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Abstract. This paper suggests an approach to formal software and system architecture specification based on behavior 
models. The behavior of the system is defined as a set of events (event trace) with two basic relations: precedence and 
inclusion. The structure of event trace is specified using event grammars and other constraints organized into schemas.  
 
The framework provides high level abstractions for analyzing system behavior properties expressed as computations 
over event traces. The automated tools can support extracting of different views from the model, and verification of 
behavior properties within a given scope. Advantages of this approach compared with the common simulation tools are 
as follows. 

 Means to write assertions about the system behavior and tools to verify those assertions. 
 Exhaustive search through all possible scenarios (up to the scope limit). The small scope hypothesis states 

that most of errors can be demonstrated on small examples. 
 The support for verifiable refinement of the architecture model, up to design and implementation models. 
 Integration of the architecture models with environment models for defining typical scenarios (use cases) and 

verifying system’s behavior for those scenarios. 
 

Keywords: system and software architecture models, architecture verification 

1. Introduction 
One of the major concerns in the design of complex engineered systems from a holistic 
perspective is the question of the behavior of the system. This behavior must be modeled and 
analyzed simultaneously from software, hardware, and human aspects with concurrent 
consideration of the environment in which the system operates. The development of executable 
architecture models can allow for the study of emergent behaviors through computational 
modeling and simulation during the earliest stages of conceptual design. Architecture 
development is done very early in both the software and system design process and is concerned 
with the high-level structure and properties of the system. Software architecture can be viewed as 
a level of design and modeling that forms a bridge between requirements and code [10]. System 
architecture can be seen as an initial level of design and system modeling that forms the 
fundamental basis for defining elements, including software, hardware, and humans, and their 
relationships to one another and their operating environment considering stakeholder concerns. 
The purpose of this research is to demonstrate that behavior models may be used as a basis for 
system and software architecture description, that structural and some other properties may be 
extracted from the behavioral specifications, and that this framework can be supported by 
automation tools for the validation and verification of the developed architecture models. The 
following aspects define the characteristics for architecture descriptions [9][1][15]. 
 
 An architecture description belongs to a high level of abstraction, ignoring many of the 

implementation details, such as algorithms and data structures. 

 Architecture plays a role as a bridge between requirements and implementation. 

 A system architecture model becomes the earliest form of the system structure, and is created 
so that stakeholders and designers can begin to reason about various proposed "to-be" 
alternatives. 
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 A system architecture model must allow for simulation in order to study behaviors and 
determine possible emergent properties. 

 An architecture specification should be supportive for the refinement process, and needs to be 
checked carefully at each refinement step (preferably with tools). 

 An architecture specification should support the reuse of well known architectural styles and 
patterns. Practice has provided several architectural styles and referential architectures, as well 
established, reusable architectural solutions. There should be flexible and expressive 
composition operators supporting the refinement process. 

 Software and system architects need a number of different views of the architecture for the 
various uses and users (including visual representations, like diagrams). 

In this paper we suggest a framework for system and software architecture specification called 
Monterey Phoenix. The main novelty of this work is in the method for system behavior modeling 
based on event traces, which provides a high level of abstraction for system architecture and its 
environment descriptions, supports stepwise refinement up to the detailed design models, and 
allows architecture reuse, composition, and tool use for sanity checks during the process. 
Executable system and software architecture models could be useful for early design error 
detection, system safety assessment, and preliminary performance estimates. 
 
The initial idea for this work was well received by the research community, and the first 
publications have appeared in renowned software engineering conference proceedings [4], and in 
a journal [5].  
 
2. Technical Approach  
 
The tools and methods developed within Monterey Phoenix project will provide a significant 
improvement in our ability to develop system architecture, and to verify and test requirements 
and design decisions early in the development process. The approach supports the design of 
automation tools for architecture verification and validation, and for architecture model reuse.  
 
The main objectives of this research work are: 
 To develop a new approach to software and system architecture formal specification based on 

behavior models. 
 To make architecture models executable on an abstract machine, so that it becomes possible 

early in the system development phase to do testing and verification of the top level system 
design. Typical properties that can be verified/tested within this framework include:  

a. Architecture’s behavioral properties, like event coordination, event patterns, and 
potential concurrency faults (deadlock, data race).  

b. Performance estimates (like latency, throughput, and delays).  
c. With behavior model enhanced with the event attributes it becomes possible to 

test/verify properties like security data flow, and covert channels [16][17]. 
d. Event trace models are also amenable for dynamic architecture specification. 

