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COAction: Enabling Collaborative Option Awareness 

 

ABSTRACT 

The authors previously have demonstrated the computational and psychological 

efficacy of providing “option awareness” under circumstances of deep 

uncertainty. They used exploratory modeling to forecast a landscape of plausible 

outcomes for a set of courses of action. Scoring the outcomes and displaying the 

resulting decision space in a frequency format allowed decision makers to identify 

robust options – ones that will have good outcomes across the broadest swath of 

plausible futures. Moreover, such decision support resulted in increased 

confidence in the chosen option. However, merely jointly executing the most 

robust individual options may not yield the most robust organizational option. The 

current paper explains the development of models to support collaborative 

decision spaces yielding collaborative option awareness to address this issue. The 

goal is to enable more robust tactical collaborative decision making even under 

the most difficult conditions, when interdependence is reciprocal (when 

collaborators pose contingencies for each other) and require constant mutual 

adjustment.  

Introduction 
COAction (enabling Collaborative Option Awareness for joint actions) is a process to enable 

more robust tactical collaborative decision making even under the most difficult conditions. An 

example of such conditions is when collaborators impose requirements on each other’s actions 

(termed reciprocal interdependence) and must engage in detailed real-time negotiation (termed 

mutual adjustment coordination): see Thompson (1967), Klein & Adelman (2005), and Klein, 

Adelman & Kott (2008). 

The COAction process builds upon the distinction presented in Hall, Heller & McNeese (2007) 

between the situation space (consisting of facts about the environment such as the position and 

character of a target) and the decision space (information about the courses of action that a 

decision maker might take). We have integrated these concepts with the exploratory modeling 

approach of Bankes (1993). The resulting ability to compare options and understand the 

underlying factors that contribute to outcomes we have termed option awareness (Drury et al., 

2009). COAction provides decision makers with a collaborative version of a decision space that 

enables collaborative option awareness. This process builds upon our previous work on 

developing individual option awareness.  

This paper includes a more complete description of option awareness than has been provided 

previously. Collaborative option awareness is defined for the first time and newly developed 

concepts are described that lay the foundation for this new extension of option awareness to 

support joint actions. It also describes how new empirical research could demonstrate the 

efficacy of providing collaborative option awareness to decision makers. 

Background 
The robust decision-making process (RDMP) for course of action (COA) analysis can be 

considered an extension of the military decision-making process (MDMP). Instead of assessing 
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three options and a handful of projected outcomes typical of the staff-centered MDMP, the use of 

computer-based forecasting models for RDMP can result in the assessment of dozens of COAs 

with hundreds of variations due to uncertainty and yield a resulting landscape of plausible 

outcomes. A frequency format
1
 (Gigerenzer & Hoffrage, 1995; Hoffrage & Gigerenzer, 1998) 

approach to displaying the results (see Figure 1, explained further below) makes these results 

comprehensible, providing the decision maker with an ability to compare options and ultimately 

understand the underlying factors that contribute to outcomes.   

 

 
Figure 1: A surface visualization of decision space provides Option Awareness 

This is an example of one the situations we have used in simulation-based, human-in-loop 

experiments. For situation awareness, the subjects are trained to assess the textural event 

descriptions. They are provided with written rules of thumb and interactive training to assess the 

magnitude of emergency events, the impact of those events on immediate death, injury and 

damage, and for any implications for future resource needs. In this case, the magnitude is small 

because it is localized and not growing, the impact is moderately small because only one person 

is involved (albeit possibly gravely injured), and there are no implications for the future as there 

is no apparent persistent cause.  

