UNCLASSIFIED

DEFENCE

DÉFENSE

Applying a Work-Centred Exploratory Design Framework to Joint Fires Coordination

Bruce A. Chalmers

Maritime Information & Combat Systems Defence R&D Canada – Atlantic Dartmouth, NS, Canada bruce.chalmers@drdc-rddc.gc.ca Lora Bruyn Martin, Julie Famewo, Tamsen Taylor, & Michael Matthews

> Human*systems* Inc. Guelph, ON, Canada lbruyn@humansys.com

15th ICCRTS, 22-24 June, 2010

UNCLASSIE

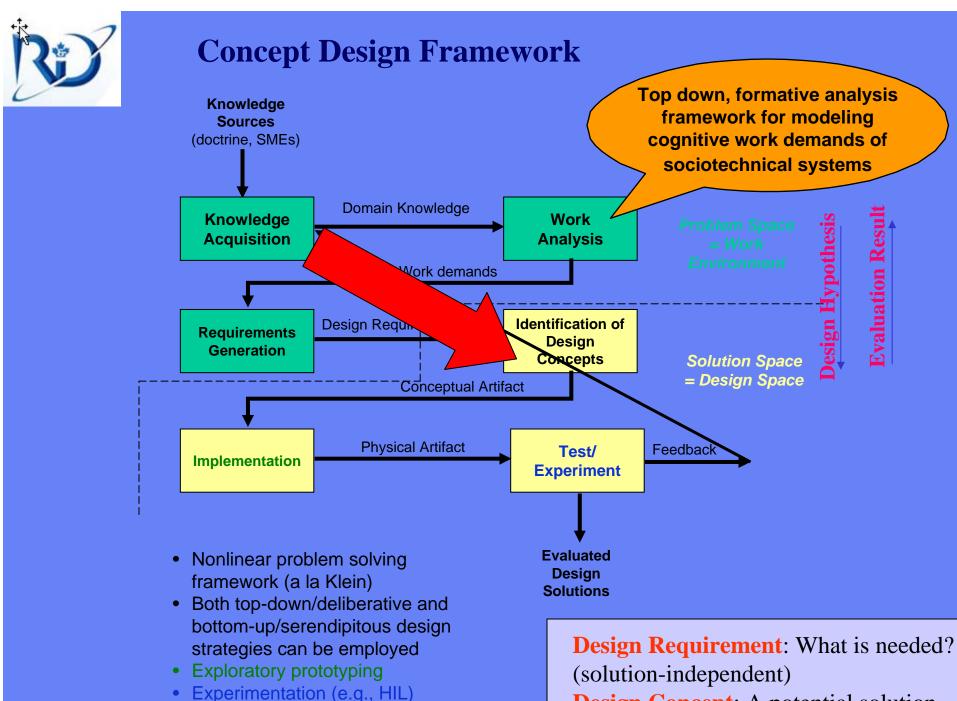
Defence Research and Development Canada Recherche et développement pour la défense Canada

Outline

- Complex Sociotechnical System Design Problems
- Concept Design Framework
- Work Analysis Framework
- Joint Fires Coordination Capability
- Knowledge Acquisition
- Analysis Methods & Results
- Identification of Design Requirements and Design Concepts
- Developing Options for Experimentation
- Concluding Remarks

Complex Sociotechnical System Design Problems

Current System


Command & Control in Submarine Control Room (VCS)

Future System

Joint Fires Coordination (JFC)

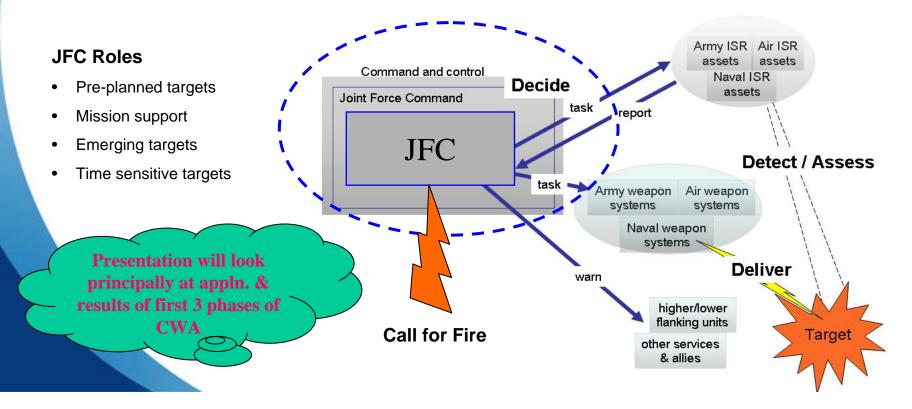
- Open, dynamic environments
- Variable and unpredictable work demands
- Uncertainty
- High risk, high stress
- Human expertise critical
- ...
- Need design methods that can cope with this complexity to support C2 concept development, exploration and testing
- Need to provide design knowledge/outcomes about technology, process and organizational structure to structure, support, facilitate cognitve work
- > Need methods for future systems
 - Initial system concept is only an envisioned one
 - May be no close current analogue for that future capability
 - Current system experts & system operators (if they exist) are <u>current</u>

