Cover Page

15" ICCRTS

“The Evolution of C2”

Title of Paper

A Lightweight C2 Service Invocation Method
Based on HTTP Proxy

Topics
Topic 3: Information Sharing and Collaboration Processes and Behaviors
Topic 5: Experimentation and Analysis
Topic 9: C2 Architectures and Technologies

Authors
Heng Wang
Guangxia Zhou
Shuanghua Zhu
Feng Ding
Weitai Liang

Point of Contact

Heng Wang

Name of Organization

National Key Laboratory of Science and Technology on C*ISR

Address
Nanjing, Jiangsu Province, 210014, P.R. China

Telephone

(86)0139-1298-1215

Email
puchengew@yahoo.com.cn

A Lightweight C2 Service Invocation Method
Based on HTTP Proxy

Heng Wang, Guangxia Zhou, Shuanghua Zhu, Feng Ding, Weitai Liang
National Key Laboratory of Science and Technology on C*ISR, Nanjing, Jiangsu 210014, P.R.China

Abstract

SOA and Web Services technologies have been increasingly applied to network centric C2. In this
paper, a service-oriented C2 software architecture is firstly proposed based on SOA ideas and Web
services technology to provide framework and guidance to service integration in future service-oriented
C2 systems, in which software and capability of C2 systems often are wrapped web services so as to
implement C2 function and information exchanging through service invocation. Traditional WS
invocation is implemented through SOAP via HTTP. Due to security and efficiency problems about
SOAP/XML/HTTP, how to implement service invocation satisfying military requirement has become a
hotspot problem concerning future C2.

Usual methods solving the above invocation problems often have higher complexity, more
enormous load and longer develop cycle. Considering security requirement in military WAN
environment, a lightweight service invocation method based on HTTP proxy is proposed in this paper.
A HTTP proxy is deployed in border of LAN system, in which web services messages are intercepted
and SOAP is transported through transport protocol accorded with military standard instead of HTTP
in WAN. The experiments demonstrate that proposed method which can meet security and timeliness
requirements in military environment is effective and feasible.

Keywords: C2 service invocation; HTTP proxy; Service-Oriented Architecture (SOA); Web Services; C2
software architecture; Simple Object Access Protocol (SOAP); Lightweight; Network centric C2.

1. Introduction

With the developments in networking and network centric, more and more
applications need more flexible, agile and standard pattern to implement sharing
and collaboration among them. From software level, Service-Oriented Architecture
(SOA) [1] and Web Services (WS) [1,2] are such excellent technologies or
architectures that help people to realize above application needs. SOA is an
architectural approach and methodology that builds on the concept of services, and
is an architectural style that represents business functionality as
implementation-neutral, standards-based shared services. Web Services are a set of
open standards that implement the architecture of SOA and the idea of service.

Characteristics of loose coupling, location transparency, reusability for SOA and
characteristics of standardizing, opening for Web Services are consistent with
software integration and sharing demands for future network centric command and
control (C2) [4]. As a result, SOA and web services technologies have been
increasingly applied to network centric C2, for example, Joint Command and Control
(JC2) and Net-Enabled Command Capability (NECC). Moreover, U.S. DoD has taken
SOA and WS as technological standard or criterion in several major programs, such

as Global Information Grid (GIG) [5], Net-Centric Enterprise Services (NCES) [6],
and so on. Therefore, a service-oriented C2 software architecture is firstly proposed
based on SOA ideas and Web services technology, which can be used to provide
framework and guidance to service integration in future C2 systems.

In the above service-oriented C2 systems, i.e., on basis of the proposed C2 software
architecture, software and capability of C2 systems often are wrapped web services
(or other style services) so as to implement C2 function and information exchanging
through service invocation. Traditional web services invocation is implemented
through SOAP transported via HTTP. Due to some problems, such as unauthorized
access, interpolated and intercepted caused by SOAP message, XML efficiency and
security of HTTP and so on, these problems make web services invocation unfit for
operational requirements in next generation C2, especially concerning timeliness and
security. As a result, how to implement service invocation satisfying military
requirement has become a hotspot problem concerning web services in future C2.

Usual methods include modifying or rewriting SOAP, or amending based on
open-source web services productions. However, such methods have higher
complexity, more enormous load and longer development cycle. Considering
security requirement in military Wide Area Network (WAN) environment, a
lightweight service invocation method based on HTTP proxy is proposed in this
paper. A HTTP proxy is deployed in border of Local Area Network (LAN) system, in
which web services messages are intercepted and SOAP is delivered through
transport protocol accorded with military standard instead of HTTP in WAN. The
invocation efficiency experiments demonstrate that proposed method is effective and
feasible, and can meet security and timeliness requirements in military environment.