 To provide a method and tools for extracting multiple views from the architecture models, 
and corresponding visualization tools that can be customized to the user’s needs. 

 To provide the method for system stepwise refinement from the top level architecture models 
to the detailed design and implementation models, supported by tools for sanity checks and 
refinement consistency checks. 

 To provide formalism for specifying system’s environment models, based on the behavior 
modeling, so that the system architecture can be tested and verified in the interaction with its 
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2.1 Behavior Models and the Event Concept 

In a certain sense, software development is a process aimed at the design of a compact description 
of a set of required behaviors. The source code written in any programming language - a finite 
object by itself - specifies a potentially infinite number of execution paths. 

Our approach focuses on the notion of an event, which is an abstraction for any detectable action 
performed during the program execution, such as a statement execution, expression evaluation, 
procedure call, message transmission and reception, etc. An event has beginning, end, and 
duration, and usually corresponds to a time interval. This makes it more general neither the notion 
of point-wise events used in traditional simulation frameworks. 

Actions (or events) are evolving in time, and the behavior model represents the temporal 
relationship between actions. This implies the necessity to introduce an ordering relation for 
events. Actions performed during the program execution are at different levels of granularity, 
some of them including other actions, e.g., a subroutine call event contains statement execution 
events. This consideration brings inclusion relation to the model. Under this relationship events 
can be hierarchical objects, and it becomes possible to consider behavior at the appropriate levels 
of granularity.  

Two basic relations are defined for events: precedence (PRECEDES) and inclusion (IN). The 
behavior model of the system can be represented as a set of events with these two basic relations 
defined for them (event trace). Each of the basic relations defines a partial order of events. Two 
events are not necessarily ordered, that is, they may happen concurrently. Both relations are 
transitive, non-commutative, non-reflexive, and satisfy distributivity constraints. The following 
axioms should hold for any event trace. Let a, b, and c be events of any type. 

Mutual Exclusion of Relations 

Axiom 1)  a PRECEDES b  (a IN b) 
Axiom 2)  a PRECEDES b  (b IN a) 
Axiom 3)  a IN b    (a PRECEDES b) 
Axiom 4)  a IN b    (b PRECEDES a) 

Non-commutativity 

Axiom 5)  a PRECEDES b  (b PRECEDES a) 
Axiom 6)  a IN b  (b IN a) 

Irreflexivity for PRECEDES and IN follows from non-commutativity.  

Transitivity 

Axiom 7) (a PRECEDES b)  (b PRECEDES c)  (a PRECEDES c) 
Axiom 8)  (a IN b)  (b IN c)   (a IN c) 

Distributivity 

Axiom 9)  (a IN b)  (b PRECEDES c)  (a PRECEDES c) 
Axiom 10)  (a PRECEDES b)  (c IN b)  (a PRECEDES c) 
 
Event trace is always a directed acyclic graph. This concept of behavior modeling is one of the 
most distinctive novelty features of our approach. 
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2.2 Event Grammar  

The structure of possible event traces is specified by an event grammar. A grammar rule specifies 
structure for a particular event type (in terms of IN and PRECEDES relations). There are the 
following event patterns for use in the grammar rule’s right hand part. Here A, B, C, D stand for 
event type names or event patterns. 
 
Events may be visualized by small circles, and basic relations - by arrows, like 

 

IN 

PRECEDES 
 

1) Sequence denotes ordering of events under the PRECEDES relation. The rule A:: B C; means 
that an event a of the type A contains ordered events b and c matching B and C, correspondingly 
(b IN a, c IN a, and b PRECEDES c). A grammar rule may contain a sequence of more than two 
events, like A:: B C D; 

 
The rule A:: B C; specifies the following event trace. 
 

A 

B C 
 

 
2)  A::  (B | C); denotes an alternative - event B or event C. 
 
3) A:: (* B *); means an ordered sequence of zero or more events of the type B. Here is an 
example of an event trace satisfying this pattern: 
 

A 

B 
B 

B

 
The relations induced by the transitivity and the distributivity axioms are not explicitly shown in 
this and following pictures. 
 
4) A::  [B]; denotes an optional event B. 
 
