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1 Introduction 
With the increasing use of semi-autonomous systems such as UGVs and UAVs, command and control 
concepts are proliferating further to the edge.  Future network-centric environments such as the Global 
Information Grid (GIG) hold the potential to bring necessary information to those at the edge; however, 
providing the information is not enough. The flow of information now risks becoming a flood which can 
drown individuals as they allocate limited attentional and cognitive resources to filtering out extraneous 
information and assembling situation awareness from the remaining relevant pieces. 

One solution to the problem of information overload is to introduce automation that can filter and process 
information according to the needs of the human user. There has been much interest in this approach in 
both the civil and military domains. Military approaches with significant resources and a critical need for 
deterministic computability tend to employ if-then rules constructed by subject matter experts. Civilian 
information filtering applications, e.g. Internet spam filtering, often use machine learning techniques such 
as rule-induction or learned Bayesian-networks. Most rule-based systems are based on binary Boolean 
logic and have difficulties in dealing with trust in the source of the information and the uncertainty 
inherent in the information. Systems that employ machine-learning techniques do not have explicit goal 
congruence and may suffer from over-fitting to a particular context as well as a deficiency of trust in the 
automation on the part of the human operator. 

This paper introduces a multi-agent architecture that employs an evidential reasoning mechanism and 
mission profile structures to perform relevancy estimation for information filtering.  The incorporation of 
the mission profile structure provides a means by which operators can easily develop their own profiles or 
re-use those that have already been developed.  Mission profiles provide a means to explicitly connect 
perceived objects and inferred relations to arbitrary mission goals and subgoals.  In this way, mission 
profiles are a vehicle by which the software and operator can achieve goal congruence.  The resulting 
system is thus more of a software teammate rather than software tool.  

The remainder of the full paper is organized in seven sections. Section 2 presents a review of relevant 
literature.  Section 3 introduces the architecture of the proposed multi-agent system with preparation for 
more detailed discussion of key components in Sections 4 and 5.  Section 4 introduces the concept of the 
mission profile. The mission profile is a typed semantic network that is assembled in three distinct layers: 
the goal layer, the conditions layer, and the trust layer. This section will describe each layer and its 
relation to the other layers and describe a tool by which operators can graphically construct mission 
profiles using a point and click interface. This section will further describe an extension to this tool which 
can allow for mission profiles to be shared and collaboratively constructed using wiki as a model of 
distributed authorship.  Section 5 presents the evidential reasoning algorithm used for estimating the 
relevance of perceived objects and inferred relations. The algorithm is part of a larger belief fusion 
pipeline that propagates influence and relevancy.  The included evidential reasoning mechanism uses 
subjective logic as a belief algebra and can perform both consensus and discounting of evidence and 
influence.  Consensus allows for multiple pieces of evidence to support the same conclusion and for 
multiple inferences to "back propagate" their relevancy onto supporting evidence.  Discounting provides 
the capability to describe both trust in production agents and the relevance of subgoals to goals.  Section 6 
demonstrates the concept by working through a simple supervisory control scenario where the operator 
must monitor a situation that includes multiple semi-autonomous vehicles.  The example focuses on the 
basic kinematics that are common to many military applications with accompanying figures that illustrate 
the reasoning process and flow of evidence, influence, and relevancy.  Section 7 recapitulates the key 
points of this paper and presents significant conclusions as well as outlining avenues for further, related 
research and development.  



2 Review 
2.1 A Review of Situation Awareness 
Situation awareness (SA), or situational awareness as it is also sometimes called, is the internal mental 
representation and understanding of objects, events, people, system states, interactions, environmental 
conditions, and other situation-specific factors affecting human performance in complex, dynamic, and 
often potentially lethal tasks.  Intuitively, it is one's ability to give answers to such questions as: What is 
happening? Why is it happening? What will happen next? What can I do about it?   

