were identified and
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Demonstration of ATD Models Utilizing

Sensor Data

itial demonstration was conducted of the Noblis Sensor Network leveraging
e Noblis Sensor SOA as part of a Radiological Dispersal Device (RDD)

esponse System

amples of Cs-137 were deployed at the Noblis facility in Falls Church,
rginia; and the vehicular radiological detectors measured the radiation field
rength and uploaded readings through a wireless network to SOA

gure shows WMD
odeling Flow:
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Plume Model Sample Contour Plot
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e Contours available for Total Effective Dose Equivalent (TEDE) in rem or for
Ground Deposition (in pCi/m?)

® Movement of plume over time can be shown

® Also incorporated government location data and telecom facilities for demo

~hlic



Optimal Evacuation Modeling
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Evacuation Problem Statement

« Situation:

— A densely-populated area is — - @ Welcome
subjected to a WMD attack — to Manhattan |
(chemical, biological, radiological, or w0
nuclear)

— Emergency responders must
evacuate the affected area or “hot
zone”

 Response decisions:

— How to route traffic from the “hot
zone” to the “safe zone”

— How to utilize the following modes of
transportation:

 Personal cars
« Commuter bus
« Commuter rail
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Evacuation Modeling Approach

* Linear programming (LP)/network programming formulation

— Advantages: quick to solve (typically < 5 seconds), synthesis, sensitivity analysis

— Disadvantages: potential for infeasibility, assumptions on form of constraints and
objective function

* Required Input Data:

— Maximum throughput (sources: Urban Congestion report (UCR) data, published
rail schedules)

— Average travel time (sources: UCR data, published rail schedules)

— Vehicle availability (source: Census data, DOT data, first responders)
— Number of people to evacuate (source: Census data, first responders)
— Hot zone boundaries (source: HOTSPOT model estimated plume)

— Required evacuation time (source: HOTSPOT model)
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Evacuation Modeling Approach (cont.)

« Software requirements
— LP solver: to solve model

* If less than 300 variables and 300 constraints: student version of AMPL is
sufficient

e If more than 300 variables and 300 constraints: NEOS server or a
commercial LP solver such as CPLEX

— Excel: to manage input data
— GIS software (e.g. Google Earth): to visualize model output
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Model Description: Overview

Graph:
— Nodes: key intersections

« Evacuation nodes (V,) — hot zone
location with evacuees after detonation

 Destination nodes (V,) — safe zone
location

— Edges: roadways between intersections

Objective: maximize the number of people

KZ.Z,\/-

evacuated from the “hot zone” in an allowable time T
Decision variables: number of vehicles of each mode to send along a

given route
Constraints:

— Road capacity

— Rail capacity

— Vehicle availability

Note: the value of T is determined using the HOTSPOT model

~hlic




Case Study Scenario

Radiological Dispersal Device
detonated in Chicago

* Mount Sinai Hospital

« 150,000 Curies of Cs-137; 100
pounds of TNT

Meteorological and terrain

assumptions:
* Wind speed/direction: 3.5 mph,
W

* Cloud cover: 10 percent, no
precipitation
« City terrain
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Case Study Scenario (cont.)

_HOTSPOT Estimat

ed Pl
4 ,. i, 1

ume: TEDE in rem
Eiy

« HOTSPOT Estimated Plume
is shown

— Final Total Effective Dose
Equivalent (TEDE) in rem

— Total elapsed time before
the plume concentration
dissipates to below
threshold: 63.4 minutes

* Other evacuation inputs:
— Resource Availability:
— 4,000 buses
— 50,000 cars

— Number of evacuees =
500,000

— Assumption: buses, cars, and evacuees are evenly distributed in hot zone
Maximum number of vehicles for each roadway segment came from the

-detailed UCR data
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Case Study Graph Structure

Evacuation
nodes

Destination
nodes

 The evacuation nodes and destination nodes were determined by
overlaying the hot zone (region corresponding to the outermost final
contour) onto the roadway network
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Evacuation Model Solution
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Sensitivity Analysis: Evacuation Time
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* High sensitivity

* Diminishing returns
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Sensitivity Analysis: Bus Availability
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* High sensitivity
* Returns diminish only slightly

= b‘%
;_,\o‘i‘e‘
%0
g.,o?e’
500 1000 1500 2000 2500 3000 3500 4000
Buses Available in Hot Zone

"Iﬂl’\l ic



Sen SItIVIty An aIyS 1S Large potential returns at

current throughput levels

—r]f-41p e—41C-410
350000
Slope =0

320000
280000 | Slope =3000
260000 |

Current observed

: values
230000 l l
200000 H ;

0 30 60 90 120 150
Maximum Edge Throughput (Vehicles/min)

"Iﬂhl ic



Sen SItIVIty An aIyS 1S Large potential returns at

current throughput levels
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Sen Slthlty An aIyS 1S Potential returns at current

throughput levels (less than before)
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General Evacuation Model Recommendations