 

Subjects are also trained to understand the decision space, such as that displayed in Figure 1. For 

each option in Figure 1, there is a distribution of possible consequences. Each distribution is a 

function of the uncertainty of the elements in the situation space (how big is the fire) and the 

uncertainty regarding executing the course of action defined in the decision option (what percent 

of fire trucks will get to the scene and when). While an optimal plan is one that will return the 

highest expected return on investment, under deep uncertainty (Lempert et. al. 2003), where 

situation and execution uncertainty are irreducible, optimal strategies lose their prescriptive value 

if they are sensitive to these uncertainties. That is, selecting an optimal strategy is problematic 

when there are multiple plausible futures for each option, as is the case in this example. 

Alternatively, Chandresekaran (2005) and Chandresekaran & Goldman (2007) note that for 

course of action planning under deep uncertainty one can shift from seeking optimality to 

seeking robustness. Robust options are those that result in acceptable outcomes across the 

                                                 
1
 Displaying uncertainty information in terms of frequency distributions instead of probabilities 
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broadest swath of plausible futures. In this example case, sending one fire truck is forecasted to 

result in not only the lowest median cost, but also the lowest-cost worst case, and best case. This 

indicates that it is the most robust, that is the most insensitive to variations in the elements in the 

situation space. The factors leading to this result will be explained below. 

Figure 2 illustrates the details of generating such a decision space to identify a robust option. 

Each course of action is translated into values of endogenous variables that define that option in 

the simulation model. Uncertainty around each value of the endogenous variables is estimated 

and the values are respectively systematically varied (such as the actual number of fire trucks 

that would arrive in time to put out a fire) across multiple executions of the model. In addition, 

other exogenous variables that would not be under the control of a course of action, but would 

likely interact with it (like whether high winds will whip the flames in our simple example), are 

also systematically varied across these multiple executions of the model. The result is a set of 

combinations of different endogenous and exogenous variable values executed through the 

model, which, in turn, results in a landscape of plausible futures. Each of these futures can then 

be evaluated in terms of how much cost is generated by that future circumstance. For example, 

the aggregate cost of each fire-truck option is a function of the cost of sending the trucks, the 

immediate damage that occurred and damage that might occur elsewhere in the near future 

because the committed trucks are now unavailable. Such costs can be determined from 

authoritative sources, such as the cost of death based on actuarial tables. The robustness of an 

option is affected by both the uncertainty in the situation based on the forecast model and the 

uncertainty of costs based on the scoring model. Using the RDM approach a robust option can be 

found that is insensitive to both sources of uncertainty. Finding such an option is in fact crucial 

to facilitating collaborative decision making as explained further below. 

The costs in this instance are representative of the general classes of costs that would be used to 

score any outcome: 

 the cost of acting on the course of action leading to the outcome 

 the costs of the direct consequences resulting from the course of action 

 any opportunity costs or additional costs that might occur in the future due to having 

taken the current course of action 

 
Figure 2: Model-based process for generating decision spaces. 
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The result of these cost evaluations for the landscape of futures under a given option is 

summarized graphically by the box plot
2
 for that option. As illustrated by the box-plot 

visualization of options in Figure 1, when the cost of all of the plausible futures for each option 

is compared, sending one fire truck seems to result in not only a lower median cost (the line 

inside the box), but also a relatively small range between the cost of the worst cases and the cost 

of the best cases (the distance between the “whiskers”). Therefore, sending one fire truck is the 

most robust decision option, returning the best cost profile across the range of plausible futures. 

A robust option will generate relatively tightly clustered outcome costs across multiple 

simulation runs, which indicates that its outcomes are relatively impervious to perturbations in 

exogenous and endogenous variable values.  

What we have described so far is only the lowest level of option awareness. As illustrated in 

Figure 3, three levels of option awareness can be distinguished that parallel the three levels of 

situation awareness defined by Endsley (2000): 

To illustrate higher levels of option awareness consider the somewhat more complicated decision 

space illustrated in Figure 4. This figure illustrates the decision space for options to mitigate the 

spreading of a pandemic disease, such as Swine Flu. In this decision space, public-health 

decision makers can engage in any or all of the following options: execute (or not) social 

distancing policies (e.g., telling people to stay home), target the vaccination of either 25% or 

75% of the population, do vaccinations daily or monthly, and target the distribution of antivirals 

to 10% or 50% of the population. Taken in combination, there are 16 possible options visualized 

by the box plots in Figure 4. 