Endsley's model [E88] is not the only model of SA, however, it is the most widely accepted and generally 
applicable model.  Endsley's model defines three levels of SA.  As any entity or event which is processed 
at higher levels must first be perceived by the operator, Level 1 SA is the perception of elements in the 
current situation.  The Level 2 SA is the establishment of awareness of relationships between the objects 
and events perceived in Level 1 SA. Level 3 SA is the operator's ability to forecast the situation based 
upon information gathered and produced in Level 1 SA and Level 2 SA. 

Endsley's model (depicted in Figure 1) credits SA as the critical input into the operator but SA is 
decoupled from the actual decision.  For our purposes, Endsley’s SA model can be used as the basis of a 
rough metric for determining information relevancy: informational elements that can support higher levels 
of SA are deemed more relevant than those that do not.  For instance, almost any object can be perceived 
in Level 1 SA, but those objects that are part of relationships (Level 2 SA) that are impactful with respect 
to established goals (Level 3 SA) are highly relevant when compared to other objects for which no such 
impactful relationships exist. 

Figure 1. Endsley's SA model [E95] 



2.2 Multi-Agent Systems 
An agent is some entity that can perceive, reason, and act [F98].  These features differentiate an agent 
from, for instance, a document or database which contains information, but has no understanding of the 
information nor can it act on this information.  As defined, the term agent can be applied to both humans 
and software entities, however, in the context of this paper, the term agent will be reserved for reference 
to software entities only.  (We will use the term operator or user when referring to human actors.) 

Software agents are small, situated, and social software components that can perceive, reason, and act.  
Agents are most commonly developed to be focused on only one aspect of a much larger problem.  Thus, 
agents are small in that they typically need to contain only a few rules or subject-matter expert (SME) 
heuristics for reasoning.  Software agents are situated and social in that they are intended to participate in 
larger agent communities, receiving information not only from the problem domain, but also from other 
cooperating agents.  Like human social networks, cooperating agents can achieve synergistic effects. 

A multi-agent system (MAS) is a system that assembles agents into a cooperating collection and derives 
its computing power and utility primarily through the interaction of the agents in the collection [F98].  
Generally, MAS systems are highly flexible.  Although there is a necessary minimal ontological 
commitment and shared communication protocol, an MAS agent is otherwise not committed to any 
particular computing language, framework, or reasoning method.  MASs are also highly distributable.  All 
agents can run on a single multi-tasking machine, or the agents can be distributed across several machines 
for improved performance by the utilization of additional hardware processing power. 

2.3 Subjective Logic 
Subjective Logic [J97; J09] is a type of probabilistic logic that is often used in evidential reasoning (e.g. 
[LP07; LZ07]) where belief, disbelief, and uncertainty must be explicitly and simultaneously accounted.   

In contrast to systems described by Boolean Logic, 
for those systems described by Subjective Logic the 
basic object is an opinion rather than a fact.  An 
opinion ωA(x) about some proposition “x” held by 
source “A” is a 4-tuple of the belief (bx

A), disbelief 
(dx

A), uncertainty (ux
A), and relative atomicity (ax

A).  
(Atomicity is the base-rate of the proposition.)  Note 
that bx + dx + ux = 1, so while it is not necessary to 
specify all three of the values, it is convenient when 
performing certain calculations.   

The Subjective Logic algebra provides an array of 
operations that manipulate opinions.  These operators 
have many applications in evidential reasoning and 
data fusion.  For the present purpose, only the consensus and discount operators are of interest. 

The consensus operator (written as ⊕) is used for 
belief fusion, providing the capability to fuse possibly 
conflicting opinions while still forming coherent, 
summary judgments.  The underlying calculations on 
the belief tuple elements are given in Figure 2. 

Subjective logic also provides a well developed 
“discount” operation (written as ⊗) that can be used 
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Figure 2. Subjective Logic Consensus Operation 
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for modifying the contribution of evidence based upon a subjective measure of confidence in the source 
of the evidence.  The discount operator thus provides a rather general means of describing degrees of 
influence and can be used to represent semantic similarity, relevance, trust, etc.  The calculations for 
implementing a discount operator over belief tuples is shown in Figure 3. 