The rest of the paper is organized as follows. Section 2 gives the technologies that
are related to this paper. A service-oriented C2 software architecture is proposed in
Section 3. Section 4 describes our proposed service invocation method. Experiments
are carried out in Section 5. Section 6 concludes the paper.

2. Related work

2.1 SOA and Web Services

Firstly, we consider the conception of service. By service-oriented idea, a service is
a function that is well-defined, self-contained, and does not depend on the context or
state of other services. SOA is an architectural approach and methodology that builds
on the concept of services. Put simply, SOA spans both enterprise and application
architecture domains. The benefit potential offered by SOA can only be truly realized
when applied across multiple solution environments. This is where the investment in
building reusable and interoperable services based on a vendor-neutral
communications platform can fully be leveraged [1].

Web services (SOAP, WSDL, UDD], and the extended Web services specifications)
are a set of open standards that will lead to widespread adoption of SOAs and serve
as the basis for a new generation of service oriented development. WS are also a set
of operations, modular and independent applications that can be published,

discovered, and invoked by using industry standard protocols — Extensible Mark-up
Language (XML), Simple Object Access Protocol (SOAP), Web Service Description
Language (WSDL), and Universal Distribution Discovery and Interoperability
(UDDI). It is a distributed computing model that represents the interaction between
program and program, instead of the interaction between program and user. Web
Services can also be defined as discrete Web-based applications that interact
dynamically with other web services [3].
The architecture of WS is shown in Fig.1:

Publish

Di
iscover (WSDL. UDDI)

(WSDL. UDDI),

Service
Consumer

Bind/Invoke
(HTTP. SOAP)

Provider

Fig.1 The WS architecture

SOA based on Web services has the following advantages:

1) It is standards-based, meaning that the organization no longer needs to invest in
proprietary solutions, which create vendor lock-in.

2) It provides interoperability of solutions and allows you to mix and match
best-of-breed products from several vendors, which can reduce costs significantly.

3) It supports intra-organization integration and can be extended to provide
cross-organization and inter-organization integration.

2.2 Service Invocation for Web Services

In WS, service invocation refers to the whole process that web service requester
invokes the service provider deployed in the service runtime environment through
the web service client. Web service invocation can be used to support loosely coupled
interaction between services, and it is one of the key elements for web services. The
principle of service invocation for WS is shown in Fig.2.

XML Document
SOAP

Request Request
Service SOAP SOAP Service
Consumer Process HTTP Process Provider

esponse esponse

Service Run-time Environment APP Server +

(e.g, .NET, Websphere, ***) Service Run-time Environment

Fig. 2 The principle of service invocation for WS

Currently, commercial WS is often used to pass SOAP packets through HTTP
protocol, and XML is data encoding method of SOAP. The SOAP defines a common
format for XML messages over HTTP and other transports. SOAP is designed to be a

simple mechanism that can be extended to encompass additional features,
functionalities, and technologies. SOAP consists of the three major blocks, or parts of
SOAP messages: the envelope, the header, and the body. The envelope is required
and marks the start and the end of the SOAP message. The header is optional, and
can contain one or more header blocks carrying the attributes of the message or
defining the qualities of service for the message. Headers are intended to carry
contexts or any application-defined information associated with the message, such as
security tokens, transaction identifiers, and message correlation mechanisms. The
body is required and contains one or more body blocks comprising the message
itself.

2.3 HTTP Proxy

In HTTP proxy, as an application-level gateway, the proxy server plays the role of
the bridge between the client and the server. The clients or customers (such as IE,
Netscape) send all of their requests to the proxy server, and the proxy server can
listen to and receive the connection requests from clients. In the proxy server, a
customer’s identity information is verified firstly, then the customer's request data is
received, and the desired IP address and port of the server, the requested
documentation are parsed out. Next, the proxy server redirects to connect to the
destination server through their own Socket, delivers the customer's information to
the Web server, and returns the response coming from the Web server to the clients.
HTTP proxy server works as shown in Fig.3:

