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ABSTRACT 

 
One of the most challenging phenomena that can be observed in an ensemble of interacting agents is 
that of self-organisation, viz. emergent, collective behaviour, also known as synergy. The concept of 
synergy is well-known in the artificial intelligence community, in social and management science, and 
also in a the military C2 community, e.g. in describing sensor fusion. The idea often loosely phrased 
as ‘1+1>2’, strongly suggests that it is possible to make up an ensemble of similar agents, assume 
some kind of interaction and that in such a system ‘synergy’ will automatically evolve. In a more 
rigorous approach the paradigm may be expressed by identifying an ensemble performance measure 
that yields more than the sum of the individual performance measures of the constituents.  
 
The aim of the present study is to discuss in a simple conceptual model system under what 
circumstances self-organization is feasible and to discuss what type of agents and interactions are 
minimally required to induce synergy among agents. As a case in point we discuss the emergent phase 
coherence of a multi-oscillator system with non-linear all-to-all coupling between the oscillators. In 
the thermodynamic limit this system shows spontaneous organization.  Simulations indicate that also 
for finite populations that are not completely connected phase synchronization spontaneously emerges 
if the interaction strength is strong enough. 
 
 
1.  INTRODUCTION 
 
Sensor fusion has been studied over the past two decades. Although it is clear that many identical 
sensors in cleverly arranged set-ups may increase resolution and are able to track multiple targets, and 
dissimilar sensors may be able to refine each others observations by complementing each others 
capabilities, from the information science point of view the added value of merging the results of 
many sensors, connected in networks has not been as successful as expected. One of the reasons for 
this is the absence of a clear view on what can exactly be expected in terms of a better assessment of 
the environment by combining the information of multiple similar or dissimilar sensors. Because the 
metric of sensor performance is lacking, it is difficult to demonstrate its real virtue. In addition the 
dimensionality (space, time, features) of the fusion problem makes it difficult to define a universal 
description of the process. 
 
From the theoretical side there have been several attempts to define measures of synergy, viz. 
probabilistic and fuzzy belief measures that express the added value (“synergy”) of  cooperating 
ensembles of many sensors. It is not obvious at all that by just adding more sensors to a network or 
having more than one sensor observation of the same event is  automatically improving situational 
awareness. The management perception of synergy (“the synthesis of partial results is more than their 
sum”) is in practice hard to demonstrate.  
 
The elementary question therefore is: Can we think of a mechanism or paradigm that shows in a 
logical way the added value of synergy. We could even think of a more abstract way of posing this 
question: Is it possible to demonstrate in a realistic physical model that by combining simple, 



elementary “agents”, we may create new performance measures of the resulting ensemble, i.e. new 
properties pertaining to the ensemble as a whole that are not present in the individual agents ? 
 
In the present article we will discuss a candidate physical model that is able to demonstrate the 
emergence of new characteristics of an ensemble that are not present in its separate constituents. The 
occurrence of spontaneous synchronization of an ensemble of phase oscillators with non-linear 
interaction is a paradigm that demonstrates added value in terms of degree of synchronization and 
robustness if the interaction between the oscillators is strong enough. These properties are not defined 
for the individual phase oscillators. 
 
Finally we note that the theoretical model is in fact also in practice important, because synchronization 
is the key concept necessary for distribution of time in a network of sensors and thus, on the physical 
layer of the network suggests a way to order time-stamped events and distribute time, with the need of 
neither a central fusion centre nor complicated multiple access or routing techniques, or an elaborate 
time distribution protocol. This in turn makes robust synchronization and communication in large, 
scaleable networks based on analog communication feasible with a time granularity of the order of one 
microsecond or less. 
 
 
2.  MODEL 
 
2.1  Network topology 
In real sensor networks, and especially in wireless sensor networks, we have a number of 
contradicting, competing operational requirements.  In the following we will primarily consider 
networks that are deployed by the military with the aim to survey a certain area, e.g. to perform a 
detection function: sentry nodes. The sensor nodes are dropped in the area with a certain average 
density and will have to operate autonomously: power backup is contained in the sensor and in 
principle it is possible to re-supply energy by solar cells.  
The basic network topology is fixed although movement in space cannot be precluded due to external, 
environmental changes. However, in the present model the nodes are not moving around 
autonomously. Exchange of information between nodes is assumed to be by wireless r.f. 
communication, although the principles outlined here extend to IR or even acoustic communication as 
well, with obvious adjustments for bandwidth, delays, throughput, energy consumption, etc.  
 