5)  A:: { B, C }; denotes a set of events B and C without an ordering relation between them. 
 

C 

A 

B 
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6) A:: {* B *}; denotes a set of zero or more events B without an ordering relation between them. 
 
Extension (+ B +) may be used to denote a sequence of one or more events B, and  {+ B +} as a 
set of one or more events B. Together with (* … *) and {* … *} event patterns those may be 
useful for specifying dynamic architectures.  

2.3 Schema as a Behavior Specification for an Abstract Machine 

An abstract machine is a model of a software system. The behaviors of a particular abstract 
machine are specified as a set of all possible event traces using a schema. The concept of the 
Phoenix schema is inspired by Z schema [18]. The schema is similar to the fundamental 
architectural concept of configuration, which is a collection of interacting components and 
connectors, as introduced in [1]. A schema may define both finite and infinite traces, but most 
analysis tools for reasoning about a system’s behavior assume that a trace is finite. 

Specifying the PRECEDES relation for a pair of events in the schema is usually a substantial 
design decision, manifesting the presence of a cause/effect in the model or other essential 
dependency condition for these events. 

Some events appearing in the schema’s rule section at the left-hand side of the grammar rule are 
marked as root events. Usually root events correspond to the components and connectors in 
traditional architecture descriptions, while other event types are used to specify event structure 
and interactions. 
 
Example 1.  Simple transaction. 
A very simple architectural model contains two components TaskA and TaskB with a connector 
between them. The presence of a connector usually means that components can interact, for 
example send and receive a message, call each other and pass a parameter, or use a shared 
memory to deliver a data item. The schema Simple_transaction specifies the behavior of 
components involved in a single transaction. 
 
Simple_transaction 

root TaskA:: Send; 

root TaskB:: Receive; 

root Transaction:: Send Receive; 

TaskA, Transaction share all Send; 

TaskB, Transaction share all Receive; 

The rule section introduces root events TaskA, TaskB, and Transaction, while Send and Receive 
events are needed to specify the root event’s structure. The event type stands for a set of event 
traces satisfying the event structure defined for that type. The constraints section uses the 
predicate share all, which is defined as following (here X, Y are root events, and Z is an event 
type).  

X, Y share all Z  { v: Z | v IN X} = {w: Z | w IN Y} 

Event sharing in Phoenix plays the role of a synchronization mechanism similar to the 
communication events in CSP [11]. 
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2.4 Schema Interpretation 

Similarly as context-free grammars could be used to generate strings, event grammars could be 
used as production grammars to generate instances of event traces (or graphs). The grammar rules 
in a schema S can be used for the basic trace generation, with the additional schema constraints 
filtering the generated traces to a set of traces called Basic(S). The process of generating traces 
from Basic(S) defines the semantics of the schema S and could be specified in the form of an 
abstract machine. If such an abstract machine can be designed for a particular version of Phoenix, 
it becomes possible to claim that schemas are executable.  

The schema represents instances of behavior (event traces), in the same sense as a Java source 
code represents instances of program execution. Just as a particular program execution path can 
be extracted from a Java program by running it on the JVM, similarly a particular event trace 
from the Basic(S) can be extracted by running S on the Phoenix abstract machine, i.e. by 
generating a trace instance. 

Traces from Basic(S) can be refined by introducing additional events, event types, and basic 
relations between them, while maintaining the consistency with original trace’s constraints. 
Checking this property during the schema’s refinement process may be one of the main 
applications for formal methods and tools supporting the Phoenix framework. 

 Figure 1 renders the only event trace from the Basic(Simple_transaction). There may be other 
traces consistent with the structure imposed by the schema, for example, a trace with an 
additional relation TaskA PRECEDES TaskB, but those traces with redundant relations (or 
redundant events) not imposed by the schema are not accepted as members of the basic trace set 
defined by the schema.  

 

TaskA TaskB 
Transaction 

Send Receive

 

Figure 1. Example of event trace for Simple_transaction schema 

This example demonstrates that both a component and a connector within a model are uniformly 
characterized by the patterns of behavior; each of them is modeled as a certain activity using an 
event trace. Synchronization patterns may be specified using share all constraints.  

Alloy Analyzer [3] is a good candidate for implementing the Phoenix Abstract Machine. The 
following event trace for Example 1 was obtained by prototyping on Alloy Analyzer. The 
complete Alloy model for this schema can be found in the Appendix 1 in the paper [5]. 
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Figure 2. Example of event trace for Simple_transaction schema obtained on Alloy 
Analyzer. 