HTTP Proxy
Server

Client

1. Listen

2. Client request connection Web Server
- 3. Validate identity

4. Request webpage . Connect to the remote Web Server

> N

-
L

~
<6. Receive data from both sides, transpgrt to other sid%iffer the webpage data and respo}sk he;/ \

()

\

8. Disconnect 7. M nnect L / \
-

Fig. 3 HTTP Proxy Server

3. Service-oriented C2 software architecture

As we know, the increasing use of commercially supported open standards pushes
the information technology (IT) infrastructure from proprietary military solutions
towards SOA and Web Services [3]. As a result, the ideas and technologies SOA and
web services have been increasingly applied to network centric C2 systems, such as
JC2, NECC. In such service-oriented C2 systems, software and capability of C2
systems often are wrapped web services so as to achieve C2 function and information
collaboration through service invocation.

To meet the above needs and further be supported to network centric warfare
(NCW), combining with SOA ideas and Web services technology, we propose a
service-oriented C2 software architecture, called SO-C2SA. In detail, we take

"service" as the granularity of the C2 software architecture, and use a unified
description mechanism to achieve wrap of all kinds of C2 software services. Then,
exploit the concept of “service” to summarize elements of domain software and the
correlation between the elements, and achieve service combination and orchestration
based on process approach. Taking the mission capability packages (MCP) [7] for the
carrier of service capability, dynamically redistribute and reallocate operational
resource capabilities, so as to improve largely mission-oriented flexibility in NCW.
Service-oriented C2 system software architecture is shown in Figure 4:

Force Projection AirlSpace Operations Joint Fires & Maneuvers
Services Services Serviees 7
Situational Awareness IntelServices ExscutiveSummary ||

Sorvices Services

T

€2 Service Infrastructure
é C2 Support Services N
Process Mgt Alert Resource Mat User Mat Visualization
Services Services Services Services | | T Semvices
A ”
g €2 Common Services A
Report Mgt Entity Mgt Fusion Ocsanography
Services Services Services | | T Senlces

Global Information Grid
CES Infrastructure
5 ity Mediati: 2K B ging Service Collaboration
Services Services Services Discovery Senvices

i o

Computing Infrastructure

yymyonijsesju] sdoian

.

>
El

=
=

)

n

(=3
5
e
n
-
=
]
;]

Communications Infrastructure

Fig. 4 Service-oriented C2 software architecture (SO-C2SA)

The framework of our proposed software architecture is divided into three levels
from the bottom, the global information grid (GIG) [8] layer, C2 service infrastructure
layer, as well as C2 MCP layer. GIG provides the underlying infrastructures, such as
communication, computing, Core Enterprise Services (CES), information assurance
(IA) and network operations (NetOps) infrastructure, and so on. The most important
one is CES infrastructure which provides global, universal network centric service
capabilities, such as security services, mediation services, M2M messaging services,
service discovery, collaboration services, and so on.

C2 service infrastructure provides basic command and control service capabilities,
which is further subdivided into two layers: C2 common services layer and C2
support services layer. The lower layer (i.e., C2 common services layer) can provide
foundational and common C2 services, including locator services, report
management services, entity management services, fusion services, etc; the higher
support services layer provides support to the forming of C2 Communities of
Interest (Col), such as process management services, alert services, resources

management services, visualization services, and so on.

The top one is C2 mission capability package (MCP) layer, which is used to form
different applications-oriented or missions-oriented Cols according to different
operational missions, equaling the Internet Service Provider (ISP). Through the
development, wrapping and deployment of business services coming from all
Services and different domains, the services can be published to public as C2 MCPs
manner, so as to agilely respond to changing battlefield environment.

rv/Process Composition

e e _

Bridging/Agent

i Srv Discovery il
[esw | PR Z [storage.

— GIG CES
= I.’;:.“.:,:“.; j .= !]

Fig. 5 Mission-oriented C2 architecture application pattern

The above figure shows application pattern of the C2 architecture facing different
operational missions using our proposed architecture. Each layer in this architecture
may be dependent on different SOA technologies, and this architecture itself does not
restrict the use of specific technologies, such as Web Services, SCA Services [9],
Restful Web services [10], etc. Our proposed service invocation method in following
Section 4 is targeted at the popular Web Services.