Each sensor has very limited resources in terms of energy consumption and power, so that the network 
topology cannot be rigorously maintained for all times, and modelling of the description of the 
network requires switching topologies, resulting in a geometric random graph description. In this way 
the overall lifetime of the distributed sensor network can be significantly extended. At the same time a 
geometric random graph approach introduces robustness in the network modelling: nodes may 
malfunction, die or revive without compromising the overall operation of the network as a whole.  
Sensors deployed in large-scale networks must by definition be extremely cost effective: they are only 
used once, should be relatively simple in terms of hardware and computational capabilities, yet should 
be accurate and dependable as detectors, and be able to communicate their results over long 
observation periods. 
Because of the limited computational capabilities of the single sensor node, time distribution and the 
fusion of data has to be done by specialized, central data fusion and synchronization nodes. In large 
networks the collection and processing of experimental data from sensor nodes and the diffusion of 
timing information to the sensors, if time stamping is required poses a significant computational 
burden on the network in terms of computer power, latencies and bandwidth. 
 
The limitations posed by the simple sensor nodes in terms of energy consumption introduce a number 
of problems:  First the sensor cannot be supposed to be in permanent contact with the network at all 
times: it will hibernate from time to time in order not to exhaust its energy supply too quickly. 
Therefore such a network must be robust against (re)connecting and disconnecting of sensors. In the 
second place it is desirable to have a scalable network, i.e. the nodes should be homogeneous and no 



special nodes are necessary for the data processing and fusion. This is an important motivation to look 
for non-local, distributed fusion schemes. 
 
There is another reason why it is important in practice to avoid central fusion in case the sensor 
network is used for event detection, e.g. in case of military interdiction or in the detection of hazardous 
events:  Centralized communication networks often suffer from overload and long latencies at the very 
moments that they should be able to respond quickly in a reliable way. An example is the performance 
of the recently introduced communication system C2000 for the emergency services (police, fire 
brigade and ambulance services) in the Netherlands: If a serious accident occurs the system quickly 
overloads, because all responding emergency services move to the same area and communication 
performance deteriorates down to unacceptable levels. This is especially true for large-scale 
heterogeneous networks. In [1] it was shown that in a wireless network with one-to-one links, the 
transport capacity per sensor node is proportional to 1/ logN N  for large N, where N is the number 
of sources. This result applies to a situation with many sources and many sinks. In contrast, the data-
centric nature of sensor networks was exploited in [2], where it was shown that if we are dealing with 
a symmetric function of the nodes, i.e. if we are not concerned with the allocation of sensors and 
measurement, the transport capability scales as 1/ log N . 
 
2.2.  Agents as oscillators  
In the present model we distinguish between functionality of the network, the network topology and 
finally the nature of the agents. Because we focus on arriving at a common decision by randomly 
distributed sensors, we will reduce the sensors to their bare essential functionality: how can an agent 
communicate its local decision to all other agents in the network and make the network arrive at a 
common decision on the basis of all local decisions in a energy-effective way? In particular we are 
interested in the added value of this communication and census process: Is it possible to show that the 
network arrives at a common decision that is the result of all contributing sensors and is “better” (in 
the sense of e.g. quality, confidence level, belief, robustness) than a mere superposition of single 
sensor decisions?  For this reason we will not look into the sensing process itself, but merely assume 
that an observable can be expressed in a scalar value and that this value can be translated in a 
characteristic of the agent. Note that the restriction of one observable per sensor can be easily dropped 
by extending the model to a vector model, where the vector consists of m independent measurements, 
either of m physical sensors per node, or of a time sequence of m observations by one sensor. Each 
node (agent) will be modelled as a simple phase oscillator with an eigenfrequency that scales with the 
result of the measurement taken at the node. The oscillators are coupled to each other by means of a 
non-linear interaction that depends on their phase difference. Under suitable conditions this non-linear 
interaction gives rise to synchronization between the interacting oscillators.  
 
2.3  Phase oscillators 
First we review the behaviour of an ensemble of non-linear coupled phase oscillators and then apply 
this model to the distributed fusion of sensor data. Oscillators are in general non-linear devices in the 
sense that both amplitude and phase evolve in time and are described by first order non-linear 
differential equations (DE).  Even purely linear harmonic oscillation with low total harmonic 
distortion is in practice achieved by e.g. a Wien-bridge oscillator that uses a non-linear feedback 
element, such as an incandescent lamp [3].  
Although actual oscillators are non-linear systems of at least second order [4], in the present 
discussion it suffices to describe their dominant dynamics by the Liénard equation: 