Design Concept: A potential solution

Work Analysis Framework: Emphasis on Formative Approach of Cognitive Work Analysis (CWA)

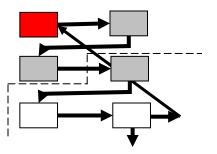
A) Constraint boundary Modeling Tools ADS

Phases of CWA	Kinds of Work Constraints	Modeling Tools	ADS
Work Domain Analysis (WDA)	Purpose and affordance structure of work domain	Abstraction-	
Activity Analysis (Work Org A + ConTA)	Work organization. Goals, decisions, cognitive transformations	Contextual Activity Matrix	
Strategies Analysis (StratA)	Ways that control tasks can be executed	Information Flow Maps, Tables, GDS Flow Charts	
Social Organisation and Cooperation Analysis (SOCA)	Who carries out work and how it is shared	Annotations of other models	
Competencies Analysis (CA)	Kinds of mental processing supported	Skills, Rules and Knowledge models	


G

Design of a Future Joint Fires Coordination (JFC) Capability

Aim: Identify design requirements and propose design concepts for a future operational level Canadian Forces JFC capability (JFCC).

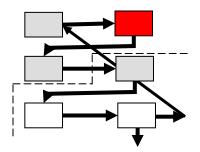

With a JFC capability:

- A spotter, observer or other (land, sea or air based) will be able to request calls for fire on emerging and/or time sensitive targets
- JFC will designate and prioritize a target for engagement by the most appropriate weapon system available within the joint force

Knowledge Acquisition

Reviewed Relevant Literature

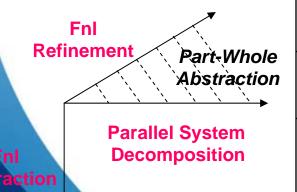
- 15 CF doctrine documents (e.g., Firepower, Field Artillery, Close Air Support, Naval Gun Support, ...)
- 4 U.S. doctrine documents (e.g., Joint Fire Support, Joint Targeting)
- Observed battle phase of an artillery planning exercise at CFB Gagetown
 - Simulated setting, brigade and division levels
- Six sets of SME Sessions (1-2 days each), incl.
 - Surveillance and Target Acquisition training instructors
 - Major (Army; Artillery Officer, TF-Kandahar Fire Support Officer)
 - Major (RC-South, HQ Chief Joint Fires and Targeting)
 - Semi-structured interview sessions to support the specific analysis methods employed


Work Analysis: Specific Analyses

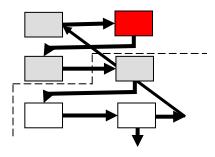
•

- Augmented Cognitive Work Analysis (CWA)
 - Mission and Organizational Analysis
 - Work Domain Analysis (WDA)
 - Control Task Analysis (ConTA)
 - Strategies Analysis
 - Goal Directed Task Analysis (GDTA)

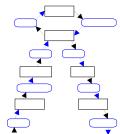
Mission and Organizational Analysis (MOA): Establishing the JFC System Boundary Joint Fires Support (JFS): *"Fire support is the collective* and coordinated use of the fire of land and sea based indirect fire systems, armed aircraft, offensive information operations (IO) and non-lethal munitions against ground targets to support land combat operations at both the operational and tactical levels" (Firepower, 1998). The 'to-be' JFC is to be part of the broader JFS system Conducted a mission and organizational analysis of JFS to help establish JFC system boundary The Battlefield Identified 8 functionally distinct subsystems of JFS JFC primarily includes functions within the Coordination, Planning, Command and Control, Communication and Intelligence subsystems of JFS Intelligence Deliverv C_{2} Planning Manoeuvre Logistics Coord COMMUNICATION


