
15th ICCRTS

‘The Evolution of C2’

Web Based Dynamic Workflow Systems for C2 of Military Operations

Topics: (3) Information Sharing and Collaboration Processes and Behaviors,
(9) C2 Architectures and Technologies,

Jan Martin Jansen, Tim Grant (NLDA),
Bas Lijnse (NLDA & Radboud University Nijmegen, the Netherlands),

Rinus Plasmeijer (Radboud University Nijmegen, the Netherlands)

POC: Jan Martin Jansen

Netherlands Defence Academy (NLDA)
P.O. Box 10000, 1780 CA Den Helder, the Netherlands

Tel: +31 223 657127
jm.jansen.04@nlda.nl

Web Based Dynamic Workflow Systems for C2 of Military Operations

Abstract Modern military operations are complex endeavours involving different services and
nations, as well as governmental, commercial, non-governmental, and international organizations.
Each partner may have its own planning process and tools. This diversity must be orchestrated to
plan the overall operation, while maintaining the agility to respond to changing situations.

We contend that dynamic workflow mechanisms are suited to planning military operations. We
developed the iTask dynamic workflow system that enables the construction of high level multi-
user workflow applications. Workflows can change in response to dynamic situations, new tasks
can be spawned by or be dependent on previous tasks, tasks can be dynamically adapted. iTask
based applications have a web-based user interface, allowing external partners to use them without
installing special software. Moreover, new parties can join them on-the-fly. Because of its focus on
dynamic processes iTask appears promising for development of flexible C2 systems.

In this paper we present a discussion of the potential of the iTask system for building C2 systems.
We give an overview of the system, and discuss to what extent it meets the requirements of the C2
domain. We also sketch a number of promising application areas in this domain.

1. INTRODUCTION

1 Introduction

In modern warfare many activities have to be deployed by many people using a great diversity of
systems. The coordination and control of these activities is becoming more and more complex. The
advent of NCW and NEC [AGS99] complicates this even more, because much more information
is becoming available in an even shorter time frame. Decisions are not taken in centralized head-
quarters anymore, but are the result of a collaborative effort of many. Command and Control has
extended from a single system/group activity to a networked activity involving many systems and
people distributed over large areas. Often non-military like local authorities and non governmen-
tal organizations (NGO’s) are involved in operations. Also the nature of military operations has
changed. Asymmetrical operations have become the standard. Information is the most important
weapon in these operations. But obtaining information is difficult and requires other sources then
the traditional sensors. Instead complex intelligence operations are required. Through these devel-
opments the borderline between military operations and response operations for crises, whether
caused by aggression or caused by accidents or natural disasters, is fading. Systems that take care
that information is made available to the right persons at the right moment, and that support the
gathering of information become ever more crucial for successful execution of operations.

In recent years, the focus for research has been on the development of systems to enhance the
quick sharing of information using Web 2.0 technology and Service Oriented Architectures (SOA,
[IEH09]). Although making information available to all parties is crucial to enhance situation aware-
ness [EBJ06], a recurrent theme in our discussions with military and crisis management professionals
has been that the real challenge is coordination and control. At first glance, Workflow Management
Systems appear to have potential to support this (see also [SB09], [PLZ09] and [FW08]). WFMS’s
are computer applications that coordinate, generate, and monitor tasks to be performed by human
workers and computers. Every activity in an operation can be considered a task. Activities can
depend on each other and must be performed in sequence, while other activities may be carried out
in parallel. The workflow system can be used to support the distribution and monitoring of these
activities. But there are some serious problems, as already acknowledged by [SB09,PLZ09,FW08].
First, contemporary workflow systems are commonly rather rigid because they only model the static
flow of control. Second, in many cases the activities to be conducted for executing an operation
cannot be captured in a predefined plan. Only a rough sketch of the actions to be taken can be
given. Plans can be further refined only at runtime, when more information becomes available.
Most workflow systems cannot deal with this. They only offer the execution of detailed predefined
plans. In other words, contemporary workflow systems are not capable of dealing with the dynamic
nature of modern military and crisis response operations where tasks may heavily depend on the
outcome of previous tasks and plans must be changed on-the-fly due to changing circumstances.

Recent work on the use of functional programming techniques for workflow modeling has led to the
development of the iTask system [PAK07,PAK08a]. The iTask system is a domain specific workflow
language embedded in the functional programming language Clean, enabling the creation of data-
driven dynamic workflow systems. It supports data dependent behavior of tasks, where the new
tasks to do may depend on the results of previous tasks. The iTask system allows for on-the-fly
(dynamic) adaptation of tasks. A full (extended prototype) implementation of the iTask system is

1

2. THE ITASK SYSTEM

already available. A number of iTask applications have been implemented including a conference
management system (see [PAK+08b]) and a number of smaller example applications. It should be
noted that iTask is not a C2 system itself, but a toolkit for the construction of such systems.