3 Architecture 
The general architecture of our proposed system is shown in Figure 4. 

3.1 Information Ports 
Information flows into the system through a generalized input port 
(101).  In our internal research and development, our reference 
implementation assumes a JSON encoding of JC3IEDM statements 
that are provided via simulated GIG (102) services; however, the 
architecture itself is neutral in this respect and different 
implementations can vary accordingly.  

The product of the system is a stream of statements that are emitted 
through a generalized output port (103).  Again, the encoding or 
particular language of these statements is not specified by the 
architecture.  The only requirement for implementation is that the 
emitted statements be able to describe the filtered situation and 
corresponding beliefs about the situation.  The output port can then 
drive a variety of applications which work directly with a human 
operator or act as an input source for additional automation. 

3.2 Ontology 
The internal mechanisms of the system and the emitted output (102) 
assume the existence of a well-defined ontology.  In the architecture as shown, the system ontology is 
explicitly decomposed into an upper ontology (201) and a lower ontology (202). 

The upper ontology, which we refer to as the Situation Ontology (SO), specifies the core ontological 
components that are needed to describe entities, relations, statements, agents, situations, beliefs, evidence, 
entailments, and so on.  The lower ontology is the Domain-specific Ontology (DO) and extends the SO 
with specialized elements for describing the domain of interest. 

General ontologies, such as SUMO [NP01; PNL02] and DOLCE [G02], might serve as starting points for 
developing an SO.  More recently, there has been some interest in developing standardized situation 
ontologies.   Of particular interest are SAWA [B02; MKB03; M05], which is lightweight and relatively 
easy to implement, and the Situation Ontology described in [KMB09] which is more formal and naturally 
expressed in predicate logic.  In developing the reference implementation, we developed our own SO and 
DO.  Our SO, which we call COSAUS (Composite Ontology for Situation Awareness in Unmanned 
Systems) is loosely derived from SAWA.  The knowledge representation elements of COSAUS 
(COSAUS-KR) will be used later in this text and is shown in Figure 5 for reference. 

 

Figure 4. Architecture 



Where the SO is essentially 
universal and re-usable across 
almost all applications of the 
proposed system, the DO must 
be tailored to the particular use 
or class of use for the system.  
Our reference implementation is 
employed as a situation 
awareness aid for supervisory 
control of unmanned systems in 
a tactical context.  Hence our 
DO is able to describe situations 
in terms of kinematics, assets, 
etc.  To highlight the specific 
nature of the DO, our kinematic 
DO can be reused in similar 
tactical applications, but would, 
for example, be a poor fit for 
logistics applications. 

3.3 Mission Profiles 
The Mission Profile Editor (301) 
is a lightweight graphical-user interface tool that is used offline to construct a Mission Profile (302).  The 
mission profile is used to describe high-level mission goals and relevant situation elements that have the 
potential to impact the mission goals.  Relevant situation elements are described in terms of the domain-
specific ontology.  Mission profiles and the editing tool are discussed in more detail in the next section. 

3.4 Reasoning Components 
The proposed system is a kind of blackboard architecture [C88], where agents communicate by posting to 
a centrally visible space (the blackboard).  The event of a new post to the blackboard can trigger none, 
one, or more agents to opportunistically reason upon the state of the blackboard with the possibility of 
posting the consequences of the reasoning back to the blackboard for further work by other agents. 

In our reference implementation, communication is via Extensible Messaging and Presence Protocol 
(XMPP) and the visible spaces are implemented as rooms hosted on the XMPP server.  Hence, in the 
reference implementation we refer to the blackboard as the Situation Awareness (SA) Room (401).  The 
use of XMPP is merely convenient for our prototyping and is not necessarily recommended for other 
implementations. 

Much of the reasoning of the proposed system is distributed to a pool of agents (402).  These agents 
reason about the present situation and produce entailments that fuse lower level data and information into 
higher level (Level 2 SA and Level 3 SA) relationships.  In conjunction with the produced entailments, 
each agent should also supply its conviction in the entailment. The conviction, together with the 
entailment product, forms an opinion as defined by the calculus of subjective logic.  Products of the agent 
must conform to the chosen SO and DO ontologies. 