2

2 ( ) ( ) 0d x dxf x g x
dt dt

+ + =      (1) 

where x(t) is the output of the oscillator.  
The function f(x) determines the shape and amplitude of the oscillation, whereas g(x) determines the 
oscillation frequency.  
The Liénard equation [5-9] is a generalization of the famous Van der Pol equation: 
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This second order differential equation describes a non-conservative oscillator with non-linear 
damping. A Liénard system has a unique and stable limit cycle solution if the Eq (1) satisfies the 
following conditions: f(x) is an even function, g(x) is an odd function, f(x) is continuous with (0) 0f <  

and g(x) is Lipschitz, ( ) 0xg x > for 0x∀ ≠  and 
0

lim ( ) lim ( )
x

x x
F x f dξ ξ

→±∞ →∞
≡ → ±∞∫  and ( )F x  has 

exactly one positive root a, with ( ) 0F x <  for 0 x a< <  and ( )F x  for x a>  is strictly increasing.  
In the following we will use the concept of the phase oscillator: A phase oscillator is described only by 

the time dependence of its phase 0
d
dt
ϑ ω= . In this very simple description we consider just the time 

evolution of the phase θ and neglect the dependence of amplitude vs. time. Although this may seem a 
gross simplification, one can show that the theoretical concept is very useful and reduces the order of 
the DE describing the evolution of θ in time to first order.  
 
Our discussion of the phase oscillator model is along the lines presented in [10]. We consider a 
network consisting of N nodes composed of a sensor and described by an autonomous dynamical 
system. Each sensor is coupled to its (N-1) neighbours, although this requirement may be relaxed to 
also include sparser coupled networks.  Following [10]  we assume that the sensor operates as a 
detector. Each sensor decides if a detection is made by setting its fundamental frequency 1iω = Ω ; if 
no event is detected it sets 0iω = Ω . 
The network of coupled oscillators thus works as a distributed detector. Each sensor node is 
represented by an oscillator that is described by the following equation: 

( ) ( ) ( )
1

( ) ( 1,..., )
N

k
k kj j k

jk

d t K a F t t k N
dt c

ϑ
ω ϑ ϑ

=

= + − =∑   (3) 

where ( )k tϑ  is the state of the k-th sensor, or alternatively, the phase angle of the k-th oscillator. The 

initial value ( )0kϑ  is taken as a random number in[ ]0,2π ; The function F(x) describes the non-linear 

interaction between pairs of oscillators and is supposed to be odd: ( ) ( )F x F x= − − ; the N*N matrix 
elements ija  describe the coupling of the network: 1ija =  if i and j are connected and 0ija =  

otherwise. We assume that the network is undirected, i.e. ij jia a= .  K is the mutual coupling constant 

and ic  weighs the influence of all other sensors on the i-th sensor. It can be shown to be a measure of 

confidence, or alternatively, the SNR of the i-th sensor. If we take ( ) sinF x x= , and take 1ij jia a= =  

for all pairs (i,j), and 1ic =  for all I, the model is equivalent  to the Kuramoto model  [11], which has 
been extensively studied. For an excellent review see [12] and references contained therein. 
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k
k j k

j
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=
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Finally it is worth noting that the same non-linear Kuramoto DE occurs in the classical theory 
describing the nonlinear first order analog phase locked loop (PLL) [13].  The description of the 
extremely non-linear capture behaviour of a PLL boils down to solving a set of two first-order 
nonlinear DE, one of which is of the same type as Eq. (4), after fast varying components are averaged 
out [14,15].   
 
 
2.4  Emergent behaviour: synchronization 
For very low values of N, e.g. N=2 the solution of the phase evolution is relatively easy. However the 
analysis of a general N oscillator system is much more complex and can only be done by simulation. 



In the thermodynamic limit (N ö ¶) we can use the so-called mean-field approximation, and analyze 
the behaviour of the system as if it were a physical ensemble of spins. From physics we know that the 
existence of a mean-field is indicative of a phase transition, e.g. thermodynamic transitions such as 
melting (solidö liquid), normal ö superconducting, paramagnetic ö (anti)ferromagnetic order. In 
analogy to these physical phenomena it can be shown that the Kuramoto system also displays a phase 
transition [16] . 
The basic derivation showing the existence of a phase transition in the Kuramoto model for N ö ¶ 
and K large enough is straightforward. In analogy to the theory of phase transitions we start by 
defining a so-called order parameter r, the ‘mean field’, which characterizes the phase transition: 

( )( )

1

1( ) j
N

i ti t

j
r t e e

N
ϑΘ

=

= ∑   (5) 