In this paper, we present a discussion on the suitability of dynamic workflow specification, and
its implementation using the iTask system, for modern C2 of both military and crisis response
operations. We also sketch a number of candidate application areas for iTask and indicate what
the possible gains are for these areas. We use five key design requirements for response technology
proposed by Jul in [Jul07] as a framework for structuring our discussion. The current iTask system
already offers important functionality for supporting C2 operations, and can be trivially extended
to meet even more. However, we also identified a number of research challenges that need to be
addressed to fully optimize the iTask system for supporting C2. Although some of the strengths,
weaknesses and challenges we discuss apply only to the iTask system, most apply to workflow
management systems in general.

2 The iTask system

The iTask system (itasks.cs.ru.nl) is a domain specific workflow language embedded in the functional
programming language Clean, enabling the creation of dynamic data dependent workflow systems.
This means that it enables programming of workflow systems in a programming language that is
specifically tailored for this purpose, but at the same time has the full computational expressiveness
of a modern functional language. A workflow system is data dependent if it allows for adaptation
of workflows using intermediate results. In the iTask system a workflow consists of a combination of
tasks to be performed by humans and/or automated processes. From iTask specifications complete
workflow applications are generated that run on the web, optionally distributed over servers and
clients [PJKA08]. The iTask system is based on open web-standards and can therefore be accessed
by anyone who has access to Internet, nowadays including many mobile devices. The system has
an interface resembling e-mail client software to reduce the need for users to learn additional
interactions.

The iTask system is built upon a few simple concepts. The main concept is that of a typed task.
A task is a unit of work to be performed by a worker or computer (or a combination of both) that
produces a result of a certain type. Result types are not limited to simple data such as integers,
records, etc., but can also be documents, or even new tasks. The result of one task can be used as
the input for subsequent tasks, and therefore these new tasks are dynamically dependent on this
result. This also holds for tasks that produce or consume other tasks.

We distinguish two kinds of tasks: basic tasks and composed tasks. Basic tasks are elementary
tasks that can be fulfilled by one user in one step. In the workflow language these are black box
primitives that are implemented at a lower level. An example of a basic task would be the entering
of information in a web-form by a user. The result of this task is then the entered data. Composed
tasks, or workflows, are defined by composition of (basic) tasks using so-called task combinators.

2

2. THE ITASK SYSTEM

2.1 Basic iTasks

The iTask standard library offers several functions for creating basic units of work: basic tasks. An
important example is the generic task where a user is asked to supply information. The generation of
a web-form to enter this information and the processing of its result are handled fully automatically
by the iTask system. In this way one can create data entry tasks in just a single line of code. Figure
1 shows the code for a task where the user can supply the information for a military mission,
together with a picture of the generated form. The code consists of data type definitions and a
task definition (enterMission) using these data types. This example also shows that documents can
be attached to tasks.

:: Mission =
{ type :: MissionType

, date :: Date

, time :: Time

, nrTroops :: Int

, location :: Location

, moreDetails :: Bool

, description :: Document

}

:: MissionType = PeaceKeeping | CounterTerrorism |

SpecialService | IntelOperation |

War | Other String

::Location = {city::String,country::String}

enterMission :: Task Mission

enterMission = enterInformation "Please provide information about the mission"

Fig. 1. A Generic Data Entry Task for Mission Data.

An obvious advantage of such compact definition of data entry tasks, is that it enables readable
and easily modifiable workflow specifications. But there are some less obvious, but more important
ones: First, the separation of declarative task definition and generic implementation enables different
implementations for different devices. Second, because interfaces can be automatically generated,
the system can automatically provide a fallback based on manul data entry for every task. Even
for tasks that were designed to receive their input through an automated process.

Other examples of basic task functions are: requesting lists of users of the system (if necessary
grouped by their role); tasks that return at a predefined moment in time or after an amount of
time; tasks that communicate with other applications, databases, sensors, or web services (for the
exchange of information). We have for example implemented access to Google Maps.

3

2. THE ITASK SYSTEM

2.2 iTask Combinators

New tasks can be composed from other tasks by using combinator functions. We distinguish be-
tween combinators that say something about the order in which tasks have to be performed and
combinators that say something about an individual task: who has to perform it; where to store
information about the task, etc.

Tasks can be organized in many ways. In most contemporary workflow systems organization is
limited to a fixed set of patterns (see [AHKB02]). Because the iTask language is embedded in an
expressive general purpose host language (Clean) all common patterns, and many more can be
expressed using using relatively few combinators. Here we discuss the most important ones.

Sequential Combination In contrast to most workflow specification languages, information is
passed explicitly from one task to another in the iTask formalism. In a sequential composition of
two tasks, the first task is activated first and when it finishes, the result is passed to a second task,
which takes this result as its input. In code this is denoted by:

first_task >>= second_task_function

Note that t >>= f (or t followed by f) integrates computation and sequential ordering in a single
pattern. In this way the second task can dynamically adapt to the result of the first task. In other
(mostly graphical) workflow formalisms it is harder to specify a function that acts on the result of
a preceding task because only control is passed between tasks.