The agents act independently and are the “subconscious” reasoning of the proposed system.  The products 
of the agents and the raw input need to be refined into a unified structure which can be emitted as the 
output of the whole system.  This unification is performed by the fusion engine (403) which computes 
and assigns the overall influence of situation elements, both raw and those inferred as products of the 

Figure 2. COSAUS knowledge representation elements 



agents.   

4 Goal Congruence and Mission Profiles 
Operator intent and mission goals are captured in a structure called a mission profile.  Providing the 
information filtering system a model of the operator's goals allows for the system to assume those same 
goals.  This is an early form of explicit goal congruence between humans and software agents. 

A mission profile is a digraph with three levels.  Level 1 is the mission model, which contains the goals, 
subgoals, and degrees of influence between subgoals and goals.  Level 2 builds on top of Level 1 by 
associating degrees of influence between situation elements and subgoals.  Level 3 builds on top of Level 
2 by associating levels of trust to the ARID agents that make judgments on situation elements.   

4.1 Profile Levels 

4.1.1 Level 1 – Mission Goals 

The most abstract level of the mission profile is the goal level.  In this level the operator can recursively 
and arbitrarily decompose goals.  Starting from the overarching mission goal, the operator declares 
subgoals that support the overarching goal, then further 
decomposes that goal to subordinate goals, increasing the 
level of detail.  Each subgoal is related to its super goal by an 
arc which can carry a relevance score defined over the range 
(0.0, 1.0].  Higher weighted arcs indicate that the subgoal is 
highly relevant to the satisfaction of the super goal.  When 
creating goals, more detail (deeper recursion) is generally 
preferred as the deeper decomposition will provide finer 
granularity and more opportunity for associating agents at 
intuitive points in the goal network. 

Figure 6 illustrates an example of a simplified Level 1 mission profile that has been constructed for a 
UAV patrol mission.  Goal and subgoal nodes are blue ovals and contain arbitrary, descriptive text.  Arcs 
between the nodes point from subgoals to supergoals and are labeled using the green relevancy boxes.  In 
the simplified example shown in Figure 6, we see that the operator has created the abstract concept of a 
“Patrol Mission” and decomposed the “Patrol Mission” into two high-level goals: “Maintain UAV 
Health” and “Force Protection.”  We also see that “Maintain UAV Health” is further decomposed into 
“Avoid Inclement Weather”, “Avoid MANPAD Threats”, and “Maintain Flight Separation.”  Both “Avoid 
MANPAD Threat” and “Maintain Flight Separation” are considered to be maximally relevant to 
“Maintain UAV Health” while “Avoid Inclement Weather” is only partially relevant. 

Figure 6. Level 1 - Mission goals 



4.1.2 Level 2 – Conditions, Relations, and Relevance 

The next profile level assigns situation elements to the goals 
described in Level 1.  Such assignments are depicted 
graphically as an arc from an angled box containing an 
ontological element to one of the oval goal nodes, as seen in 
Figure 7.  These associations communicate the impact of 
situation element on one or more aspects of the operator's 
overall mission goals.  That is, if the associated element is 
inferred by one or more agents, then the relationship and any 
evidence supporting its existence should be considered for 
fusion.   

Similar to the arcs between subgoals and supergoals, the 
impact of a relation on a goal node can be discounted to 
represent degrees of impact or relevancy.  In Figure 7, we see that the operator has declared the existence 
of a ProjectedOwnshipCollision (an element from our reference domain ontology) to be maximally 
relevant to the mission's subgoal, “Maintain Flight Separation.”  Similarly, we see that the operator has 
declared that a ProjectedRegionBreach (another element from our reference domain ontology) is 
maximally impacting on the goal of “Monitor Buffer Zones.” 