4. Our proposed C2 service invocation method

4.1 Basic ideas

Based on the principle of HITTP proxy, a lightweight web services invocation
method is presented in this paper. The prerequisite of the proposed method is that
military LAN environment is considered secure, i.e., it is allowed to use some open
or standard transport protocols such as HTTP, whereas it must follow military
security standards and regulations, and use military transport protocols for
messaging in WAN environment. The basic principle of our proposed method is as
follows: in LAN, standard Web Services are used to messaging, i.e., SOAP via HTTP.
Then, we deploy HTTP proxy software at the boundary of the LAN to intercept

HTTP packets. The SOAP message in the HTTP packets is delivered in the WAN via
the military transport protocol satisfying military security requirements instead. At
the receiver end, the same HTTP proxy is used to convert and restore standard
invocation way (i.e., SOAP via HTTP) in LAN, so as to achieve the services
invocation. The proposed C2 service invocation method based on HTTP proxy is

shown in Fig.6:
XML Document XML Document

AN AN
SOAP SOAP
Request
Service SOAP SOAP Service
Consumer Process Process Provider
¢ espon e

Service Run-time Environment APP Server +
(e-g, NET, Websphere, --) Servnce Run-time Envlronment

Packet
containing SOAP
content

Military Transport Protocol

Axo01J JLIH
Axo1d JLIH

Fig. 6 Our proposed method

4.2 Detail implement

The core of our proposed C2 service invocation method is to develop the HTTP
proxy (including client and server) software.

HTTP proxy client and the service requester are deployed in a same LAN. HTTP
proxy client is mainly responsible for receiving the service request message (SOAP
via HTTP) from the service requester, parsing the request message, and forming into
the packets meeting military transport protocol. At the same time, it is used to
receive service message packets (including results of service request processing) from
HTTP proxy server end, and return the results to the service requester in standard
service invocation way.

HTTP proxy server and the service provider are deployed in a same LAN. The
process of HTTP proxy server is similar to HTTP proxy client. That is, it mainly
responsible for receiving service invocation messages (including service request)
from HTTP proxy client end, parsing the messages, and sending the service request
packets formed the original WS messages to the service providers. And, HTTP proxy
server returns the request results from the service provider to HTTP proxy client via
the military transport protocol.

The procedure of HTTP proxy is shown in Fig.7:

/WYF\ N
Service LA HTTP Proxy HTTP Proxy A A b\ Service
Consumer N \,l) Client Server w Provider
T

|
|
1. Deliver standard |
invoke packet based |
on SOAP+HTTP i
} 2. Analyze packet header of HTTP,
> record dest ip and port, generate new
! and bigger packet satisfying military
| needs, including standard SOAP and
HTTP original packet.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Deliver new packet via military i
transport protocol -~
|

|

|

|

|

|

|

|

4. Unpack, recover original SOAP
and HTTP packet and dest ip, port.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| 5. Set up TCP connection with srv |

|_provider according to req ip, send N
I original request packet (SOAP+HTTP) ~| 6. Process of

|

|

|

|

|

|

|

i

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

! .
I to srv provider by standard pattern. service request.

7. Return service process result

> 8. pack result information

9. Deliver packet via military
transport protocol

10. Unpack, recover service
process result.
11. Deliver process

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
| |
| |
| |
! result to consumer. |
| |
| |
| |

Fig. 7 The procedure of our proposed method

1). the standard invocation packets (SOAP) is delivered via HTTP;

2). at HTTP proxy client end, the packet header of HTTP is analyzed, and the
destination IP address and port are recorded here. Then standard SOAP and HTTP
original packet are packed to generate new packet satisfying military needs;

3). new packets are delivered via military transport protocol in WAN;

4). at HTTP proxy server end, the received packets are unpacked; the original
SOAP, HTTP packets and the information about destination IP address/port are
recovered;

5). HTTP proxy server is set up TCP connection with service provider according to
request IP address, and sends original request packet (SOAP via HTTP) to service
provider by standard WS pattern;

6). service request is processed at service provider end;

7). service process results are returned to HTTP proxy server;

8). HTTP proxy server packs result information to generate new packets;

9). the new packets are delivered via military transport protocol in WAN;

10). when HTTP proxy client receives the military packets, it unpacks these
packets and recovers service process result;

11). at last, the process result is delivered to consumer. The whole procedure
finishes.

5. Experimental Results

To verify the effectiveness and feasibility of the proposed method, we carry out
experiments about the efficiency of C2 service invocation in a mixed WAN and LAN
environments.

A C2 service named computing service for parameters of target trajectory is selected as
use case, developed by using BEA WebLogic, Java language. At the client end, client
program for service invocation has been developed by .NET tool, Microsoft Corp.
Both HTTP proxy client and server software are developed by Visual C++ 6.0.