As can be seen ( )r t  is a real number built up by the superposition of the contributions of all 
neighbouring nodes in the network. Generally the contributions to the sum Eq. (5) have arbitrary 
magnitudes and phases, so that they add up incoherently and therefore their contributions to ( )r t will 
be negligible. In case that for a fraction of the ensemble the oscillator frequencies ( )j tϑ converge to 

the same value, say *ω , the superposition is coherent and ( )r t will tend to a constant value (of the 
order 1). Another way to characterize this situation is that all oscillators are synchronized, i.e. their 
phases ( )j tϑ are in general different, but their phase rates (angular frequencies) ( )j tϑ are equal. 
The oscillators in the ensemble are phase-locked. This can mathematically be formulated by 
putting *( ) (0)j jt tϑ ω ϑ= + . We then have for large N: 
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sin( )k
k k

d Kr
dt
ϑ ω ϑ= + Θ −    (7) 

We can now transform Eq. (7) to a reference frame rotating with *ωΘ = by setting k kψ ϑ= − Θ : 

* sin( )k
k k

d Kr
dt
ψ ω ω ψ= − −  (8) 

Eq. (8) has synchronous and asynchronous solutions depending on the strength of the interaction. 
 
2.5  Connectivity graph of the network  
The analysis in section 2.4 was restricted to all-to-all connections between oscillators. It can be 
extended to include other network topologies, provided that the interactions are symmetric, i.e. the 
network topology corresponds to an undirected graph. Oscillators that are entrained by the mean field 
will synchronize and oscillate with a common frequency *ω .  
 
The mean field approximation Eq. (5) has to be modified to include the connectivity of the network: 

( ) ( )( )

1

1 jk

N
j tj t

k kj
j
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N

ϑΘ

=
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Note that the global mean field parameter ( )r t  is now replaced by a local order parameter ( )kr t  and 
that the resulting general differential equation for the phase evolution is slightly more involved than 
Eq. (7): 

sin( )k
k k k k

k

d K r
dt c
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Again we change the frame of reference *
k k k tψ ϑ ω= − , where *

kω  is now the synchronization 
frequency of the subgroup to which the k-th oscillator belongs.  



* sin( )k
k k k k
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d K r
dt c
ψ ω ω ψ= − −  (11) 

The mathematical derivation of the condition for the interaction strength K is straightforward. 
Multiplying both sides of Eq. (10) with kc and summing over all N yields: 
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 where we have used that kj jka a=  and the fact that F(x) = sinx is odd: ( ) ( )F x F x= − − .  Therefore it 

follows that if the ensemble synchronizes, the phase rates of all oscillators in the ensemble 
( )kd t

dt
ψ

 

will converge to the same value for t ö ¶: 
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N
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C N
kk

c

c

ω
ω =

=
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∑

   (13) 

It is worth noting that the value *
Cω  pertains to all neighbouring oscillators within the same 

synchronous cluster C. More than one synchronous cluster could emerge in a general topology with 
different *

Cω .  In the limit of convergence each oscillator in such a synchronous cluster C satisfies: 
* *sin( )k k C k k CKr tψ ω ω ϑ ω= − − −  (14) 

from which follows the condition of synchronization 
*

k k CKr ω ω> −      (15). 

Eq. (15) implies that if the interaction strength K inside the cluster C is strong enough, intra-cluster 
synchronization will occur. If the network graph is completely connected, i.e. 1ij jia a= =  for all pairs 
(i , j),  global synchronization will occur. Although r at t = 0 is generally small because all oscillators 
initially each have their own frequency and are incoherent, more and more oscillators synchronize, i.e. 
oscillate with the common frequency *ω . This partial synchronization entraines still more oscillators, 
further increasing  r  until almost all oscillators within C are coherent as reflected by r approaching 
the value of c / N, where c represents the size of cluster C. It can be shown that the equilibrium is 
stable for these values of K.  In the case of global synchronization the value r can be seen as an order 
parameter in analogy to the magnetization in the paramagnetic ö ferromagnetic phase transition in 
solid state physics. 
On the other hand the network cannot synchronize if there exists an oscillator for which 

*
iKd ω ω< −  since r d≤ , where d represents the degree of the network. This implies that the larger 

d, the easier the network will synchronize with a given interaction strength K and that in a fully 
connected network already relatively weak interaction will suffice to achieve synchronization among 
the N oscillators. By numerically solving the set of differential equations Eq. (10) for finite N and for 
K large enough global synchronization is observed for networks corresponding to regular graphs of 
different degrees d. The value of the order parameters ( )kr t quickly converges to a value slightly 
below d/N. The rate of convergence increased with increasing d. 
 