 

Example 2. Multiple strictly synchronized transactions (simple pipe/filter). 
 
Yet another semantics of the connector may assume that components are involved in a strictly 
synchronized stream of transactions, i.e., the next Send may appear only when the previous 
Receive has been accomplished. 

Multiple_synchronized_transactions 

root TaskA::  (* Send *); 

root TaskB::  (* Receive *); 

root Connector::  (* Send Receive  *); 

TaskA, Connector share all Send; 

TaskB, Connector share all Receive; 

 8



 
TaskA 

TaskB

Send 

Connector

Receive 

Receive 

Send 

 

Figure 3. Example of event trace for multiple synchronized transactions 

PRECEDES relations enforced by the transitivity are not shown. The Connector event represents 
the communication activity, and may be refined further to provide details of the synchronization 
protocol. 

2.5 Architecture Visualization and Views 

Different abstract views could be extracted from the Phoenix schemas. For example, let X and Y 
be the root events in the schema S, if there is at least one event trace in Basic(S), such that the 
predicate 

CONNECTED(X, Y)    a ((a IN X) and (a IN Y)) 

is true on that trace, then a dependency exists between events X and Y in terms of sharing an 
event. This may be a data item sharing event, or method’s call, or any other synchronized activity 
between X and Y captured by the schema model. The root events correspond to components and 
connectors, and usually are rendered as boxes in architecture diagrams. The dependency between 
them could be visualized by connecting corresponding boxes in the diagram. 

The architecture diagrams in Figure 4 (views of the static structure with respect to the root events) 
are extracted from behavior models in schemas Simple_transaction and 
Multiple_synchronized_transactions and are based on the CONNECTED predicate. 

 

T askA  T ran sactio n T askB  

S im p le_ tr ans actio n 

M u ltiple_ sy nch ro n ized _ tr an sac tio ns  

T askA  C on n ec to r  T askB  

 
Figure 4. Diagrams extracted from the schemas 
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Those models seem to be more abstract than corresponding schemas, and missing some details 
about the component’s interaction, but still may be of interest. This kind of abstraction is similar 
to a number of architecture description techniques currently in use.  

Defining appropriate predicates on the events in the schema and mapping those events and 
relations into different kinds of diagrams may yield multiple architecture views. The IN relation 
provides for choice of granularity in rendering the hierarchy of models. Event threads loosely 
coupled by synchronization events (event sharing) may be used to model the separation of 
concerns issues. It seems that this way of extracting views from the architecture descriptions 
could provide at least the logical, process, and scenario (or event trace) views as suggested in the 
4+1 view model [21]. 

2.6 Composition and Reuse 
 
Example 3. Compiler front end in batch processing mode. 
 
The simple model of lexical analyzer captures the behavior of the typical LEX machine.  
Lexer 
Input::   (* (Get_char | Unget_char)  *); 
Output::  (* Put_token *); 
root Processing:: (* Token_recognition *); 
include  Token_processing 
Processing,  Input   share all Get_char, Unget_char; 
Processing, Output share all Put_token; 
 
The root event is Processing, whereas Input and Output are auxiliary events to a large degree 
similar to the role concept in [2]. Their role is to define sort of pre- and post- conditions for the 
Processing component, formalizing our assumptions about input and output streams of events. 
These constraints should be checked for consistency when added to the schema. 
 
The structure of the Token_recognition event is defined in the schema Token_processing and is 
included (reused) in the Lexer schema. It refines the Lexer behavior toward the typical Unix/LEX 
semantics, when the regular expression in each LEX rule is applied independently, and hence no 
ordering is imposed. Each RegExpr_Match consumes one or more  Get_char events until all finite 
automata involved in the token recognition enter the Error state, then the winner is selected and 
all look-ahead characters beyond the recognized lexeme are returned back into the input stream 
by Unget_char; the Fire_rule event follows it. As a result of the include composition operation 
the root mark is deleted. 
 