Parallel Combination An important combinator for executing a number of tasks in parallel is
the parallel combinator. Where other workflow formalisms contain a large number of patterns (see
[AHKB02]) for executing tasks in parallel, iTask needs only one combinator for this. Using the
power of the functional host language, one can construct all other patterns (and more) using this
single combinator. This is hard to do in other workflow languages because these lack the right
abstraction mechanism for realizing this. With the parallel combinator one can start the execution
of several tasks in parallel and stop this execution as soon as a user specified condition is fulfilled.
For example, one can stop when one task (or-parallelism) is finished:

anyTask [task_1,task_2,task_3,task_n]

When all tasks (and-parallelism) are finished:

allTasks [task_1,task_2,task_3,task_n]

Or when the results of the finished tasks satisfy a certain condition (ad-hoc parallelism):

conditionTasks condition [task_1,task_2,task_3,task_n]

These different combinators are all shorthands for the same generic parallel combinator instantiated
with different parameters.

4

2. THE ITASK SYSTEM

Task Assignment Tasks can be explicitly assigned to users using the task assignment (@:) com-
binator.

userid @: task

Here the task task is assigned to the user with login name userid. The user to whom a task is
assigned, can be entered explicitly in the workflow model. Alternatively, it is possible that during
the execution of the workflow, a task determines the user to which another task must be assigned.
Once tasks have been initially assigned, it is always possible to reassign them to another user on-
the-fly. It is possible to monitor the progress of tasks. This information can be used to re-allocate
task to different users, to stop task or to replace tasks by other tasks.

2.3 An Example iTask Workflow

A typical example of a task for which a dynamic workflow system can be used is the dynamic allo-
cation of resources. Consider, for example, the following scenario. For a complex military mission
transportation of people, equipment and supplies is necessary. The amount and kind of transporta-
tion devices heavily depends on the location of the mission area, the number of people and goods
to be transported, the condition and safety of the transportation routes.

We implemented a prototype application that automates this process using the iTask system.

The starting point for this workflow is a mission report like the one described above. This report
contains the type and the location of the mission. The workflow uses this information and a set
of available transportation providers and their locations to calculate an initial set of requests to
be sent to transportation providers to obtain the right amount of vehicles. Each provider should
reply within a certain time limit whether it is capable of supplying the requested amount. In case
not enough vehicles can be supplied the system automatically starts requesting other providers and
recursively continues doing this until enough transportation capacity is available.

Due to space limitations, we only show the code of the first part of the workflow specification.
This part handles an incoming report for a mission and starts the operation. It consists of three
steps: First some data describing the mission is entered (enterMission), then the appropriate action
are chosen (planActions, and finally the actions set in motion (allTasks). During the second step, a
suggestion for further action is computed based on the type of mission that is entered in the first
step. During the third step all tasks that have been chosen as action are carried out in parallel.
Transportation is handled in the orderTransport task. The iTask code for this workflow is the following:

startMission

= enterMission >>= planActions >>= allTasks

where
enterMission :: Task Mission

enterMission = enterInformation "Please provide information about the mission"

planActions :: Mission → Task [Task Void]
planActions mission

= updateMultipleChoice "Choose actions" options (suggestion mission.type) ++
if mission.moreDetails [detailSpecification] []

5

2. THE ITASK SYSTEM

where
//Generate the list of possible tasks to choose from
options = [f mission \\ f← [makeComsPlan,orderTransport,orderSupplies,orderAirSupport]]

//Compute the indexes in the options list that are initially selected
suggestion PeaceKeeping = [0,1,2]
suggestion CounterTerrorism = [0,1,2,3]
suggestion SpecialService = [0,1]
suggestion IntelOperation = [0]
.........

suggestion _ = []

This small piece of code already demonstrates two core features of the language. First, it integrates
computation in the workflow. The suggestion function computes the initial selection of actions from
the information that is entered in the enterMission step. In this case it is a simple one-to-one mapping
of mission kinds to selections, but it is possible to do any computation to select or parameterize the
next steps in a workflow. The second interesting feature is that the result type of the planActions task
is a list of tasks. This list of tasks, which are all parameterized with the mission information, is then
executed in parallel by the allTasks combinator. The possibility to have tasks that have new tasks
as their result can be used to create highly dynamic models that contain steps in which parts of the
worklow are interactively defined during execution. In planActions we also inspect the moreDetails field
in the original form to decide whether or not a detailSpecification task should be started parallel to
the other tasks.

2.4 Dynamic Behavior: Exceptions and Change

Several authors, like [SB09], [PLZ09] and [FW08], have already indicated that workflows need to
be adaptive to be of use for complex domains like command and control and crisis management
operations. The iTask system offers a number of programming constructs to support the following
kinds of dynamic behavior:

1. Dynamic behavior that can be anticipated and where the normal course of actions is not affected.
In these cases the procedure to be followed depends on the intermediate results of previous tasks.
This is considered as normal dynamic behavior and is provided by the sequence (>>=) combinator.

2. Dynamic behavior that can be anticipated where the normal course of actions is affected. In
these cases normal procedures should be stopped and a different procedure should be started.
The exception mechanism in the iTask system provides this capability.