4.1.3 Level 3 – Trust and Relevance in Agents 

We see a complete profile in Figure 8, at right.  Here, 
we have added three agents into the profile: Air 
Collision Monitor, Blue Force Monitor, and the RTC 
Monitor.  Each of these agents produces one or more 
judgments on the existence and relevance of situation 
elements, as depicted by an arc from an agent to a 
conditional element.  As in Levels 1 and 2, arcs carry a 
discounting weight.  In this case, the discount weight 
is a measure of trust or confidence in the ability of the 
agent to make good judgments about the situation 
element. 

The origin of trust between operator and agents is 
much the same as it is between members of any team; 
trust is learned through practice.  Initially, all agents 
will likely be maximally trusted.  Through practice in 
simulation, an operator can become more comfortable 
with the abilities of each agent as well as get a feel for 
which agents are best at making which judgments.  As 
each agent embodies heuristics that mimic a small part of human reasoning, we do not expect a priori 
trust in an agent to be optimal.  Rather, we expect a learning process that will modify trust over time.  In 
human-human team relations, many of the factors that lead to trust are highly specific to the individuals in 
the team.  While this is true also to some extent with artificial agents, their limited scope and singular 
purpose lead us to believe that human-machine trust will be very portable.  That is, if one operator 
establishes trust on an agent after practice with the agent, other operators will likely be able to reuse the 
assigned trust metric without the extensive practice that was used to achieve the initial trust estimate. 

In the example, we see that the operator has high confidence in the judgment of the Air Collision Monitor 
for inferring or producing ProjectedOwnshipCollision (another domain ontology element) relations.  

Figure 7. Level 2 - Conditions 

Figure 8. Level 3 - Agent trust 



The operator also has high confidence in the RTC Monitor and its ability to make effective judgments 
about PriorityTextMessage high level alerts.  Note that it is possible that two or more agents can make 
judgments about the same kind of relations and events.  The mission profile can accept multiple links onto 
a conditional node, allowing for multi-agent assemblies that can produce a wide diversity of opinions. 

4.2 Propagation Through the Mission Profile 
The proposed system estimates the salience of entities and inferred 
relations by computing belief propagation (from a matched condition 
node up to the root node of the mission profile).  Figure 9 shows 
another mission profile that has been scaled down for better 
understanding.  The yellow angled block represents a condition node 
that matches against instances of ProjectedBreach.  Given a matching 
frame, Breach, of type ProjectedBreach, the associated belief for an 
instance of Breach would propagate up from the condition node along 
two paths.  The left path traverses “Monitor Hostile Intent,” “Force 
Protection,” and terminates at the root node “Patrol Mission” after 
being slightly discounted in the last link.  The right path traverses 
“Monitor Buffers” and is slightly discounted in propagating to “Force 
Protection.”  As with the left path, when the right path traverses the 
“Force Protection” to “Patrol Mission” link, it is discounted before 
terminating at the “Patrol Mission” root node.  Note, in the example, 
that a single frame propagated its influence along two different paths to 
the root node.  There is no limitation in the number of paths along 
which influence can propagate. In the later process of fusion, multiple 
propagation paths will strengthen the accumulated impact of a matched 
situation element. 

Internally, the mission profile is held as a network structure in a memex (memory context - a typed 
semantic network).  The example profile in Figure 9 can be seen in an “exploded view” as a network of 
SO and DO instance frames in Figure 10.   When computing a belief propagation, our reference 
implementation uses the mission profile network structure as the core of an instance of our Evidential 
Reasoning Network (ERN®).  We then use subjective logic operations to propagate the belief, producing 
associated Propagation (an element of our COSAUS-KR SO) frames for each path through the profile.   

Figure 9. Multi-path profile 



 

For example, given the profile in Figure 9 and the simplified situation shown in Figure11, the 
ProjectedBreach frame with the guid “situation-0101” would match against the condition node with the 
guid “condition-0001.”  Using subjective logic operations to compute the propagation of the belief of the 
“situation-0101” (as held in a memex), the result would be similar to that shown in Figure 12. 

  

Figure 10. Mission profile "exploded view" in memex 

Figure 11. Simplified situation 

Figure 12. Memex after executing propagation 



4.3 Mission Profile Editor 
Our reference implementation included a 
prototype GUI tool for authoring mission 
profiles.  An annotated screen shot is shown at 
right in Figure 13.  Using this tool, the mission 
profile can be built using the same layered 
approach as discussed above. 