 
2.6  Sensors as detectors 
The previous analysis can now be exploited to use the sensor network as a distributed detector: In 
analogy to the analysis of Ref. [10] we define two alternatives for each sensor: 1iω = Ω  if a sensor 
detects an event and 0iω = Ω  if no event is detected. This analysis can be extended to the 
simultaneous detection of more than one type of event. If we view detection as a stochastic process 
with a probability of detection 0p , we may conclude from the previous discussion that if a sensor 



network is sufficiently large and if the phase rate converges to *ω , then the value of *ω  is given by 
the expectation value of iω : 

*
* 1

0 1 0 0

1

(1 )
N

k kk
N

kk

cd p p
dt c

ωϑ ω =

=

= = ≡ Ω + − Ω∑
∑

     (16) 

The evolution in time of the phases of the N oscillators is then given by 
*( ) (0)j jt tϑ ω ϑ= +        (17), 

where (0)jϑ  the initial phase of each oscillator is given by the alternative 
*

0
0 0

*
1

1 0

arcsin 1
(0)

arcsin
j

with probability p
Kr

with probability p
Kr

ω

ϑ
ω

⎧ ⎛ ⎞− Ω
Θ = = −⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞− Ω⎪Θ = =⎜ ⎟⎪ ⎝ ⎠⎩

(18) 

This statistical approach gives rise to a Bernoulli distribution for r  and from this the expectation value 
of r  can be calculated by imposing that the r  calculated in the mean field approximation Eq.(6) 
coincides with the expectation value. The solution of this implicit equation yields values of r  in close 
agreement with r d≈ , the network degree. 
 
In  Eq. (13) the common oscillation frequency *

Cω  of the synchronized cluster C is expressed as a 
weighted average over the eigenfrequencies of the participating oscillators. It seems therefore natural 
to identify the coefficients kc as the level of confidence one associates with of the k-th sensor. In a 

statistical sense we can therefore write 21/k kc σ=  , where 2
kσ  is the variance of a single 

measurement. In this way the various repetition rates of  sensors could be taken into account, which is 
especially important when dealing with a wide range of timescales. By identifying the weights kc  as 
belief or confidence measures sensors that produce more accurate results contribute more to the 
common synchronization frequency and thus to the sensor fusion process than sensors that are less 
accurate. 
 
Finally we discuss a way to extend the use of multiple sensors beyond detection, e.g. for more 
accurately measuring a scalar field of sensor values.  The sensor modelling discussed so far has 
exploited the global synchronization as a means to arrive at consensus among the N individual sensors 
in the network. If one considers the detection of intruders in the area where the sensor network is 
deployed this may be desirable. However in the case one wants to do a measurement of a quantity with 
this network and one is interested in learning how a certain scalar field varies over the surface covered 
by the sensors, one has to be more subtle. Although an exact analysis is outside the scope of the 
present work we suggest to modify the Kuramoto model Eq.(4) in such a way that the coupling 

between each sensor pair is weighted with a factor   
2

2

( )
exp

2( )
j kϑ ϑ

μ
⎡ ⎤− −
⎢ ⎥

Δ⎢ ⎥⎣ ⎦
, i.e. that the function ( )F x  in 

Eq.(3) is taken as
2

22( )( ) sin
x

F x e xμ
−

Δ=  instead of the Kuramoto term ( ) sinF x x= . The inclusion 
of this extra weight ensures that clusters are formed in space, indicative of similar measurements. In 
this case global synchronization is impeded and local clusters are formed. A similar local clustering 
can be exploited by collectively varying the transmission power at specific time intervals. With these 
methods much more information pertaining to the scalar field can be extracted. The idea is similar to 
the morphogenetic neuron [17], where instead of linear superposition of scalar outputs of neighbouring 
neurons in a Hopfield neural net instead non-linear basis functions are combined in a synapse, before 
the threshold function is applied and the output is generated. In this way it has been shown that more 
universal data geometries could be mapped by the neural network. Future research is necessary to 



dynamically vary the phase mismatch parameter μΔ  and in this way obtain a better spatial resolution 
of the detection, or the measured scalar field, without the need for central fusion or extensive 
communication overhead. 
 
3.  SYNERGY: THE ORDER PARAMETER OF PHASE SYNCHRONIZATION 
 
Synergy is commonly defined as the effect that if agents work together,  the result of this co-operation 
is greater than the sum of the results produced by the individual agents. Although this is an interesting 
abstract theoretical concept, in practice it is not so obvious that this expected effect really exists.  
 
Sensor fusion is a process that is aimed at improving the quality of the observation process by 
combining the data streams originating from different sensors. Although is in practice not easy at all, 
in an abstract way it is easily conceived that combining the outputs of many sensors will increase our 
understanding of the observable world around us. This has always been the drive to study sensor 
fusion. However apart from the fact that multiple sensors of the same type provide better statistics and 
thus more accurate results and different complementary sensors provide more, independent 
information and therefore potentially a better awareness, it is by no means obvious that adding more 
sensors  automatically increases our understanding of the world around us, in other words: that there is 
in fact synergy in sensor fusion .  
 