Work Domain Analysis (WDA)

Purpose: Model JFS system's functional and decompositional structure in an event-independent manner


Method: Build a *modified* Abstraction Decomposition Space (ADS) of JFS

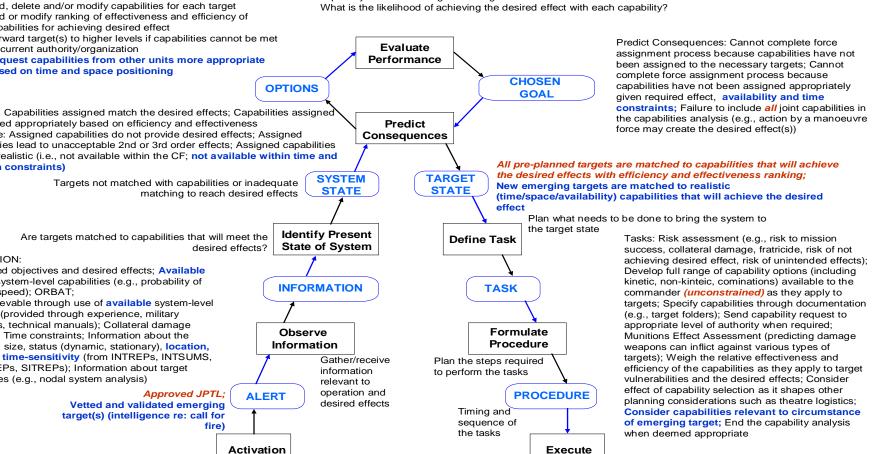
Over 500 elements in final ADS



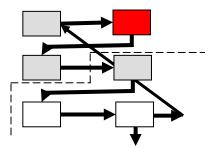
Abstraction Hierarchy Level	Definition	Example from the ADS	
Functional Purposes	Purpose of the work system and indications of performance	Continually prioritize and plan fires that will put into effect Commander's Intent and optimize resource allocation	
Abstract Functions	Underlying laws, principles, constraints, values and priorities of the work system	Maximize probability of achieving desired effect	
Purpose- Related Functions	Processes by which Abstract Functions are carried out – found it helpful to use both types of part-whole abstraction in this level	Evaluate weapon capabilities and limitations; Evaluate effect of situational factors	
Object- Related Processes	Capabilities and limitations related to achievement of Purpose-Related Functions	Planning support systems	
Physical Objects	Rather than describe the physical appearance and location of equipment, as is typical at this level of the ADS (for 'as-is' systems), analysis provided an inventory of example objects and/or inputs used to meet	Weapon effectiveness table	

Control Task Analysis (ConTA)

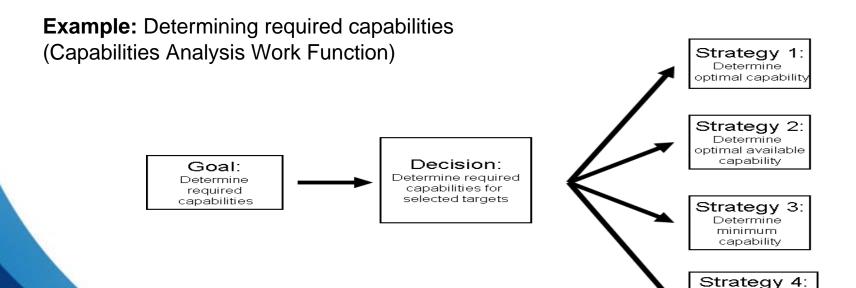
- Purpose: Decompose JFC into critical work functions relevant to JFC; model the cognitive information processing and resulting knowledge states of the control tasks involved; determine *what* needs to be done in the JFC work domain
- **Method**: Identification of work functions from WDA; Rasmussen's Decision Ladder (DL)

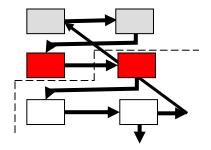

Target Type	Work Function
Pre-planned	Target Development and Selection
Pre-planned, Emerging	Capabilities Analysis
Pre-planned, Emerging	Force Assignment
Emerging	Process (Vet and Validate) Emerging Targets
Pre-planned (Mission Support)	Force Assignment for Mission Support
All	Outcome Assessment
All	Coordination of Components to Synchronize Actions
All	Management of JFC