Token_processing 
root Token_recognition:: {* RegExpr_Match *}   (* Unget_char *)  Fire_rule; 
RegExpr_Match:: (+ Get_char +); 
Fire_rule::   Put_token; 
all RegExpr_Match share all Get_char; 
|{x: Get_char | x IN Token_recognition}| > |{ y: Unget_char | y IN Token_recognition}|; 
 
The first constraint enables synchronization between a sequence of one or more consecutive 
Get_char and a single Put_token, which follows this Get_char group via the Fire_rule. The 
second constraint ensures that at least one character will be consumed. All those constraints are 
imposed on the Lexer’s behavior when the Token_processing schema is included. 
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The following schema provides a rough model of a bottom-up parsing with a stack (represented 
by Push and Pop events). 
 
Parser 
Input::   (* Get_token *); 
Output::   (* Put_node *);  
root Parsing::  Push  -- push the start symbol 
   (* Get_token (* Reduce *) Shift *)  [Syntax_error]; 
Shift::    Push ; 
Reduce::  (+ Pop +)  Push  Put_node; 
include  Stack; 

Parsing, Input     share all Get_token; 
Parsing, Output share all Put_node; 
Parsing, Stack   share all Pop, Push; 
 
Put_node events represent the construction of a parse tree. The behavior of the stack can be 
encapsulated for reuse in a separate schema and included in the Parser schema when needed. 
Stack behavior constraint will be inherited from the include operation. 
 
Stack 
______________________________________________________________________ 
root Stack_operation::  (*  ( Push | Pop )  *); 
______________________________________________________________________ 
x: Pop  ( |{ y: Push | y PRECEDES x}| > |{ z: Pop  | z PRECEDES x}| ); 
 
To merge both Lexer and Parser schemas into a single schema we need to tell how those 
components will interact. The following schema specifies batch processing. 
 
Batch_processing 
root Batch::   Produce_tokens  Consume_tokens; 

   Produce_tokens::    (*   Put_token  *); 
Consume_tokens::  (*   Get_token  *); 
_____________________________________ ________________________________ 
|{x: Put_token | x IN Batch }|  >=  |{y: Get_token | y IN Batch}| 

 
The ordering of Produce_tokens and Consume_tokens events in this schema ensures that 
production of the whole set of tokens will precede the consumption.  The constraint requires that 
the number of produced tokens is sufficient, although there is no specific requirement how the 
tokens are consumed (e.g. by storing them in the queue or on the stack). The composition of the 
component and the connector architectures is described by the schema composition operation 
merge. The result is a new schema Batch_parsing.  
 
Batch_parsing 
merge Lexer, Parser, Batch_processing ; 
 
Lexer,   Batch_processing share all   Put_token; 
Parser, Batch_processing  share all   Get_token; 
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The diagram on Figure 5 represents a simplified component/connector view of this architecture. 
 

Lexer/Processing

Batch_processing/Batch 

Parser/Parsing 

 
Figure 5. Diagram extracted from the Batch_parsing schema 

 
Example 4. Compiler’s front end in incremental mode. 
 
Yet another possible interaction is a mode in which the Parser requests the next token and triggers 
an event inside the Lexer, generating a token (the traditional LEX/YACC operation pattern). The 
schema Incremental represents this operation mode. The IN relation imposed here reflects the 
synchronization between events from the Lexer and Parser schemas involved in token 
request/delivery. In fact, the Get_token event is now refined with the Token_recogniton event. 
 
Incremental 
Get_token::  Token_recognition; 
 
The composition of components with another connector schema is done in the same fashion.  
 
Incremental_parsing 
merge  Lexer, Parser, Incremental; 
 
Lexer, Parser share all Token_recognition; 
 
The merged architecture defines a set of event traces where all structuring is inherited from 
Lexer, Parser, and Incremental schemas with the additional constraints for sharing the token 
processing events. The basic sanity checks for consistency of merged event sets (traces) may be 
reduced to standard regular expression equivalence and inclusion problems, and can be done by 
automated tools. 
 
The root events are inherited from all schemas. With the help of a CONNECTED predicate the 
root events  may be rendered in Figure 6 diagram. This time both Lexer and Parser components 
are interacting directly via the shared Token_recogniton event, and there is no connector box. 
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Lexer/Processing

Parser/Pars ing 

 
Figure 6. Diagram extracted from the Incremental_parsing schema 

 
The examples above demonstrate the architecture reuse. Tools like Alloy Analyzer [3] can be 
used for sanity checks to verify whether the merged schema still has trace instances. 