In order to verify the feasibility of HTTP proxy, a method in which Socket is used
to transport message between two HTTP proxies is firstly implemented; then another
method is that Socket is replaced with military transport protocol to achieve the
messaging between two HTTP proxies. Therefore, there are three C2 service
invocation methods compared in this paper:

1) C2 service invocation not using HTTP proxy, i.e., the standard Web Service
invocation, called NO_PROXY;

2) Based on HTTP proxy, messaging between two HTTP proxies is implemented
by using Socket, denoted SOCK_PROXY;

3) Based on HTTP proxy, messaging between two HTTP proxies is implemented
by using military transport protocol, named MIL_PROXY.

The bandwidth of WAN and two LANs are 100Mbps. Hardware and software
configurations of experimental machines are shown in Table 1:

Tabel.1 Experimental environment and configurations

. HTTP Proxy -
Client - Application Server
HTTP Proxy Client HTTP Proxy Server
Computer DELL 9200 HP 4100 HP 4100 HP MS530
Hardware CPU: 3.0GHz CPU: 3.0GHz CPU: 3.0GHz CPU: Intel Core2 E6420
Memory: 2G Memory: 2G Memory: 2G Memory: 2G
oS Windows XP/SP2 Windows XP/SP2 Windows XP/SP2 Windows XP/SP2
IP Address 192.168.11.3 192.168.11.2 192.168.22.3 192.168.22.188
Client invoking srv; HTTP Proxy Client; HTTP Proxy Server; BEA WebLogic Server 9.0;
Software NET Container; BEA Web Services Container;
C2 Computing Service;

(1) Experiments about the total time of C2 service invocation

The total time of C2 service invocation is firstly recorded by using three ways,
respectively.

In NO_PROXY mode, the total time of C2 service invocation is shown formula (1):

T=T +T+T (1)

Cc—S S S—C

In other two proxy mode, the total time of C2 service invocation is computed by
using formula (2):

T=T +T +T 4T +T 4T +T)
C—Proxy_c = T proxy_c—>proxy_s = proxy_s—s s S—>proxy_s proxy _s—>proxy _c proxy _c—>c

where, ¢ denotes client/consumer that needs to invoke service; s denotes service

provider; proxy_c and proxy_s denote HTTP proxy client and server, respectively. T,

denotes the time of service processing at service provider end; T _, ~denotes the

time of transmission or processing from x to y, x or y may represents any of client,
service provider, HTTP proxy client, or HTTP proxy server.

In each invocation method, we record the average value of the total time of
invocation for 10 times, 50, 100, 200, 300, 500, 800, and 1000, respectively. The results
are shown in Figure 9:

45

I I
—A— NO-PROXY
—@— SOCK-PROXY
—— MIL-PROXY

401 - -~

Total Time of Invocation(ms)

|

|

|
| |
4
	L

10 50 100 200 300 500 800 1000
of Invocation

Fig. 8 A comparison on the total time of invocation of the different methods

It can be seen from the above figure that the performance of SOCK_PROXY is
almost equivalent with NO_PROXY, which shows HTTP proxy itself does not
consume too much time, and the approach based on HTTP proxy is feasible.
Replaced with military transport protocol, we can see that the performance of service
invocation gives slightly higher total time than other two methods, but within the
scope of tolerance. Reasons for the performance decline is mainly due to increasing
security process of military transport protocol.

(2) Experiment about the time in MIL_PROXY mode

In HTTP proxy using by military transport protocol, i.e., MIL_PROXY, we track
the total time of service invocation and the total process time of HTTP proxy client
for each invocation. Figure 6 shows the experiment results. We can see from the
figure that the difference between the two curves keeps consistent nearly, which
shows that the processing performance of the developed HTTP proxy is stable.

10

50

—@— Total time of invocation
—A— Total process time of client proxy

Time (ms)

Invocation

Fig. 9 The time results of MIL_PROXY

(3) Experiments about the quantity of data

In last experiment, we record the quantity of data (bytes) sent by the
client/consumer and server, respectively. The result is shown in Table 2. Note, the
results include the size of two packets (1%t and 2"9) of one request or response.