ConTA – DL in Graphical Form Work Function: Capabilities Analysis


Goals: Match capabilities to targets (on JPTL or emerging) to achieve desired effects in the most efficient and effective manner (*red* – pre-planned target only; **blue** – emerging target only; black – all target types)

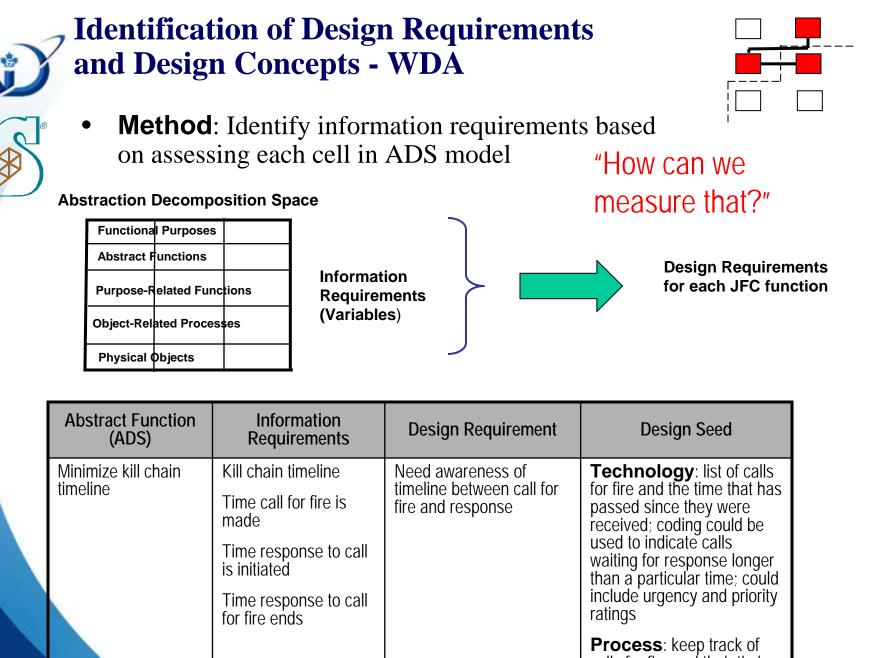
Are the selected capabilities realistic (i.e., is the required capability organic (available within our authority/organization); is it within reach [time and space] to affect the emerging time-sensitive target)? If not, is the capability available through other organizations? What is the likelihood of achieving the desired effect with each capability?

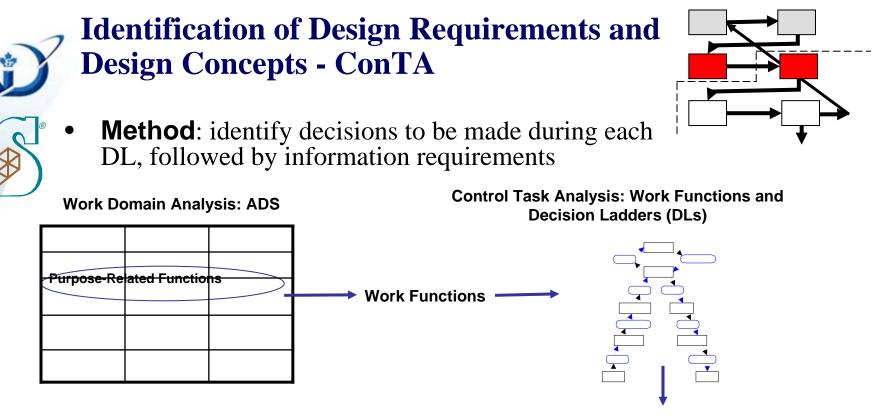



Strategies Analysis (StratA)

- **Purpose**: Investigate the different ways control tasks can be performed in JFC. These will provide design constraints for future systems (i.e., indicate which strategies may need to be supported somehow).
- **Method**: SMEs presented with activities identified in each work function from the ConTA and probed on how they might be accomplished. Developed a flow chart of the strategy.