At only Level-1 option awareness, it may be difficult to select between option 1 and option 2. As 

illustrated in Figure 4, the two options have almost identical median costs; option 1 has a lower 

lowest-cost outcome, but it also has a much higher highest-cost outcome. Normally, such a 

choice might be resolved by the risk-seeking or risk-averse nature of the decision maker. But this 

decision space generated by RDMP enables a better resolution. Because the process preserves 

the linkage between the cost of an outcome and the underlying factors that contributed to that 

outcome, we can drill down and examine those factors to identify causal relationships. For 

example, in this illustration, the highest cost outcome, circled at the top of option 1, occurred 

under a low variation in the targeted 10% distribution of antivirals – only 9.67% received 

antivirals in this case. In the next much lower cost outcome (also circled), the target was actually 

                                                 
2
 Tukey’s (1977) box plot is used here merely for illustration, as a common visualization option that typical research 

subjects can be readily trained to read. Of course, more complex decision spaces will require more domain-specific 

decision visualization methods. 

 
Figure 3: Three levels of Option Awareness 
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slightly exceeded (10.17%). Further analysis does show this relationship between this antiviral 

factor and outcome-costs appears to hold across the landscape of outcomes. This comprehension 

of causal factors revealed by the decision space we have termed Option Awareness Level-2.  

This Level-2 option awareness can enable a decision maker to bring their experience and 

expertise to bear to craft new variations of the original option: perhaps to set the target for 

antivirals to 11% or to employ better quality control measures. To validate causal relationships, 

these new options would be evaluated through the generation of another decision space. This 

creation and evaluation of such novel options is termed Option Awareness Level-3. 

We have developed a research program to evaluate how to best facilitate each level of Option 

Awareness. So far, we have conducted research both into the psychological efficacy of providing 

Option Awareness Level-1to decision makers, and into the computational modeling requirements 

to generate decision spaces adequate to support all levels. 

Drury et al. (2009) describes an experiment with Option Awareness Level-1 to determine 

whether having this understanding would benefit individual decision makers. In the simulation-

based, role-playing experiment, we asked participants to choose how many emergency resources 

(fire trucks or squad cars) to send to each of a series of fire and police events. All participants (a 

total of 35) received identical textual descriptions of situations (similar to the description 

 
Figure 4: An example of higher levels of option awareness 
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presented in Figure 1). Half of the participants (the “decision space” or DS group) were provided 

a visualization of the decision space such as the one illustrated in Figure 1. The remaining 

participants in a control group (the “situation space” or SS group) received only the textual 

description without the decision space visualization.  

This research revealed that providing this Option Awareness Level-1 decision space enhanced 

decision-making performance and confidence at a statistically significant level. The decision-

aided group’s decisions were closer to the normatively correct decisions and this group rated the 

degree of decision support higher.  The DS group made the correct resource allocation 68% of 

the time, compared to 40% in the SS group.  Based on the odds ratio, individuals with the 

decision support were 3.15 times more likely to get the correct answer than those without.  

Furthermore, the decision-aided group’s confidence was higher, and this finding is particularly 

interesting.  There has been much research in decision support tools, and many times the 

research tools help the decision maker to improve correctness.   But even though the decision 

maker may choose the correct answer, when the correct answer is non-intuitive, they show less 

confidence in the answer (Klein, 1981).  Using the RDMP, confidence may have increased with 

option awareness because it provides ranges of costs for each option that give a more complete 

picture of each option’s cost profile. So, it provides much more information than the typical 

estimation of a single average or median cost. Notice that in the decision space illustrated in 

Figure 4, if one considers only the median cost, the first five options would be considered 

equivalent, their differences lay in their cost distributions. 