Table.2 The result of size of packet(Bytes)

NO_PROXY SOCK_PROXY MIL_PROXY
Client The size of request packet (1%) 407 407 474
The size of request packet (2n¢) 305 305 352
APP The size of response packet (1) 25 25 66
Server | The size of response packet (2n4) 572 572 617

It can be seen from the table that three methods have the same order of magnitude
about the quantity of data. The size of packet for SOCK_PROXY is equal to
NO_PROXY, and MIL_PROXY gives a slight more size of packet than other two
methods. This phenomenon is normal, because the characteristics of military
transport protocol decides that it will increase the quantity of transmission packet
than using Socket.

From the entire experiments, we can see that our proposed C2 service invocation
method based on HTTP proxy is simple, effective and feasible. Most importantly, it
can meet the security and real-time requirements in military environment. Therefore,
the proposed method is a lightweight approach implementing C2 service invocation
in applications of service-oriented C2 software architecture.

6. Conclusion

SOA and Web Services are more and more widely applied in C!ISR, especially in
network centric C2. So, how to achieve service invocation meeting the military
requirements to gain service capabilities on demand in network centric environment
has become a research hotspot concerning service technology. In this paper, a
service-oriented C2 software architecture named SO-C25A was put forward, and the
C2 service invocation issue was discussed in detail. Taking into account the security
requirements of military WAN environments and the current large-scale use of Web

11

Services, we presented a new lightweight C2 service invocation method based on
HTTP proxy. We deployed HTTP proxy software at the boundary of the LAN system,
and used it to intercept HTTP packets and SOAP messages. Then, the packets were
delivered via military transport protocol in WAN to implement the service
invocation. The experiments of invocation efficiency demonstrated that our proposed
method is simple, effective and feasible, and can meet the requirements of security
and timeliness in military environment.

References

[1] Thomas Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Prentice
Hall PTR, ISBN: 0-13-185858-0, 2005.

[2] Eric Newcomer, Greg Lomow, Understanding SOA with Web Services, Addison Wesley,
ISBN: 0-321-18086-0, 2004.

[3] Tolk, A.; Gaskins III, R.C. Challenges and Potential of Service-Oriented Architectures for
Net-Centric Operations. Meeting Proceedings RTO-MP-HFM-136, Paper 5. Neuilly-sur-Seine,
France: RTO. Available from: http://www.rto.nato.int/abstracts.asp. 2006.

[4] Wang, H., Ding F., Xu H. Feasibility Study on Building Military Grid Applications based
on SOA/Web Services. Fire Control and Command Control, 2007, 32(7): 69-72.

[5] UNCLASSIFIED Capstone Requirements Document (CRD), Global Information Grid
(GIG), U.S. Department Of Defense, 2001.

[6] Dawn Meyerriecks, Net-Centric Enterprise Services(NCES), The 3rd NCES
Workshop, http://www.afei.org/brochure/4AF9/Meyerricks Overview.pdf, May 2004.
[7] Shaffer G. R. Composing and Orchestrating Mission Capability Packages Through

Business Process Execution Language (BPEL). Command and Control Research and
Technology Symposium, 2004.

[8] Department of Defense Global Information Grid Architectural Vision, Vision for a
Net-Centric, Service-Oriented DoD Enterprise, v1.0, U.S. Department of Defense, June 2007.
[9] Service Component Architecture. IBM developerWorks,
http://www.ibm.com/developerworks/webservices/library/specification/ws-sca/?S_TACT=105
AGX52&S_CMP=cn-a-ws, 2005.

[10] Fielding R T. Architectural Styles and the Design of Network-based Software Architecture.

Doctorial Dissertation, Dept. of Computer Science, Univ. of California, Irvine, 2000.

Heng Wang received his B.E. degree in Computer Communication Engineering and
Ph.D. degree in Computer Science from Nanjing University of Science and
Technology, Nanjing, Jiangsu Province, China in 1999 and 2004, respectively. He is
currently a senior engineer in the National Key Laboratory of Science and
Technology on CYISR, Nanjing, China. His research interests include C!ISR system
software integration, information grid, information dissemination and QoS routing.

12

http://www.rto.nato.int/abstracts.asp.%202006
http://www.afei.org/brochure/4AF9/Meyerricks_Overview.pdf

	Abstract
	1. Introduction
	2. Related work
	2.1 SOA and Web Services
	2.2 Service Invocation for Web Services
	2.3 HTTP Proxy

	3. Service-oriented C2 software architecture
	4. Our proposed C2 service invocation method
	4.1 Basic ideas
	4.2 Detail implement

	5. Experimental Results
	6. Conclusion
	References