In the context of the editing tool, goal and 
subgoal nodes are represented as blue bordered 
circles, while situation element conditions are 
shown as blue bordered rectangles.  Agents are 
represented as green bordered ovals.  Influence 
arcs between nodes are equipped with a GUI 
widget which allows the author to drag the mouse to set the influence on the arc.  Along with the visual 
representation of the degree of influence, a limited set of textual descriptions is also shown.  Figure 14 
shows a tear-out of an example profile that is in the process of being authored. 

 

 

Figure 13. Annotated mission profile editor 

Figure 14. Profile in process of editing 



5 Belief Fusion Pipeline and the Fusion Engine 
In an open architecture, multi-agent system such as that of the proposed system, we expect situations 
where two or more agents are making inferences about the same relationship.  Since each agent 
encapsulates a relatively small amount of knowledge, there are bound to be differences of opinion among 
them as each agent approaches the situation from its own perspective.  The emitted output of the proposed 
system must be a set of coherent judgments.  Thus, after the agents have reasoned over the incoming 
information, the next problem is to fuse the various, possibly conflicting opinions and judgments into a 
coherent whole. 

In Figure 15, we show a high-level overview of how agent inference propagates through the proposed 
system.  The fusion engine listens in the SA Room where the products of the agent pool are exchanged.  
These products include opinions, based on heuristics operating on low level information, and judgments 
derived from the opinions and judgments of other agents.  Each agent operates asynchronously, reasoning 
opportunistically from the flow of information from the GIG as well as the products of other agents.  The 
fusion engine passively collects all of these inference products as well as any raw data, accumulating 
them into a local memex. 

In our reference implementation, at regular time intervals, a time event locks the primary memex and 
clones the primary memex into a working copy.  Once the clone operation is complete, the lock is 
released and the primary memex is again free to listen to the agents and gather updates to its state.  The 
working memex then enters the propagation and fusion pipeline in a thread independent of the primary 
memex.  Rather than using a discrete time, alternate implementations may drive the fusion process by 
transaction events. 

5.1 The Fusion Pipeline 
The propagation and fusion pipeline is shown in Figure 16.  As a prerequisite step, the working memex is 
first joined with the mission profile, as discussed in a previous section.  The result of this prerequisite step 
is the addition of Propagation (an element of our COSAUS-KR SO) frames to the working memex.  
These frames describe the propagated influence of inference products on the overall mission. 

Figure 15. Overview of flow of inference products 



5.1.1 Step 1: Assign Bias 

With the Propagation frames already embedded in the memex, the first step of the fusion pipeline is to 
assign a bias to all the SituationElements (a core element of our COSAUS SO) that might be of interest.  
The default bias is the vacuous opinion, which signals that the situation element is acknowledged but the 
system has no reason, as of yet, that the element is of importance to the operator.  By definition, in 
subjective logic, the conviction of the vacuous opinion is defined as the tuple (belief = 0.0, disbelief = 0.0, 
uncertainty = 1.0, atomicity = 0.5), which also fits our intuition into the nature of a lack of evidence. 

While the default bias is vacuous, an implementation of the proposed system can adjust the bias by 
reallocating small increments of uncertainty to belief.  Similarly, the bias can be decreased by first 
decreasing belief back to vacuous, then increasing disbelief by reallocating uncertainty.  From the 
perspective of Step 1 of the fusion algorithm, bias is a parameter and the algorithm does not change under 
different variations of bias. 

The Step 1 algorithm, described in pseudo-code, is given in the Algorithm 1 frame, below.  Note that this 
step introduces the Impact frames into the memex.  The Impact frames are COSUAS-KR elements and 
special cases of the more general Opinion class.  Impact frames will act as accumulators of influence as 
the memex moves through the pipeline. 