Our computational modeling research has shown that in generating these decision spaces, we can 

save computational time and enable more tactical decision-making. To do this we must eliminate 

needless detail in the forecasting models, that is eliminate detail if it does not improve option 

awareness. Mathieu et al. (2010) describes how simpler low fidelity, low precision models can 

be proved to provide sufficient support to the decision maker. This was a pioneering application 

of exploratory modeling to address the human-computer integration requirements of tactical 

robust decision making. Klein et al. (2009) demonstrated that for an emergency response 

decision space, changes in the fidelity and precision of the forecasting models can significantly 

affect the forecasted differences between options, while not changing the order of the options in 

terms of their robustness. These results left open the question as to whether or not such changes 

translate into a substantial psychological impact on decision makers’ choices and confidence. 

In summary, this decision space research has shown that even at Option Awareness Level-1, 

decision making can be improved, and confidence can be increased.  Moreover, using more 

parsimonious forecasting models can provide more tactically computable decision spaces. This 

work lays the foundation for a similar paradigm shift in collaborative decision making by 

changing the focus of collaboration from the situation space to the decision space. 

COAction: enabling Collaborative Option Awareness for joint actions 
Today negotiations in collaborative decision making are still focused on the situation space: that 

is, upon the facts of the situation rather than on synergistic joint courses of action. Simply 

collaborating over individual decision spaces will not achieve collaborative option awareness 

because jointly executing the even the most robust individual options may not yield the most 

robust joint option. Collaborative decision making under these conditions is complex not only 

due to the difficulty of forecasting the impact of this synergy, but also the need to achieve a 
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common understanding among the joint participants. Therefore, new approaches are needed to 

extend option awareness to support joint actions. These new approaches will be discussed below. 

 Without a decision space perspective, collaborators gather information (often irrelevant 

information) about a situation in hopes that a mutually viable option will become apparent. In 

time critical collaborative tasks like emergency response, airspace security, or battle 

management, time is wasted in the situation space instead of focusing on an option choice in the 

collaborative decision space. Collaborative decision making needs to move into the decision 

space paradigm. Consider the following example illustrated in Figure 5. 

 

Figure 5: Fire at the Medical Center requires COAction 

In this situation, a magnitude-3 fire has been reported near the Medical Center at 5:37pm on 

Saturday, just as the football game at Beaver Stadium is ending. The traffic from the football 

game will create significant congestion along the most direct route to the fire, increasing the time 

to get on scene and increasing the uncertainty around getting all dispatched fire trucks to the fire. 

The Fire Chief has an individual decision space like that illustrated in Figure 6. 

Figure 6: The individual decision space for the Fire Chief 
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Sending four fire trucks is the most robust option. This is more fire trucks than would ordinarily 

be needed for a fire of this size, which is reflected in the higher than normal median cost for a 

fire of this magnitude. However, the delay caused by the congestions means that the fire will 

have more than normal time to grow in magnitude before they arrive. Sending four trucks will 

ensure that enough trucks make it through to adequately fight the larger fire. The down side is 

illustrated by the outlier (red dots) events, which are all cases where additional fires occur, and 

there will not be enough trucks in reserve to take care of them adequately, without calling upon 

Mutual Aid from another locality, which will cause extra response delays. Sending fewer fire 

trucks now to maintain a reserve for unlikely but potentially very costly futures, actually will 

result in higher projected costs because the immediately fire is likely to cause more damage and 

injury under those options. 

The police chief has an individual decision space like that illustrated in Figure 7. 

Sending two squad cars will 

adequately handle the congestion 

while maintaining enough reserves 

to deal with most future police 

situations. Sending more increases 

immediate costs and does not 

improve the situation from a 

police perspective enough to 

offset those increases. In addition, 

sending more decreases reserves 

to handle future situations.  

However, sending two squad cars 

and four fire trucks ignores the 

reciprocal interdependence 

between the police and fire departments in this situation and the synergy in possible joint action. 