3. Dynamic behavior that cannot be anticipated and detected within the workflow itself. In this
case ad-hoc changes should be made to one or several workflows. The normal procedure should
be stopped, and then either a different procedure should be started or an adaptation to a
(sub)task should be made. This form of dynamics is provided by the change concept in iTask

iTask supports an exception mechanism similar to what is found in common programming languages.
A task may throw an exception in case an exceptional situation occurs. The entire workflow the

6

3. EXAMPLE APPLICATIONS IN THE MILITARY DOMAIN

task is part of is now stopped (if there are parallel tasks in it, the users participating in these
tasks are informed). The exception is passed to an exception handler. This handler can now start
a new task using information raised in the exception as its input. An exception must be explicitly
thrown in a workflow. So, the designer of the workflow must be aware that exceptional situations
may occur during the execution of a workflow and therefore has to define a handler for them.
Exceptions enable the separation of uncommon borderline cases from the regular workflow.

The change concept is complementary to that of the exception. While an exception is the result
of an abnormality that occurs within a workflow, a change is triggered from outside the specified
workflow. Tasks on which people are working can be replaced on-the-fly with other tasks. Because
iTask workflows are typed, the new task should return a result of the same type as the replaced
task. An example of a change is the replacement of a complex process by an ad-hoc made to-do
list, in case the user has determined that the process is inappropriate for the current situation.
Another example is the replacement of a process by the ad-hoc entering of a result that is obtained
in another way (not using the workflow system).

2.5 The iTask Client

In the iTask system, workflow instances are executed by a server application that is generated from
the workflow specifications. These server applications dissiminate information about tasks through
a collection of web services.

Because end-users cannot access such services directly, the iTask toolkit provides a generic client
application to let people view, and work on tasks. This client application, shown in Figure 2, is an
Ajax application which is similar to a web-based e-mail client. But instead of an inbox of messages
there is an inbox with interactive tasks. Because web-based e-mail applications are very common,
this design requires a minimal amount of addtional learning.

The names of the tasks that the worker needs to perform are presented in the task list displayed
in the upper right pane. This pane can be compared with the list of incoming e-mails. When the
worker clicks on a task in the task list, its current state is displayed in the lower right task pane.
Tasks can be selected from the task list in any order, allowing a local operator to determine a
preferred order of execution. The iTask toolkit automatically keeps track of all progress, even if the
user quits the system. When a task is finished, it is removed from the task list. Workers can start
new workflows, by selecting them in the left workflow pane. In general any number of workflows
can be started. The task list is updated when new tasks are generated, either on the users own
initiative, or because they have been delegated to it. The entire interface is generated automatically
from a workflow specification.

3 Example Applications in the Military Domain

The introduction to the iTask system in the previous section, is necessarily dense and abstract
due to the meta-system nature of the toolkit. Therefore, before continuing with a discussion of its
suitability for military / crisis response operations based on requirements from literature, we first

7

3. EXAMPLE APPLICATIONS IN THE MILITARY DOMAIN

Fig. 2. A Screenshot of the iTask client application

give some envisioned example applications areas in this section. Contrary to the iTask system itself,
which is an implemented proof-of-concept system (previously published in [PAK07,PAK08a]), these
applications are just examples to sketch a more concrete vision of its use in a military context.

3.1 Useful Characteristics

The iTask system can be used to make applications that tell people what to do at what moment.
In this way iTask does not differ from other workflow systems and planning tools. More interesting
are the unique properties of iTask that cannot be found in other workflow management systems.

First, workflows application programmed in iTask’s are flexible in many ways. Because iTask allows
for data dependent workflows intermediate results can be used to parametrize future steps. For
example, if for transportation more vehicles are needed than can be supplied by the standard
transport service, an additional workflow can be started for obtaining more transport capacity.
Using iTask’s dynamic data dependencies many dynamic aspects of operations can be captured.
But not all operations can be captured in predefined plans, because the steps needed to be taken
during the operation cannot be determined exactly beforehand. But even in those cases the generic
structure of the process is mostly known and only in the more detailed sub-procedures ad-hoc
actions involving human improvisation are needed. For this we can use the Change concept of
iTask. Using this Change concept workflows can be adapted in many ways. The most direct way to
use it, is the replacement of (part of) a workflow by ad-hoc entering of information. This is necessary
when someone decides that this part of the workflow is not appropriate for the current situation.
Instead, the information needed at this point of the workflow is obtained in another (ad-hoc) way.
This seems to be a trivial issue, but one often has ‘to fight the system’ because a procedure is not
appropriate for the current situation, but one has to continue because there is no way to circumvent
the system. The second way to use the Change concept is to do the exact opposite. In this case it is

8

3. EXAMPLE APPLICATIONS IN THE MILITARY DOMAIN

not possible at design time to give an appropriate workflow for a subtask at a certain point in the
workflow definition. In this case a default workflow that just consists of a form where the user has
to enter the appropriate information is offered in the workflow definition. During the execution of
the workflow the user can decide to start a dedicated workflow that supplies the information needed
at that point. The information that is generated by this workflow is now automatically entered into
the other workflow.

Second, the exception mechanism can be used to stop an already running workflow automatically
and replace it with another workflow. For example, a military patrol must be aborted, because new
information shows that it is too dangerous to continue. Instead, an air strike action is necessary to
clear the area. Stopping a workflow can also be done by a user with the appropriate rights. In case
(part of) a workflow is stopped, the users involved in it are automatically notified and the results
already obtained are discarded.