Identification of Design Requirements and Design Concepts

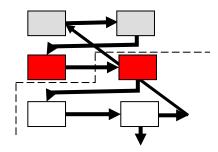



- Top-down analyses used to identify **design requirements** (opportunities or needs for design interventions) and propose **design concepts** in the following categories:
 - Technological Aid
 - Process/ Policy
 - Organization

Design Requirement: What is needed? (solution-independent)

Design Concept: A potential solution

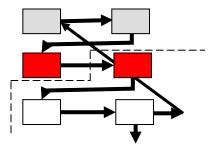
• The StratA helped identify design constraints



Decisions with Design Potential

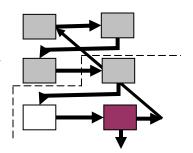
Decision	Information Requirements	Design Requirement	Design Concept
Does the current target list need to	Target list	Need awareness that target list requires	Technology : alert or coding indicating time/date target list was
	Time/date target list was updated	changing	last updated
Arrival of new information (e.g., commander's guidance,			Organization: personnel/ system devoted to reviewing target lists
		Process : regular review of target	

Identification of Design Constraints – StratA



• **Method**: Strategies identified in the analyses were examined and ways in which these strategies would constrain designs were specified

Decision	Strategies to be Supported	Design Constraints
How can I represent space and spatial relations?	Paper maps	Systems and/or processes must accommodate the fact that different people prefer different information presentation methods.
	Computer displays	Incorporate a means for easily translating information from a paper map to an electronic map, and possibly vice versa.



Identification of Design Requirements and Design Concepts – Design Themes

- Eight overarching design themes emerged in the design landscape for the future JFCC, producing several hundred design requirements and design concepts.
- Design themes were:
 - Decision, planning and coordination support
 - Availability of baseline and real-time information
 - Data/information fusion
 - Information presentation
 - Streamlined communications
 - Training
 - Measurement of effectiveness and performance
 - Team structure

Developing Options for Experimentation

- Design concepts related to some of the primary design requirements identified were aggregated and considered for experimentation potential
- Experimental conditions, metrics, measures, evaluation criteria and design hypotheses were developed for the aggregated design concepts
- Experimentation ideas were categorized based on the expected implementation schedule:
 - Short-term (within 12-18 months)
 - Medium-term (approx. 2-5 years)
 - Long-term (longer than 5 years)

Developing Options for Experimentation: An Example

Design Requirement	Short-Term	Medium-Term	Long-Term	
Need to update plans when changes are required	General Design Concept: Alert indicating that plans need to be changed (e.g., plans for targeting, engagement priority, etc.)	General Design Concept: Specialized teams with different responsibilities, such as monitoring different resources or locations, developing MOEs and	General Design Concept: System that tracks real-time changes in weather, terrain, battlefield dynamics, resources, etc and indicates how they pertain to plans (Technology/ Process)	
	(Technology) Experimental Conditions: Alert present or absent; Varying amounts of information present with alert (e.g., explanation as to why changes are required is present or absent)	MOPs versus evaluating plans using the MOEs and MOPs (Organization) Experimental Conditions: Divide team responsibilities associated with planning and updating plans in a variety of ways (e.g., functional vs. divisional team structure)	Experimental Conditions: Varying degrees of human control over the tracking of information changes (all manual, semi-automatic, all automatic); Manipulations associated with algorithms designed to match information changes with plans (degree of change required to initiate an indicator/ alert that plans may be affected)	
	Metrics: Response time to choose to change plans; Appropriateness of plan changes implemented; Design Hypotheses: Operators change plans faster when alerts are	Metrics: Team and team member responsibilities; Time required to develop and change plans; Appropriateness of plans given circumstances Design Hypotheses: Operators will develop and evaluate plans	Metrics/ Measures/ Evaluation Criteria: Baseline information; Changes to information; Sensitivity of system to change (e.g., how much information change is required to lead to an indicator/ alert that plans may be affected)	
	present compared to when they are absent; Operators change plans more appropriately when an explanation regarding the	faster and more appropriately when teams have specialized responsibilities (e.g., work together regarding same locations and resources but with	Design Hypotheses: Operators change plans faster and more appropriately when changes are tracked automatically and when the system is highly sensitive providing	

Concluding Remarks

- The approach was very effective for identifying several hundred design requirements for the 'to-be' JFC work domain
 - incorporated into a specification of a potential future JFC operational capability for the Canadian Forces
- Traceability of results from knowledge acquisition through work analysis to design
- Results applicable to DRDC's Technology Demonstrator Project on JFS
 - Experimentation options
 - Design concepts mapped to a JFS interface
 - Gap analysis of JFC tools

Any questions?

DEFENCE

DÉFENSE

Ե