This synergy is illustrated in Figure 8. Notice that in this decision space, not all of the possible 

combinations of resources are presented. 

The computer can be used to easily filter 

out options that are clearly less robust. 

In a joint action, by sending at least three 

squad cars the Police ensure that the 

stadium traffic congestion can be 

eliminated before the fire trucks arrive, 

consequently eliminating their delay in 

getting to the fire.  This enables the Fire 

Chief to send only two fire trucks (the 

normal complement for a fire this size) 

to the Medical Center fire. In doing so, 

the Fire Chief can better maintain his 

reserves to fight future fires. The 

collaborative decision space also illustrates a 

Figure 7: The individual decision space for the Police Chief 

Figure 8: The collaborative decision space 
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valuing of outcomes from a super-ordinate city perspective: while sending the additional squad 

car may not improve benefits for the Police Chief, it does improve the benefit for the city. From 

the city’s perspective, the likelihood and damage and injury of inadequately handling future fires 

outweighs the likelihood and cost of the few additional potential police situations that may go 

unhandled. 

Such joint environments are obviously particularly complex decision spaces. The question arises 

in such environments, “How can we develop a decision space in a tactical time frame?” How can 

we anticipate and model all of the complex synergistic ways in which our forces could jointly 

act?  

Klein, et al. (2009) suggests that highly complicated detailed models of the physics of interaction 

may not be needed to adequately support decision space generation. In the example above, the 

Fire Chief’s estimates of time to target with and without congestion, in conjunction with the 

Police Chief’s estimates of congestion resolution by squad cars, would likely be sufficient for a 

forecasting model to generate outcomes that will correctly order the joint options by robustness. 

These estimates could be entered directly into a forecasting model, leveraging human experience 

to translate from real-world behavior to model factor values. Indeed, the number of fire 

department performance factors (such as time to target and resource effectiveness) that the police 

could impact is rather limited, even though the behavioral ways by which they could impact 

those factors is quite large. If we rely on human experience for translation, then the modeling 

problem becomes tractable.  

In addition to developing a joint forecasting model, COAction will require the development of a 

super-ordinate scoring model. Indeed, the RDMP can tolerate the simultaneous comparison of 

multiple scoring models! An option that is robust across scoring models is likely to satisfy all of 

the joint participants. This is indeed a prime hypothesis to be tested, which addresses whether 

such approaches can overcome the frequent user experience of organizational resistance to 

collaborative use of other units’ organic assets. 

COAction Empirical Research Methodology 
The concepts and processes presented above are testable in the laboratory. Below we describe 

examples of experiments to explore the impact of providing collaborative decision spaces using 

joint forecasting models and super-ordinate scoring models. 

COAction Experiment 1 
As a first step we can use a joint forecasting model in situations that do not require a super-

ordinate scoring model. We can do this by creating scenarios where a single decision maker in a 

single department must coordinate resources across multiple sub-units. Reciprocal 

interdependence among the sub-units will introduce the complexity of synergistic joint action. 

However, because actions occur within a single department the outcomes will be scored from a 

single perspective. Consider an example (Figure 9) where the Fire Chief has to coordinate the 

application of fire trucks from multiple fire stations. 

In this example, Fire Station 1 is closer to the fire at the Agricultural Research Area, but has only 

two fire trucks available. Fire Station 2 has four fire trucks but is farther away. Even from a 

relatively simple perspective of available trucks, distances, and maintaining reserves, 

determining the most robust option is complex.  
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These kinds of situations will test the utility of applying collaborative decision spaces with 

synergistic joint actions even though there will be a single decision maker using an individual 

scoring model. 

Four main hypotheses could be tested in this way: 

1. Those subjects receiving the decision space visualization will make more normatively 

correct decisions 

2. Those subjects receiving the decision space visualization will be more confident in 

their decisions 

3. Those subjects that receive the map information will make more normatively correct 

decisions than those who do not. 