2.7 Event Attributes and Refinement 

At the top levels of architecture description schemas usually are focused on capturing event trace 
structure in terms of basic relations and event sharing (synchronization or coordination). With the 
progress of refinement the need to introduce more detailed view on data flow starts to appear. In 
order to specify meaningful system behavior properties events are enriched with attributes. An 
event may have a type and other attributes, such as event begin time, end time, duration, program 
state associated with the event (i.e. variable values at the beginning and at the end of event), etc.  

To manage event attributes the concept of special event is introduced. Typically it represents 
some operation with event attributes and is enclosed in a pair of symbols / and /. In addition there 
are special events that may influence structure of event trace for alternatives depending on 
conditions of certain event attributes, like 

IF (condition involving attributes) THEN E1 ELSE E2 

This special event refines on the event alternative (E1 | E2) by making the choice depending on 
the value of the condition. In a similar way the number of event iterations may be constrained by 
conditions involving attributes, like WHILE(condition involving attributes) (* E *). 

Special event is subjected to the basic relations IN and PRECEDES like any other event. The 
semantics of special events requires them to be executed in accordance to the PRECEDES. Thus 
if for special events S1 and S2 holds S1 PRECEDES S2 then S1 should be evaluated before S2.  

Example 5. Implementation model 

Phoenix emphasizes top-down design. Using special events and event attributes it becomes 
possible to refine schemas to the level when mapping into executable program becomes 
straightforward. 
 
Factorial_calculation 
______________________________________________________________________ 

root Main::  /enter (Factorial.input);/   Factorial   /print (Factorial.output);/ ; 

Factorial:: IF ( Factorial[1].input <= 1) THEN   /Factorial[1].output = 1;/ 

       ELSE   (  /Factorial[2].input = Factorial[1].input -1;/    Factorial 

             /Factorial[1].output = Factorial[2].output * Factorial[1].input;/ ) ; 
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The Factorial[1] denotes the first instance of the event Factorial in the rule, and Factorial[2] 
denotes the second instance of Factorial within the rule. This event grammar describes event 
traces (sequences of special events in this case) representing calculation of the factorial and 
depending on the attribute Factorial.input.  

 

2.8 System Environment Models 

Both behavior of the system and its environment can be modeled by separate event traces and 
merged together. This provides for verification and validation of the system’s interaction with the 
environment. 
 
Example 6. A model of a system interacting with the environment. 
 
The User schema represents the environment behavior in which the Calculator operates. 
 
User  
Use_calculator::          (* Perform_calculation *); 
Perform_calculation::   Enter_number   Enter_operator   Enter_number  Request_result; 
Enter_number::  (+ Press_digit_button +) ; 
 
The model of Calculator. 

Calculator  
Calculator_in_action::   (* Single_calculation *); 
Single_calculation::   Get_number  Get_operator  Get_number 
  IF (Get_operator.operation == ‘+’) THEN 
      / Single_calculation.result = Get_number[1].value + Get_number[2].value; / 
  ELSE 
      / Single_calculation.result = Get_number[1].value – Get_number[2].value; /  
  Show_result  ; 
Get_number::   / Get_number.value= 0; / 
  (* Get_digit   / Get_number.value = Get_number.value * 10 + Get_digit.value;/  *); 
Show_result::   /show_result(ENCLOSING Single_calculation.result);/ ; 
 
The Connection schema defines the interaction between the User and the Calculator by 
establishing a connection between events in the environment and in the system. 

Connection 
_____________________________________________________________________ 
Press_digit_button::   /Get_digit.value = Press_digit_button.value;/  Get_digit ; 
Enter_operator::   / Get_operator.operation = Enter_operator.operation;/  Get_operator; 
Request_result::   Show_result; 
 
The model of a calculator interacting with the environment: 
 
User_and_Calculator 
_____________________________________________________________________ 
merge User, Calculator, Connection; 
_____________________________________________________________________ 
User, Calculator share all Get_digit, Get_operator, Show_result; 
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2.9 Assertions about event traces and model verification 

 
The same formalism used to specify schemas could be used to specify assertions about event 
traces, and is amenable to applying tools to verify or refute those assertions. The spectrum of 
properties covers a broad range from purely structural properties (e.g. to assert that selected 
subset of events within trace is totally ordered) to more detailed assertions involving event 
attributes. Of special interest may be properties involving event’s timing attributes. Event 
duration and frequency estimates obtained from the model may be used to figure out throughput 
and latency estimates, in particular, when combined with the environment behavior models.  
 