 

Figure 16. Propagation and fusion pipeline 

for each SituationElement, e: 
 instantiate Impact statement, i, that refers to e. 
 instantiate Conviction statement, ci, set to (the default) ignorance (b=0,d=0,u=1.0) 
 set i to refer to c 

Algorithm 1: Assign bias to situation elements 



5.1.2 Step 2: Fuse Propagation Paths 

The prerequisite step of propagating influence through the mission profile results in embedding 
Propagation (from our COSAUS-KR SO) frames in the memex.  As discussed in the previous section, 
for each situation element, there may be multiple propagation paths through a mission profile.  Consider, 
for example, a mission profile with two leaf-node subgoals “Monitor Hostile Intent” and “Monitor 
Buffers” which are both sensitive to ProjectedBreach frames.  In the event of the production of a 
ProjectedBreach frame, there will then be at least two paths from the Condition node up through the 
profile to the root of the tree, as depicted in Figure 17.  The mission profile propagation algorithm will 
associate a Propagation frame to the ProjectedBreach frame for each of the paths, resulting in one 
situation element (the ProjectedBreach frame) with two 
Propagation frames.  In this step, we use the subjective logic 
consensus operator to fuse Propagation nodes into their relevant 
Impact accumulator nodes.  The pseudocode for this step is given in 
the Algorithm 2 frame. 

  

Figure 17. Mission profile 

for each Judgment j (where the author of j is not “ARID”): 
 if j.about, is of type SituationElement; then... 
     get SituationElement e to which j.about refers 
     for each Propagation p that refers to e: 

        get the Impact, i, associated to e 
        let cp be the Conviction of the p 
        let ci be the Conviction of the i. 
        accumulate cp into ci by consensus:  ci ← ci ⊕  cp 

Algorithm 2: Fuse propagation paths into Impact accumulator 



5.1.3 Step 3: Evidence Back Propagation 

When an agent asserts some product of its reasoning, it associates to that product a Judgment frame and 
any associated Evidence frames that cite other SituationElement frames that the agent believes are 
relevant to its judgment.  Should the mission profile be sensitive to the production, the impact of the 
production has already been computed in Step #2.  The associated Evidence frames, however, imply that 
the cited SituationElement frames are indirectly influencing the mission via support for the reasoning 
product.  The last step in the fusion algorithm is to “back propagate” the impact of reasoning products to 
the evidence that supports those products.  The pseudocode for this step is given in the Algorithm 3 frame.  

 

6 Example 
In order to better illustrate the evolution of the memex as it 
proceeds through the fusion pipeline, in this section, we give a 
brief example including a focused view of the semantic 
network within the memex.  In Figure 18, we see a simplified 
representation of a subgraph of the semantic network in a 
memex.  Here, we have some ProjectedBreach with an 
associated Opinion (a subclass of Judgment) that is supported 
by two elements of evidence, a MobileObject, which would be 
the subject of the ProjectedBreach, and a Region, which 
would be the object of the ProjectedBreach. 

Given the initial memex as a thread-safe working copy, we fit 
the memex to the mission profile and apply the propagation 
algorithm that computes the influence of each 
SituationElement on the mission.  Using the mission profile 
shown in Figure 17, the ProjectedBreach has two propagation 
paths, resulting in two Propagation frames now linked and 
embedded into the working memex.  Note that the mission 
profile was not sensitive (via a matching Condition node) to 
the MobileObject and Region frames.  The state of the memex 
after the propagations is shown in Figure 19. 

Figure 18. Initial memex state 

Figure 19. After computing propagations 

for each Evidence statement, s: 
 let j be the Judgment that s supports 
 let cj be the Conviction of j   
 let SituationElement e be evidence of s 
 let i be the Impact of e 
 let ci be the Conviction of i. 
 let d be the strength of s 
 accumulate cj into ci:  ci ← ci ⊕ (d ⊗ cj) 

Algorithm 3: Back propagate influence to supporting evidence 



After the prerequisite step of computing the propagation paths 
and linking the Propagation nodes into the memex, we then 
execute Step 1 of the fusion algorithm and associate a default 
Impact bias to each SituationElement.  The Opinion, 
Evidence, and Propagation frames are all part of our 
COSAUS-KR SO knowledge representation elements and are 
themselves not instances of the class SituationElement.  
ProjectedBreach, MobileObject, and Region are all 
members of our reference DO and inherit from the 
SituationElement class and therefore are given an associated 

Impact frame, as 
shown in Figure 
20. 