4. Across all conditions, decisions in the simple scenarios will be made quicker than 

decisions in more complex scenarios. 

Hypotheses 1 and 2 test the applicability of results of previous experiments that were conducted 

in less complex decision environments. Hypothesis 3 is based on the utility of having more and 

better situation space information in addition to the decision space. Hypothesis 4 also reflects 

results from previous research in less complex decision environments. 

Figure 10 illustrates an experimental 

design for this research. 

This is a fractional factorial design. 

Two levels of situation space support 

(with and without maps) can be tested 

between subjects. This can be crossed 

with two conditions of decision support 

(with and without decision spaces). 

Two level of forecast model fidelity 

can be tested between the groups of 

subjects within the decision space 

conditions. Finally, all subjects would 

receive simple and complex scenarios.  Figure 10: Design for COAction Experiment 1 

Figure 9: Time, distance and reserve levels must be coordinated across 

multiple fire stations 
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COAction Experiment 2 
Building upon the results of Experiment 1, Experiment 2 can now introduce collaborative 

decision spaces based upon a super-ordinate scoring model to support inter-departmental 

decision making between two decision makers. Scenarios for decision making can be designed 

so that in some the most robust option for joint action will conflict with the most robust options 

in the individual decision spaces (as in the example illustrated in Figure 5). In other scenarios, 

the collaborative and individual decision spaces will agree.  

Three main hypotheses could be tested in this way: 

1. Decisions will be most often correct if subjects see the collaborative decision space 

vs. only individual decision spaces vs. no decision space. This will be particularly 

true for conflicted scenarios. 

2. Confidence will be highest in the collaborative decision space only condition  

3. Discussion will be minimal in collaborative-only condition 

 

Hypothesis 1 is based on subjects receiving the most relevant information in the collaborative 

decision space conditions. Those without the collaborative decision spaces will need to construct 

collaborative options through discussion with their counterpart decision maker. In conflicted 

scenarios the impact of synergy will be less obvious to those without a collaborative decision 

space. Hypothesis 2 is based on previous work by the first author showing that alternative 

plausible conflicting analyses, regardless of their correctness, will interfere with confidence in 

the normatively correct analysis (Klein, 1981). Therefore, providing conflicting individual 

decision space analyses, even though the subjects will know the limits of these analyses, and 

even though the subjects may choose the recommendations of the collaborative decision space 

analysis, will reduce confidence in that choice. Hypothesis 3 is based on the same rationale as 

hypothesis 2: without conflicting analytic information, there will be less to discuss and 

discussion will focus on the comparing the option in the collaborative decision space. 

Figure 11 illustrates an experimental design for this research. 

This is a completely randomized 2 x 2 x 2 

factorial design. Whether subjects receive 

individual decisions can be a between 

group manipulation. These conditions can 

be crossed with whether subjects receive a 

collaborative decision space visualization. 

Within all four conditions, subjects would 

receive both conflicted and unconflicted 

scenarios. All subjects would receive 

situation space information. In applicable 

conditions subjects would see each 

others’ decision spaces. In the 

collaborative decision space conditions, 

all subjects would see the same 

collaborative decision space. All subjects 

would be able to discuss the decision 

situation with their counterparts.  

Figure 11: Design for COAction Experiment 2 
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Summary 
Today collaborative decision making too often is focused on the situation space. The belief 

appears to be if we just had better situation awareness we could make better decisions. As the 

examples in this paper show, even with a high level of situation awareness and individual option 

awareness, the synergistic impact of joint action can be non-obvious. To address this issue, the 

current paper described the theoretical underpinnings for developing models to support 

collaborative decision spaces yielding collaborative option awareness. The goal is to enable more 

robust tactical collaborative decision making even under the most difficult conditions. The 

research experiments described will provide empirical data on whether collaborative decision 

spaces will yield collaborative option awareness that will result in more correct and confident 

collaborative decision making.  
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