In an abstract way the concept of synergy may be formulated  in several ways, e.g. 

   
( ) max( ( ), ( ))g A B g A g B∪ ≥      (19)  

or  ( ) ( ) ( )g A B g A g B∪ ≥ +      (20) 
 
From this formulation it is clear that in order to model synergy, we need non-linear operators. 
 
The earliest attempts to combine measurements from multiple sources in a non-linear way are by 
Bayes [18]. He introduced the notion of conditional probability Prob (A|B), defined by: 

( )( )
( )

Prob A BProb A B
Prob B

∩
=   i.e. the probability of A, given that event B has occurred. This 

definition is easily extended to n observations obtained by n sensors. There are a number of difficulties 
connected with the application of the Bayesian sensor fusion formula: 
 
• difficulty of assigning a priori probabilities 
• complexity when there are multiple hypotheses and/ or multiple conditional events 
• requirement that hypotheses have to be exhaustive and mutually exclusive   
• absence of uncertainty modelling 
 
In trying to find an appropriate way to model fusion and take advantage of the nonlinearity of the 
process, Dempster and Shafer (DS) [19,20] created a generalization of Bayesian theory that allows for 
the incorporation of uncertainty by using (overlapping) probability intervals and uncertainty modelling 
to determine the likelihood of hypotheses based on multiple evidence [21]. The essential 
generalization of DS theory is that not all hypotheses need to be mutually exclusive as in the Bayesian 
theory. In DS fusion evidence is assigned both to single and more general propositions, instead of 
assigning a probability to each hypothesis like in Bayesian theory.  
 
Noting that belief and plausibility measures are both examples of Sugeno’s [22] λ-fuzzy measure gλ, 
the question arises whether it is possible to combine the intuitive ideas on sensor fusion and the 
properties of gλ. We will show that in contrast the basic probability assignment in DS theory, fuzzy gλ  
measures can indeed be utilized for the problem under consideration. We will take a closer look at this 
in the following and propose to view the multi-sensor fusion process in terms of a synergy between 
(sets of) sensors that are grouped in such a way as to support a certain decision or hypothesis. Instead 



of attempting to make a decision (detection or classification) in one step, either by a single sensor, or 
by a linear combination of a group of sensors, we propose to combine supporting evidence for a 
hypothesis in a hierarchical way by building a tree structure that combines at the lowest level clusters 
and in the next levels aggregates the outputs of several initial clusters in superclusters and so on. At 
each level in the tree decisions need to be made from different sources with different weights. This is 
conveniently modelled by the fuzzy λ-measure gλ (0 ≤ gλ ≤ 1). In particular we have in the absence of 
relevant information towards the classification/detection goal: g( )∅ = 0   and   g A g B( ) ( )≤   if   
A B⊆ . This coincides with the intuitive feeling that if the evidence support is larger (i.e. if we 

observe the same scene with more sensors), that then the information content should also increase. In 
addition the following property holds for all A B X, ⊂   with A B∩ = ∅  :  
 
  1 ( ) ( ) ( ) ( ) ( )g A B g A g B g A g Bλ λ∃ > − ∪ = + +   (21) 
This again supports the intuition that adding more independent data ( A B∩ = ∅ ) co-operates 
towards an increase in confidence about the final decision. In addition both intuitive features about the 
fusion of two independent sensors are reproduced, viz. λ ≥ ∪ ≥ +0 g A B g A g B( ) ( ) ( ) , i.e. 
fusion is more than superposition and − < ≤ ∪ ≥1 0λ g A B MAX g A g B( ) ( ( ), ( )) , implying that 
even if the synergy is negative (as reflected by the negative λ), it may still be fortuitous to apply 
sensor fusion. In the event that λ=0, i.e. the case where all sensors have the same importance and 
completely cover the universe of discourse, the degree of importance gλ towards the final decision 
becomes additive and coincides with the definition of a probability measure. 
 