Tools for assertion checking implement Phoenix schemas simulation and apply assertion 
checking to all traces up to a certain limit. The simulation approach to model verification is based 
on the “small scope hypothesis”[13] stating that that if an assertion is invalid, it probably has a 
small counterexample (“most bugs have small counterexamples”). We find an inspiration in 
the statement by D.Jackson: ”Exploiting tools to check arguments at the design and requirements 
level may be more important, and it is often more feasible since artifacts at the higher level are 
much smaller” [20]. 
 
Here are some concepts of the Monterey Phoenix language necessary for understanding the 
following example, which demonstrates that typical scenarios could be defined, and typical errors 
could be detected on a relatively small traces. 

Slices 

Slice is a set of concurrent events within the event trace (i.e. events that “may overlap”). The => 
operator here denotes PRECEDES relation. 
 
Concurrent(x, y) ≡  ¬(x => y) & ¬(y => x)  
 
But x and y may be under the in relation, or have common parent or common children events. 
 
Slice is a set of events from the event trace, such that 
 

x,y  Slice Concurrent(x, y) 
 

Slice may be empty, e.g. at the beginning or at the end of a composite event. 

When construct 

The When clause determines the structure of an event defined by the event grammar rule. It is 
similar in meaning to the exception handling construct in traditional programming languages like 
Java.  
 
E: P1 When {A => P2, B => P3}; 
 
Here E, A, B are event types, and P1, P2, P3 are event patterns. This grammar rule defines the 
structure of event E as following. The main alternative is defined by the pattern P1, although the 
actual structure may satisfy only initial (w.r.t. the PRECEDES relation) part of the pattern P1.  An 
event of the type A may appear after any Slice F of P1 (including the empty first slice). In this 
case the event E consists of: 

 all events in F and preceding events generated by the initial part of P1,  
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 event a of the type A, where all events x from F (and preceding events ) precede a, i.e. 
(x => a). 

 
Event a is followed by events satisfying pattern P2, and similar (and independent) structure is 
added for B and other When clauses (w.r.t. the same Slice F). 
 
Informally, this means that event A may be inserted at any time, and when it happens the 
“normal” event trace of E is interrupted and supplemented by A followed by events from P2 
(exception handling). 
 
Events A and B may be shared with other root events on the trace. The When clause corresponds 
to a transition triggered by message A from a composite state P1 to a state P2 in the Statechart 
language. 

Example 7.  A model of system interacting with its environment and assertions about the 
system’s behavior. 
 
There is one Generator supplying enough power for Radar and Weapon when both are deployed. 
The environment is represented by Enemy_missile which can hit any of Generator, Radar, or 
Weapon, causing termination of energy production or consumption, correspondingly. The 
Enemy_missile may be detected by Radar, which in turn activates the Weapon. The Weapon can 
hit or miss the Enemy_missile, when deployed. When Generator is hit by the Enemy_missile, 
then the deployed Radar, Weapon, or both get in the critical state of missing the power supply. 
The task is to find a scenario that leads to the critical state. 
 
Example_7 
_________________________ 
 
root Generator: (*  Idle    Generator_On  
    Generating  Generator_Off *) 
   When { Generator_hit =>  Generator_Off  
        Repair    
        Generator }; 
 
root Radar: (*  Idle    Radar_On  
   R
    When { Radar_hit => Radar_Off   

adar_Working  Radar_Off  *) 

      Repair   
      Radar     }; 
Radar_Working:  (* ( Target_detected | No_target ) *); 
Target_detected: Weapon_On; 
 
root Weapon:   Idle | (Weapon_On  Shoot Recharge) ) *) (* (
   When { Weapon_hit => Repair   Weapon }; 
Shoot:   ( Hit | Miss ); 
 
root Control: (*  Generator_On  Radar_On  Monitoring  
    Radar_off   Generator_Off *) 
   When { Generator_hit  =>  Generator_Off  
        Repair 
           Control , 
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      Radar_hit  =>  Radar_Off 
        Repair 
        Radar_On  
        Control }; 
 
root Enemy_missile: (* ( Approaching | Target_detected ) *) Boom 
    When { Hit => }; 
Boom:  ( Generator_hit | Radar_hit | Weapon_hit | Miss ); 
__________________________ 
 