Third, it is possible for a user to construct ad-hoc workflows by making a composition of already
existing workflows. The user is offered a dedicated interface to make simple sequential and parallel
compositions of existing workflows.

Fourth, iTask is not a closed system and allows for easy integration of other web-services. This
offers a straightforward way to extend the functionality of an iTask application and to use iTask as
a web services coordination tool.

3.2 Preparation of Deployment for Military and Peace Keeping Operations

Preparations for military operations like the deployment of troops for peace keeping operations are
characterized by their complexity and unpredictability. They are complex because large amounts
of people and equipment have to be transported to very remote locations and every deployment
has its own unique characteristics. They are unpredictable because it is almost impossible to use
ready made plans to execute them and existing plans often have to be adapted due to unforeseen
circumstances. The planning and execution of deployments comprises the following aspects:

Logistics Before people can be deployed, accommodation, power, water and food supply, etc. have
to be arranged.

Transport Transportation is needed both for people and material (accommodation and supplies).
A large part of the transportation has to be done beforehand (accommodation, infrastructure).
Other transportation is needed during the entire deployment (food, fuel, ammunition, replace-
ments).

Intel Prior to the deployment, but also during the operation, intelligence operations are needed.
Examples of prior Intel requirements are: What are the expected enemy forces, what is the
available infra structure (communication, resources (water, food etc))? What are safe routes for
transportation? What are the local terrain conditions? How is the local climate? What kind of
protection is needed for the initial transports? Examples of Intel during the deployment are:
What is the enemy behavior? What is the attitude of the local civilians?

C2 & Communication A command and control and a communication infrastructure has to be
built-up for the operation: radio, telephone (including GSM), satellite for communication with

9

3. EXAMPLE APPLICATIONS IN THE MILITARY DOMAIN

headquarters and allies including Non Governmental Organisations (NGOs), computer networks
for the exchange of information, encryption equipment, Internet for welfare communication.

Procurement Often special equipment and goods have to be procured for the mission. Standard
ordering procedures often have to be circumvented because they take too long and ad-hoc
procedures have to be used instead.

Protection What kind of weapon and sensor systems have to be used? Are they allowed by the
Rules of Engagement (ROE)?

Budget What will be the costs of the deployment? How do we stay within the maximum allowed
budget limits?

These processes can be very dynamic, because, for example, Intel information, changing ROE’s
and political involvement can influence already started tasks. Planning of these complex operations
often involves the commitment of large numbers of geographical distributed staff personnel over
periods varying from several weeks to several months. Currently, normal communication channels
like telephone and e-mail are used for the exchange of information, while in general spreadsheet
and database applications are used for maintaining information, mostly on an individual or small
departmental basis. This means that other people and departments do not have insight into this
information and should make explicit requests (by telephone or e-mail) to obtain it. Moreover, one
has to deal with international partners, both military and civil with which plans have to be aligned.

It is clear that dynamic workflow applications can be of great help for planning these operations.
We summarize a number of issues that can be supported:

– support of the overall structure of the entire process;
– supplying the right information to the right parties at the right moment. We are dealing with

a variable number of dislocated people causing a dynamic topology;
– the automatic checking of deadlines and taking actions in case they are passed;
– interrupting activities already started due to changed circumstances;
– monitoring the status of actions with the possibility to interrupt or reallocate tasks (automati-

cally or by users);
– the ad-hoc creation or adaptation of workflows for subtasks by users;
– automatically monitoring and checking of budget.

3.3 Intelligence Operations in Asymmetric Warfare

Intelligence operations are becoming a more and more important part of modern warfare. Espe-
cially in counter terrorism the timely gathering of information about plans of adversaries is the
most important weapon against them. Many people and systems are involved in this gathering of
information. As a result a large amount of information is generated, which easily leads to an infor-
mation overload and, as a result, important information is often not available at the right moment
at the right place. Using a dynamic workflow system like can help to structure the information
streams in this information gathering. For example, a local agent may obtain information about a
possible adversary. A workflow can now be started and as a first step the user has to enter infor-
mation in a form. This information can be used by the system to start a workflow that takes care

10

4. STRENGTHS AND WEAKNESSES

that appropriate actions are taken. Using the automatic monitoring and timeout features of iTask
special actions can be taken in case insufficient progress is made.

3.4 Crisis Management and Civil Military cooperation

In crisis management operations one is often confronted with situations where people of many
different organizations have to cooperate, often in an ad-hoc manner, to tackle the crisis. An im-
portant issue here is that these different organization all may have their own command and control
procedures and systems (stove pipes). Dynamic workflow applications can be used to integrate
information from different systems, and to supply the overall command and control for operations.
For these kinds of collaborations it is important that different organization can easily join the
system without the need to install special software.

Crisis Management operations are in general very unpredictable and it is therefore impossible to
capture their command and control in a predefined dynamic workflow. But the generic structure
of these operations can be captured in a workflow and for many more detailed subtasks dedicated
workflows can be defined. Having a tool that allows for using human improvisation to combine a
generic structure with detailed workflows for subtasks can be of great help.