Following ideas put forward in Ref. [23], sensor fusion may also be modelled using the concept of 
fuzzy integration. For a review on the role of fuzzy integrals in the framework of multiple criteria 
decision making see e.g. Ref. [24]. A fuzzy integral may be interpreted as an aggregation functional of 
subjective evidence, where the subjectivity is expressed in the fuzzy measure, and integration is 
defined over measurable sets [25]. In contrast to normal (Lebesque) integrals, fuzzy integrals are non-
linear functionals. It is exactly this non-linearity and the possibility to include a fuzzy measure gλ  that 
is attractive in the context of fusion. Formally Sugeno’s fuzzy integral is defined in the following way: 
Let X be a set of elements (e.g. sensors, features or classifiers) and let h(x): X→[0,1] denote the 
confidence value belonging to an element x∈X (e.g. the class membership of data determined by a 
specific sensor (classifier)), then the fuzzy integral of h(x) over a subset E of X with respect to the 
fuzzy measure g can be defined. The evaluation of the fuzzy integral may be interpreted as evaluating 
the degree of agreement between objective evidence h(x) and the expected observation outcome (the 
hypothesis). We will not discuss the properties of this fuzzy fusion operator here, but note that it is 
ideally suited to combine information from different sources without having to deal with the 
combinatorial explosion, as is the case in DS theory.  
 
A totally different approach in finding a measure of synergy is followed in the present paper: In 
physics it is well-known that individual atoms, if joined together, produce new properties that are 
absent from the individual atoms. As an example we may consider the electric conductivity of a metal: 
one cannot define electric conductivity for isolated atoms. A metal has a bandstructure that originates 
from atomic levels of the individual atoms and symmetry breaking due to the Pauli principle. The idea 
that some properties only can exist for (large) ensembles of constituents, suggests that synergy may be 
modelled as such a property. Pursuing this idea further we noticed that emergent behaviour, i.e. the 
spontaneous occurrence of a characteristic of an ensemble may be modelled as an analogon to a phase 
transition in physics. The thermodynamics of phase transitions is very rich and also very non-linear.  
 
The discovery of Kuramoto showed that simple phase oscillators with all-to-all non-linear coupling 
display a second order phase transition if the interaction parameter is increased above its critical value, 
causing some of the oscillators to synchronize. This observation lead us to the idea that by mapping a 
scalar observation of a sensor as an eigenfrequency of an oscillator built into the sensor, the sensor is 
able to communicate (transmit) its data with its direct environment. If all sensors are equipped in this 
way and are also able to receive the results of neighbouring sensors, the proposed communication 



between the neighbouring nodes guarantees that via the synchronization phenomenon the sensors 
spontaneously co-operate and arrive at a common decision. there is no need to have a special node for 
sensor fusion: all sensor nodes are identical and it suffices to communicate with only one node to read 
out the result of the consensus. It is therefore clear that the Kuramoto synchronization phase transition 
can be viewed as a paradigm both for emergent collective behaviour, as well as a metaphor for 
modelling distributed sensor fusion, especially for global detection.   
 
 
4.  SIMULATIONS 
 
In order to demonstrate the synergy induced by synchronization we carried out a number of 
preliminary simulations for N = 400 oscillators. The Kuramoto model, Eq.(10), with full connectivity 
between the nodes and equal weighting of all sensors ci=1, was solved for different interactions K by 
Runge Kutta integration with a time step of 0.01 and at least 104 steps to guarantee stable solutions. 
We may, without loss of generality set the central frequency of the distribution * 0ω = .  The 
eigenfrequencies of the oscillators, iω were randomly taken from a given distribution ( )g ω . We have 

taken a Lorentz distribution for
2 2

( )g γω
π ω γ

=
⎡ ⎤+⎣ ⎦

, since for this particular case it is possible to 

obtain exact results in the thermodynamic limit, Nö¶ [see e.g. 16] . It follows from Eq. (15) that a 
minimum interaction strength, the critical strength KC , exists above which a fraction of the oscillator 
ensemble will synchronize for t ö¶. In the case of the Lorentz distribution it is possible to find an 
analytical expression for the critical value: 2CK γ= . The relation between r and the order parameter 
K above KC is then given by: ( ) (1 / )Cr K K K= − . 

 
We have varied the interaction strength K between the oscillators from 0.7 to 3.0 in steps of 0.1 and 
displayed the results in Figs. 1 and 2. Note that in Figs 1a-d we have for reference also plotted the 
eigenfrequencies of the N oscillators. Because the eigenfrequencies were taken randomly with 
distribution function ( )g ω , the oscillators have been renumbered in ascending order according to their 
eigenfrequencies. From the results it is obvious that even below the critical interaction (Fig. 1a) 
already noticeable entrainment occurs. By increasing K further the fraction of synchronized oscillators 
also increases with the largest increase just above KC  as reflected by the order parameter r as defined 
in Eq.(6) (Fig. 2).  From Fig.1 it is obvious that oscillators with eigenfrequencies close to the central 
frequency * 0ω =  synchronize more readily than oscillators with eigenfrequencies further away. This 
is compatible with the concept that the magnitude of the mean field initially is small, because the 
oscillators evolve incoherently in time. However above the critical strength (and in fact for finite N 
already just below the Nö¶  theoretical critical strength 1CK = ) some oscillators synchronize 
causing the mean field to build up.  
 