After the algorithm has created the necessary Impact frames 
and linked them into the memex, the next step is to 
accumulate the Propagation paths into the Impact frames.  
In this case, our figures are slight oversimplifications.  The 
Opinion, Propagation, and Impact frames are all subclasses 
of Judgment and rather than store the subjective logic belief 
mass directly, they each have a one-to-one linkage with a 
corresponding Conviction frame.  These Conviction frames 
are assumed in the figures and are omitted for purposes of 
clarity. 

In Figure 21 we see a graphical representation of the 
accumulation of Propagation belief masses into a single Impact frame by indirection through the 
relevant SituationElement (in this case the instance of 
ProjectedBreach). 

As of yet, both the MobileObject and Region frames have 
only the default Impact associated to them.  Unless the 
operator has increased the bias of the fusion, the impact of 
these frames on the operator is essentially unknown.  However, 
both of these frames are believed to be highly relevant to the 
ProjectedBreach and that frame does have some already 
computed impact on the operator's mission.  Here, we apply 
the last stage of the fusion algorithm and “back propagate” 
some of the impact of the higher level ProjectedRegion frame 
back to the frames that are cited as evidence for its impact on 
the operator. 

The flow of influence is shown graphically in Figure 22, 
depicting all of the indirection that eventually provides a path by which the higher level impact can 
provide influence for the supporting evidence.  Note that Evidence frames can discount the back 
propagation, as may be the case when some supporting evidence has only a small influence on the 
production of the higher level frame with direct impact.  Note also that the belief mass of the higher level 
frame, in this case the ProjectedBreach, is not diminished by back propagation.  After the computation 
of the back propagation, the memex has completed the fusion pipeline and now contains a single, 
coherent Impact frame for each SituationElement.   

Figure 20. After fusion step #1 

Figure 21. Accumulating propagations 

Figure 22. Back propagation 



7 Conclusions and Future Work 
The proposed multi-agent system is designed for increasing situation awareness.  This goal is achievable 
by inferring higher-level relations from low-level information and filtering the resulting superset of 
objects and relations to a core subset of elements that have a traceable impact on an operator’s declared 
mission goals.  Both the inference of higher-level relations and the filtering of the situation have the 
potential to reduce the cognitive load on the operator and may be of value in applications where an 
operator’s cognitive resources are heavily burdened. 

At the core of the evaluation of situation elements for relevancy to goals is a mission profile.  The mission 
profile described here is a network structure that allows a profile author (likely the same person as the end 
operator) to declare goals and then decompose those goals into subgoals of arbitrary granularity.  We 
believe that the graphical structure of the mission profile allows for easy visualization that is more 
intuitive to understand than collections of textual if-then rules.  Looking to the future, we expect that 
mission profiles can be shared and re-used using GUI tools that can search and synthesize variations on 
profiles or wholly new profiles. 

The mission profile is used directly by the proposed system as the core of a fusion process which unifies 
the opinions of the various agents attached to the system.  The fusion process uses evidential reasoning 
techniques to combine evidence and influence into a complete and comprehensive summary which can 
then be emitted as output for ingestion into dependent systems that act upon the fused situation. 

Moving forward, the proposed system will certainly profit from further theoretical improvements as well 
as lessons learned from experience or simulation.  Specifically, the “back propagation” of evidence is 
intuitive, but somewhat ad hoc.  The present method might be improved by a more formal treatment of 
supporting evidence that can retain the ease of authoring a mission profile.  Also, our experience with our 
reference system is limited in both scope and size.  Although we expect mission profiles to scale well, 
both in terms of usability and computation, a broader domain of application and a larger corpus of 
realistic profiles is needed before judgments on scalability can be conclusive. 
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