4 Strengths and Weaknesses

Military operations and civilian, or joint civil-military crisis response operations share many charac-
teristics. Both have to deal with complex resource allocation and complex information management
in a potentially hostile environment. Taking into consideration a further convergence of military
and joint civil-military operations we view these domains therefore as single broad domain. This
raises the bar somewhat in comparison with pure military C2 systems, because existing structures,
such as an established chain of command, or a known level of training cannot be assumed to be
available.

Because the iTask workflow language is embedded in a general purpose programming language,
it can in principle be used to construct any C2 support, crisis response, or other process support
system imaginable. However, the required effort that is needed and the quality of the resulting
system is determined largely by what is offered out-of-the-box. Therefore, it is important to know
whether what is currently offered by the iTask toolkit matches the needs of the domain for which
one aims to build systems for.

When proposing technological solutions, different authors highlight different requirements as being
important (see for example [IEH09] and [SB09]). To determine the status quo of the iTask system’s
applicability for the joint crisis management / military domain and to identify areas for future
research without bias, we need an independently defined set of requirements. For the crisis man-
agement domain, Jul in [Jul07] provides such a set of five design requirements distilled from an
analysis of the domain:

11

4. STRENGTHS AND WEAKNESSES

– Design Requirement #1: Response technology should seek to support just-in-time learning,
first, of the task the tool is intended to support, second, of the needs and goals of the present
operation, and, third, of disaster management practices in general.

– Design Requirement #2: Response technology, even when focused on agent-driven tasks,
should seek to aid response-driven tasks, such as planning, coordination and resource manage-
ment.

– Design Requirement #3: All response technology should actively nurture cooperation, col-
laboration and partnership formation.

– Design Requirement #4: Response technology, while imposing standard structures and pro-
cedures, must, insofar as possible, allow flexibility and deviation in their application.

– Design Requirement #5: Response technology should aim for graceful augmentation, allow-
ing the technology to be integrated in or removed from the user’s activities with a minimum of
disruption.

In this section we systematically discuss the strengths and weaknesses of the iTask system in view of
each of these requirements. The purpose of this discussion is not to evaluate whether the system, in
its current form, is ready and useful for deployment during a crisis response or military operation.
Its primary goal is to uncover interesting challenges to focus further research.

4.1 Requirement #1: Just-in-time Learning

Because people do not need to know what they will have to do in advance, the step-by-step guidance
through standard procedures by a workflow is essentially just-in-time learning of those procedures.
The workflow specification guides people through procedures they might have never done before.
Once users learn how to use the interface to find out what tasks they have to do, and how they
can select tasks to work on, they can rely on the system to tell them what needs to be done. To
ease the initial learning curve, the iTask user interface has been designed to resemble an e-mail
client as much as possible. Users can simply think of the system as a special e-mail system where
all messages in their inbox happen to be requests to do something.

A weakness of the iTask system is that the goals and instructions of tasks are communicated
primarily through text as defined in the workflow models. When a user is presented with a task
having instructions he or she cannot understand, or even worse, can misunderstand, there are no
built-in ways to easily resolve that knowledge gap. The learnability of the tasks is therefore almost
completely determined by the degree to which the workflow models supply enough information. Of
course, this problem also exists for paper handbooks and contingency plans. Interactive workflow
systems have an opportunity to do more, e.g. to provide access to information sources, or to provide
easy communication to ask peers help. Currently, the iTask system does not yet offer any support
for learning at the task level.

4.2 Requirement #2: Response Driven Tasks

A workflow system, by definition, supports response driven tasks, since its sole purpose is to auto-
mate the coordination and execution of standard procedures. It has the additional advantage over

12

4. STRENGTHS AND WEAKNESSES

hard-coded support systems of having inspectable models at run-time that can be queried to get
information about what is going on. The dynamic data-driven workflow models that are used by
the iTask system have the additional potential of enabling flexible resource allocation and planning.
Data that becomes available as a result of performed tasks can be used for the (re)distribution of
resources or for planning/scheduling of other tasks. However, currently available resource allocation
combinators in the iTask system’s standard library are purely algorithmic. It is possible to inte-
grate stochastic or other predictive models to distribute tasks and resources, or to support decision
making at crucial points in a workflow. Having such tasks available in a library of the workflow
language could further improve the support of response driven tasks.

4.3 Requirement #3: Cooperation and Collaboration

Cooperation and collaboration are supported in iTask workflow models by (re) assigning tasks to
users and routing the task results from one user to another. When tasks are delegated to others,
the user who delegated them can track them. It is also possible to define workflows that add new
users to the system, who then immediately can get tasks assigned to them.

The multi-user features of the iTask system make it possible to define workflow models that stimulate
the involvement of multiple users. However, to assume that therefore it “nurtures cooperation,
collaboration and partnership formation” would be too shortsighted. There are still many things
that should be facilitated to promote cooperation, regardless of the concrete tasks at hand, such as
for example, integrated communication capabilities (chat, voice, video) to enable users to discuss
the tasks they are working on, or formation of ad-hoc teams of users.

A more fundamental property of the iTask system that influences the possibility of defining “cooper-
ation friendly” workflow specification is the focus on users as individuals. Tasks are always assigned
to, and managed by, a single individual. Social relations, both formal and informal, between users
are not modeled in the iTask system. In daily life, however, it is not uncommon to work together
on a task without exactly dividing it into discrete subtasks, or to have shared responsibility for a
task.