Thus the synchronization phenomenon demonstrates positive feedback: the more oscillators become 
synchronized, the larger the mean field and the more oscillators become entrained. The 
synchronization process stops when the degree of coherence reaches a maximum value given by the 
interaction strength. If the interaction strength increases to very high values, the order parameter 
approaches 1, indicating that the whole population oscillates coherently. The oscillator phases behave 
in a similar way, although they need not converge to the same value. It should be noted that 
synchronization means that the time derivatives of the oscillator phases converge to the same value for 
tö¶. The phases of the oscillators may vary depending on their initial conditions (Eq. (17)). 



Fig. 1a-d Distribution of frequencies of N=400 points of coupled phase oscillators with interaction strength K.  
The red dots indicate N random samples taken from the Lorentzian frequency distribution 2 2( ) ( )g ω γ π ω γ⎡ ⎤= +⎣ ⎦  

with 0.5γ = , corresponding to the eigenfrequencies of the N oscillators. The oscillators have been ordered 

according to their eigenfrequencies. The central frequency coincides with *ω = 0. In the limit t → ∞ the 
average deviations kϑ from the central frequency *ω  are shown as green points. The interaction strength K is 
varied from 0.9 (a) through 1.1 (b) and 1.3 (c) to 3.0 (d), corresponding to just below the critical interaction 
Kc=1.0 to cases where synchronization occurs. 
 
 
In going from Fig. 1a to Fig. 1d we observe that the frequencies of the phase oscillators start to deviate 
from their “zero interaction” eigenfrequencies: some oscillators are already synchronized, others 
become “entrained” (pulled towards the central frequency), whereas still others move away from 
synchronization by increasing the deviation to the central frequency. If the interaction is increased, the 
fraction of  synchronized oscillators increases as expected, but also the fraction of entrained oscillators 
increases at the cost of oscillators that move away from the central frequency. This is obvious in Fig. 
1d where only a minute fraction of the oscillators has a frequency deviation from *ω  that is larger 
than the deviation of their eigenfrequency.    
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Fig.2  The order parameter r for t → ∞ as a function of the interaction strength K. The order parameter 
measures the fraction of the N oscillators that are synchronized. The red dots connected by the blue line are the 
result of calculations for N=400 oscillators and the same initial distribution of eigenfrequences as in Fig.1.  It is 
seen that even below the critical interaction strength Kc=1.0 the order parameter r is not exactly zero, indicating 
that the onset of the phase transition for finite N is already noticeable below the critical interaction strength. 
Also inserted is the theoretical phase boundary in the thermodynamic limit N → ∞ , given by r=0 for cK K<   

and 1(1 )r K −= −  for cK K≥ .  
 
 
5.  CONCLUSION 
 
The preliminary simulation results show that a system of interacting phase oscillators with non-linear 
all-to-all interaction (i.e. an ensemble of agents defined on a fully connected graph) is capable of 
producing a collective property, viz. synchronization.  Synchronization can therefore be used as a 
paradigm for emergent behaviour, because it originates spontaneously at certain critical interaction 
strength. The transition from an asynchronous ensemble to a coherent state where a large fraction of 
oscillators is synchronized can be described as a phase transition in thermodynamics. In terms of a 
phase transition, we may describe this phenomenon with a so-called order parameter (the quantity r in 
our notation). Sensor fusion can benefit from this paradigm in a number of ways. In the first place 
synchronization constitutes a form of physical layer communication between the sensors and in the 
second place it is possible to model consensus (arriving at a common decision, e.g. in detection) using 
the phenomenon of phase synchronization. The effectiveness of sensor fusion, i.e. arriving at 
consensus on detection can therefore be characterized with this order parameter. As soon as the non-
linear interaction strength is increased above a certain value, or alternatively, if the surface density of 
sensors (e.g. in smart dust) is increased above a certain threshold, suddenly co-operation emerges that 
helps establish a “communis opinio” among the interacting oscillators. This happens suddenly, not 
gradually, and therefore cannot be described by a superposition of individual sensor contributions. It is 
clear that this phenomenon is extremely advantageous because it is simultaneous and fast, without the 
need for intricate protocols, no special fusion centre is necessary and routing to a fusing centre is not 
needed. Moreover it appears that the overall robustness of the network is thus increased because the 
fusion process is carried out by the network as a whole and not by highly specialized centres. Finally 
we may conclude that non-linear interactions open avenues towards a quantitative basis of intuitive 
notions such as the added value of synergy.  
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