Expansion of bus service
— Large potential gains in number evacuated
— “Diminishing returns” a very minor factor
— Utilization of buses:
» Whenever possible

* On routes with higher maximum
throughput

Increase throughput (e.g. adding lanes) on
certain routes

— For certain routes, increasing throughput can
greatly improve objective

— “Diminishing returns” is a factor
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Summary of Results

« Key accomplishment: development of initial modeling and analysis
capabilities in several areas
— Atmospheric transport and dispersion modeling

« Brought an ATD model in-house and have developed additional models
which allow us to estimate the needed source term data from Noblis
sensor data

— Evacuation modeling

* Developed linear program model to determine optimal routing and
transportation modes for evacuation, utilizing highly detailed
transportation data

* End result was a demonstration of an initial WMD planning and response
system comprising mobile radiation detectors, integrated by an SOA, and
including atmospheric transport and dispersion modeling and evacuation
modeling
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Lessons Learned

« Many sources of data and tools are required to model the impact of
hazardous materials such as the RDD scenario from this study.
Observations and insights from working with these datasets and tools
were:

— An alternate evacuation model to minimize evacuation time (rather than
maximum number evacuated) was also formulated
» Due to non-linearities in the model formulation, it appears that this model
may not be suited to real-time decision support
— Estimation of the contaminant source term parameters for the ATD model is
not straightforward.
» Model estimates of contaminant count per second readings should be
calibrated versus the actual sensor readings.
— Optimal placement of mobile sensors near the detonation point requires
research
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Model Description: Notation

»  Define the graph G = (V,E)
» Index Sets:

V., =V, UV, =set of allsites in region of interest
V =V, uV, =setof nodesin G

E. ={(i, )i, j €V, }=set of directed edges in region of interest
E=E, UE, =setof directed edgesin G
M = set of transportation modes (1 for bus, 2 for car, 3 for rail)
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Model Description: Notation

»  Decision Variables:

x; =number of vehiclesof typem e M tosend fromsitei tosite jintimeT
y. = number of individuals that cannot be evacuated from site i

»  Parameters:

T =required time to evacuate exposed individuals from hot zone
u; = maximum number of cars that can be sent fromsite i tosite jin timeT

r; = maximum number of commuter trains that can be sent fromsite i tosite j in timeT

R = throughput reduction factor for buses (i.e. decrease in throughput due to using larger vehicle)
P = number of individuals that are at evacuation site i at time of detonation

b™ = number of vehiclesof mode m availableat site i at time of detonation
a™ = average number of individuals that can occupy a single vehicle of mode m
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Model Description: Objective Function

Objective: maximize the number of people evacuated from the “hot
zone” (denoted TH) in an allowable time T

TH=Y'(P -y,
max ZV( Yi)
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Model Description: Constraints

»  Conservation of Flow Constraints:

D oxit =Y X =0, VieV, (destination nodes)
jev jev
> a(x X)) =P -y, VieV, (evacuation nodes)
meM
> >a™g =) (P-y;) (sink node)
ieVy meM jeVe

NOTE: Inflow is negative; inflow is negative
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Model Description: Constraints

 Vehicle Availability:
> xi<b", VieV,VmeM

jev
»  EXxcess Demand:

y. <P, VieV

e

NOTE: ensures the number of evacuees is positive at all sites
»  Road Capacity:

@/ R)X; +x; <u;, V(i j)eE,

ij
» Rail Capacity:

x2<r., Y(,j)eE,

1) 1)
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Possible Future Directions

* Further develop a second model to minimize evacuation time given that
all individuals in the hot zone must be evacuated

* Incorporate rail data into model

« Full solutions to other hypothetical attack scenarios and test another city
(Houston, TX)

* Visualization tool to observe:

— “Hot zone”
— Flows on evacuation routes

~hlic



Inteiration with Noblis Sensor Network

Noblis Sensor %
SOA

\/
Input Processing for <

Builds upon Noblis projects to integrate a network of
commercial mobile radiation sensors through a Service Concentrations
Oriented Architecture (SOA). In Plume

 Sensor readings are uploaded through a wireless
network to a central repository; SOA provides
automated common services and access to critical
information to end users.

A goal of this research: to demonstrate ATD models as Health, Environmental
ir products utilizing the sensor data and Infrastructure
™

Effects

Deposition or
Chemical Conversion




WMD Impact Modeling: BD View

itegration with Noblis Sensor Network

olis.

Key Clients / Programs

« DHS: National Communications
System (NCS) Operational Analysis
Branch

« DTRA: HPAC Program

- FEMA Consequence Management
Modeling

ness Development Objectives

monstrate early results of the
A-based WMD Impact Modeling
stem to DHS/NCS/OAB toward

1 of FYQ9

blore opportunities to merge
vabilities with HPAC

blore opportunities within FEMA
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Business Development Milestones

Nov 08: Introduced concept to NCS
Technology & Programs Branch