A final issue is the ability to cooperatively define and plan tasks. By default, iTask workflow models
are controlling tasks in a top-down manner, assigning tasks to users as planned in a workflow
specification. However, because tasks can be results of other tasks and tasks can receive tasks as
their input, it is possible to define meta-workflows that let users agree upon a set of tasks and their
order to define a new workflow.

4.4 Requirement #4: Flexibility

Flexibility is a feature of the iTask system that pointed us to the potential usefulness of dynamic
workflows for crisis management in the first place. Because iTask workflow specifications support
the modeling of dynamic processes at three different levels, as explained earlier, it is potentially
capable of complete compliance with this fourth requirement.

13

4. STRENGTHS AND WEAKNESSES

However, we should not claim victory too soon. Although it is technically possible to define very
flexible workflow models, we must acknowledge that the usefulness of this expressive power is con-
strained by the interface through which it is exposed to end-users. Additional research is needed
to develop generically applicable problemsolving patterns that can be applied when normal pro-
cedures do not apply. More research is also needed on what information is required by users to
become aware that there is a need for deviation from standard procedures, and what is required to
decide what course of action is to be selected to resolve the issue.

4.5 Requirement #5: Graceful Augmentation

Meeting this final requirement completely is near impossible for any workflow system because
removal of a workflow system during the execution of an operation guided by it will cause disruption.
It is possible to meet this requirement as closely as possible by reducing the amount of disruption
if (a part of) the system is temporarily removed. The current iTask system does not specifically
address this issue, because network infrastructure has been assumed to be available. However, it
has been shown that it is possible to run parts of workflows offline (see [PJKA08]), by transferring
part of the workflow computation to the client system. It is, of course, possible to use the system
in a controlled environment such as a command post while communicating tasks through other
channels, where it could still have advantages over written handbooks, because iTask workflow
specifications are dynamic.

4.6 Additional opportunities

Because the requirements suggested by Jul cover crisis response technology in a very broad sense,
there are properties of the use of dynamic workflow models to support operations that cannot be
linked directly to one of the requirements, but are potentially valuable. Examples include:

– Verification through formalization and prototyping: In written plans and procedures,
anything can be described, even when logically contradictory, ambiguous, or otherwise incorrect.
By formalizing workflows in a modeling formalism, one is forced to write down precisely what
the steps in the process are. But even then, workflows can be defined that are logically sound,
but nonetheless make no sense at all. Because the iTask system can generate executable systems
instantly from models, it is possible to rapid prototype workflow models and to verify them
through simulation and testing during the design phase.

– Data to create situation awareness: When processes and actions are coordinated and com-
municated through a workflow support system, there is an abundance of data available during
operations about what tasks people are working on and what processes are currently running.
This data, when presented in the right way to the right people, could be valuable for assessing
the situation and for planning further action. Although this data is unavoidably incomplete
and it is not immediately clear how to extract useful information from it, it offers interesting
opportunities. Further research is needed.

– Data for evaluation and learning: The availability of data about tasks and processes is not
only useful during operations, but may also be utilized afterwards to evaluate an operation and
learn from the mistakes that were made.

14

5. FUTURE CHALLENGES

5 Future Challenges

From the discussion of the iTask system in the previous section we can conclude that, although there
is substantial potential that certainly justifies further research, it is not the perfect programming
toolkit for building C2 or crisis management systems yet. There are still challenges that have to be
tackled.

5.1 Collaboration

One area where the iTask system could gain greatly is in the facilitation of collaborative work. The
current focus on individual users, without the concept of (informal) organizations, limits collabora-
tion or partnership formation. The communication through formal task assignment only also limits
its potential.

Quick wins can be achieved by integrating easy-to-build communication features such as chat
sessions linked to tasks or enabling users to let others view the tasks they are working on. Although
this would make it easier to get help with, or give feedback on tasks, a much bigger challenge
lies in the integration of social constructs like organizations, (temporary) teams, partnerships or
friends. This would decouple the direct relation between a task and an individual person and
raises questions about dealing with concurrency, shared responsibility, shared decision making and
individuals performing tasks on behalf of organizations.

Another way of facilitating the creation of cooperation friendly workflow models could be the
development of out-of-the box meta-workflows for collaboratively defining and assigning tasks.

5.2 Effective Flexibility

Another challenge for iTask’s design would be to apply the power of adapting running processes
to resolve unexpected problems that arise during operations. Although it is technically possible to
adapt workflows that are already running, two important questions that would have to be answered
are: First, how will users know that the workflow they are executing is not going to fulfill its goal?
And second, how should they instruct the system to change the workflow to resolve the problem?

To answer the first question, more research is required into what information about a workflow
instance is needed by users to be able to detect that there is a problem. A related issue is whether
it is possible to monitor progress automatically and to warn users of an unexpected lack of progress.

The second question is possibly even more challenging. An easy way out would be to let end-
users solve the problem by providing some (visual) programming interface to specify alternative
workflows. However, this assumes that all users can, and want to use this when facing an immediate
problem. We believe the bigger challenge is the design of an interface to the underlying workflow
model that helps stranded users in either resolving their immediate problems and continue with
minimum disruption, or let them gracefully abort.