Radar, Enemy_missile share all Target_detected; 
Radar, Weapon share all Weapon_On; 
Weapon, Enemy_missile share all Hit, Weapon_hit; 
Control, Generator share all Generator_On, Generator_Off; 
Control, Radar share all Radar_On, Radar_Off; 
(Generator + Radar), Control share all Repair; 
Control, Generator, Enemy_miss share all Generator_hit; ile 
Control, Radar, Enemy_missile share all Radar_hit; 
__________________________ 
 
Assertion 1. not exists Slice(Generator_off, Radar_Working); 
Assertion 2. not exists Slice(Generator_off, Weapon_On); 
 
The assertions above can be refuted on relatively small counterexamples of traces within a dozen 
events. The following counterexample for Assertion 1 has been found by Alloy Analyzer in less 
than 2 sec on iMac workstation with 2.8 GHz processor. 
 

 
Figure 7. The counterexample for Assertion 1 
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3. Conclusions and Future Work. 

Architecture modeling touches on the very fundamental issues in system and software design 
process and has substantial consequences for the next phases in system design. This paper is just 
a very preliminary sketch of some approaches to the problem. There are many threads of future 
research stemming from the ideas described above. Each of those will require significant 
investment into a rigorous design and experimentation. The following outlines several 
prospective directions to pursue. 
 
Schemas composition and reuse. 
A good catalog of typical architecture styles and templates (e.g. different specializations of 
broadcasting, pipe/filter, client/server, layered architectures) could provide the basis for 
automated code synthesis tools. This also requires an assortment of schema composition 
operators. Operations with schemas will need tools for simple sanity checks, trace instance 
generation, and refinement checking. 
 
Visualization and architecture views. 
Libraries of predefined predicates, functions, and tools to extract and visualize views are needed. 
 
Assertion checking. 
Since schemas are executable via event trace generation on the Phoenix abstract machine, it 
becomes possible to do some model testing with respect to the formal properties specified in 
Phoenix formalism.  
 
Throughput/latency estimate. 
Given duration and frequency estimates for events within components and connectors it becomes 
possible to estimate throughput and latency. 
  
Environment models and Business Process Models for System Engineering. 
Behavior of the environment may be modeled by event grammars [8] and merged with the system 
models. The result is amenable to the same kind of analysis and verification as a stand-alone 
architecture long before the detailed design and implementation of the system are available. The 
model of interaction between the system and its environment may be of special value for testing 
of reactive and real-time systems. This provides yet another aspect for the environment modeling 
as a part of systems engineering, supported by the integration of systems behavior models. 
 
Instances of event traces generated from such integrated schemas are known as use cases, and 
may be of interest by itself, especially if this activity is supported by appropriate visualization and 
analysis tools. 
 
Dynamic and evolving architecture 
Some of the presented event grammar patterns, like iterators, are useful for modeling dynamics of 
component/connector creation at the run time.  
 
To accomplish the goals stated above we plan the following tasks. 
 
1) First prototype design as a mapping from Phoenix to Alloy [3][13], as a feasibility proof. 
Obvious advantages: the full might of Alloy model building, ability to check assertions (specified 
in Alloy itself) and to provide counterexamples when assertions are violated, and Alloy's 
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impressive visualization tools. Results of these experiments will be used for the architecture 
formalism refinement. An example of such mapping is given in [5]. 
 
2) To reach the performance of several hundreds or small thousands of events per second, which 
is a reasonable estimate for a typical event trace when testing an architecture model, it is 
necessary to design an independent implementation based directly on trace generation from event 
grammars and constraints. As the assertion language, some variant of FORMAN (the language 
for computations over event traces based on event pattern matching [6][7][8]) will be developed. 
It will be useful to include also visualization tools for customized rendering of the event traces, as 
a reuse of advanced graph visualization tools developed for the Alloy. Our preliminary 
experiments with trace generation demonstrate that performance of 35000 – 75000 events/sec is 
feasible. 
 
3) The static verification tools. The encouragement comes from Allen & Garlan work on 
architecture connector protocol verification with the FDR/CSP [2], and Inverardy et al. with 
SPIN/Promela model checking tools [12][14]. We strongly believe that a reasonable subset of our 
architecture specification language is amenable to converting into the input language for a model 
checker tool like SPIN/Promela. 
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