15

6. CONCLUSIONS

5.3 Domain Specific Frameworks

The design of workflow specifications is likely to be influenced by which basic tasks, combinators
and generic subprocesses are readily available. For example, if there are meta-workflows supporting
collaborative task assignment available in a library, it is more likely that collaborative steps will be
incorporated in a workflow than when the collaboration process itself also has to be specified. It is
therefore necessary to have available a collection of tasks, data types and generic workflows that are
common in the domain. A major challenge will be the design of a domain-specific framework that
supplements the generic iTask system to create a platform for building workflow support systems
to aid crisis management operations.

6 Conclusions

In this paper we presented dynamic workflow programming, as implemented by the iTask system,
as a candidate platform for developing applications to support command and control of military
and crisis management operations. Because of its unique features like: data driven, parameterizable
workflows and extensive support of dynamic behavior we view it as a potentially valuable tool for
construction of C2 systems for this domain. We have explained the basics of programming such
systems using the iTask toolkit, and sketched our vision of possible applications in the military
and crisis management domains, which we consider a single domain in this context. Most notably,
we have compared the current iTask system to independently defined requirements for technology
during crises defined by Jul in [Jul07]. We have discussed the strengths and weaknesses of the
iTask system in light of these requirements to identify future research challenges. Based on this
comparison, we are confirmed in view that dynamic workflow programming is indeed potentially
valuable, but research challenges are: facilitation of collaboration on tasks, interaction with the
workflow model during execution, and the need for domain specific frameworks. By focusing research
effort on these issues, we hope to develop the system further, into a valuable C2 construction toolkit
for building systems that flexibly support people under demanding circumstances.

16

6. CONCLUSIONS

References

[AGS99] D.S. Alberts, J.J. Garstka, and F.P. Stein. Network centric warfare: Developing and leveraging information
superiority. C4ISR Cooperative Research Program Publications Series, Department of Defense, 1999.

[AHKB02] Wil van der Aalst, Arthur ter Hofstede, Bartek Kiepuszewski, and Ana Barros. Workflow patterns. QUT
technical report, FIT-TR-2002-02, Queensland University of Technology, Brisbane, Australia, 2002.

[EBJ06] M.R. Endsley, B. Bolte, and D.G. Jones. Desining for sitation awareness: An approach to user centered
design. Taylor & Francis, London, 2006.

[FW08] Dirk Fahland and Heiko Woith. Towards process models for disaster response. In M. de Leoni, S. Dustdar,
and A.t. Hofstede, editors, Proceedings of the First International Workshop on Process Management for
Highly Dynamic and Pervasive Scenarios (PM4HDPS), co-located with 6th International Conference on
Business Process Management (BPM’08), September 2008.

[IEH09] Magnus Ingmarsson, Henrik Eriksson, and Niklas Hallberg. Exploring development of service-oriented c2
systems for emergency response. In J. Landgren and S. Jul, editors, Proceedings of the 6th International
ISCRAM Conference - Gothenburg, Sweden, May 2009.

[Jul07] Susanne Jul. Who is Really on First? A Domain-Level User, Task and Context Analysis for Response
Technology. In (B. Van de Walle, P. Burghardt, and C. Nieuwenhuis, editors, Proceedings of the 5th
International ISCRAM Conference - Delft, the Netherlands, May 2007.

[PAK07] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: executable specifications of interactive work
flow systems for the web. In Proceedings of the 12th International Conference on Functional Programming,
ICFP’07, pages 141–152, Freiburg, Germany, 1-3, October 2007. ACM Press.

[PAK08a] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. An introduction to iTasks: defining interactive
work flows for the web. In Selected Lectures of the 2nd Central European Functional Programming School,
CEFP’07, volume 5161 of LNCS, pages 1–40, Cluj-Napoca, Romania, 2008. Springer-Verlag.

[PAK+08b] Rinus Plasmeijer, Peter Achten, Pieter Koopman, Bas Lijnse, and Thomas van Noort. An iTask case
study: a conference management system. In Selected Lectures of the 6th International Summer School on
Advanced Functional Programming, AFP’08, volume 5832 of LNCS, Center Parcs “Het Heijderbos”, The
Netherlands, 19-24, May 2008. Springer-Verlag.

[PJKA08] Rinus Plasmeijer, Jan Martin Jansen, Pieter Koopman, and Peter Achten. Declarative Ajax and client side
evaluation of workflows using iTasks. In Proceedings of the 10th International Conference on Principles
and Practice of Declarative Programming, PPDP’08, pages 56–66, Valencia, Spain, 15-17, July 2008.

[PLZ09] Hans Peukert, David Lincourt, and Birgit Zimmermann. Support for agile planning & execution of
coordinated actions. In Proceedings of 14th ICCRTS C2 and Agility, 2009.

[SB09] Christian Sell and Iris Braun. Using a workflows management system to manage emergency plans. In
J. Landgren and S. Jul, editors, Proceedings of the 6th International ISCRAM Conference - Gothenburg,
Sweden, May 2009.

17

