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Abstract 

In modern shipboard C2 systems, the traditional tactical display is being replaced by the Maritime 
Tactical Picture (MTP) that integrates the output of sensor sources with geographic information, 
contact attribute data, and the wide area picture. The recognition process, whereby input data are 
processed to determine a contact’s identity within a classification hierarchy, is one of the key 
operational processes involved in the compilation of the MTP. The current paper describes 
challenges encountered and processes used for the design, development and evaluation of 
advanced recognition concepts for the HALIFAX Class frigate, developed under Command 
Decision Aid Technology (COMDAT), a Defence R&D Canada Technology Demonstration 
Project. Aspects of the work discussed in the paper include: the development of models of the 
information flows and decision processes used by the HALIFAX Class operations room team in 
performing contact recognition tasks; an assessment of where data fusion technology might 
provide the most effective support to operators; automated recognition capabilities based on the 
truncated Dempster-Shafer fusion of attribute data from ownship and remote data sources; user 
interface concepts and a concept of operations for operator involvement with automated 
recognition processes; and, measures and methods for assessing operator and system performance 
in carrying out recognition tasks. 

1. Introduction 

Shipboard command teams perform a continuous sequence of data and information processing 
tasks which together constitute a tactical decision loop. These tasks include: the integration of 
data from the ship’s sensors and other sources to compile a tactical picture of the situation; 
monitoring the tactical picture to assess threats; the identification and selection of courses of 
action in response to anticipated or actual threats to the mission, in accordance with rules of 
engagement; and action implementation once a decision to act has been made and is being carried 
out. In modern shipboard C2 systems, the traditional tactical display is being replaced by the 
Maritime Tactical Picture (MTP) that integrates the output of sensor sources with geographic 
information, contact attribute data, and the wide area picture. A timely and accurate integrated 
MTP is essential to provide the command team with as complete an understanding of the situation 
and threats as possible. 

As part of the Command Decision Aid Technology (COMDAT) Technology Demonstration 
Project, Defence R&D Canada (DRDC) carried out the demonstration of data fusion technologies 
and associated concepts for the development of an integrated Above Water Warfare (AWW) 
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Maritime Tactical Picture for the Canadian Navy’s HALIFAX Class frigate. The project focused 
on two key operational processes involved in the compilation of the MTP, tracking and 
recognition, and drew upon DRDC research programs in multi-source data fusion (MSDF) and 
human factors. The work conducted under COMDAT included research studies, the 
implementation of a sea-going testbed, as well as ship and shore-based experimentation.  

Using NATO terminology, the recognition process [ 12] involves the interpretation of data from 
sensor and information sources to determine the characteristics of a contact, which are compared 
against reference data. Contact characteristics or attributes may include physical attributes, such 
as size, dynamic attributes, such as course, speed, or altitude, relational attributes such as 
movement history relative to geographic features or other platforms, emission attributes such as 
detected radar, radio, or acoustic emitters, as well as recognition attributes, such as platform type 
or flag. A contact’s recognition is a declaration about its identity within a classification hierarchy 
and normally includes an associated level of confidence. Recognition can range from general (for 
example, surface platform) to specific (ship name) and is usually determined both by operational 
requirements and by data availability.  

A process closely related to recognition, identification [ 12], includes the assignment of a standard 
identity to a contact (from the set: hostile, suspect, unknown, neutral, assumed friend, friend). 
Identification was addressed to a lesser extent as part of the COMDAT project but is not a focus 
of this paper. 

The multi-source data fusion community has developed a variety of techniques (set theoretic, 
probabilistic, evidential reasoning, rule-based) that have been applied to aspects of the 
recognition process in the military domain. These techniques can be broadly categorized as 
normative (recognition decisions are based on a set of formal criteria) or descriptive (attempts to 
emulate human decision making) [ 1]. Prior to the initiation of the COMDAT project, DRDC, 
together with Canadian industry, had conducted research demonstrating the potential utility of 
Dempster-Shafer evidential reasoning algorithms (a normative technique) for automated 
recognition in the maritime domain (e.g. [ 19,  15]). These algorithms work in conjunction with 
other MSDF system functions for data association and kinematic fusion. 

In contrast, relatively little work had previously been conducted on how best to integrate 
technologies, such as MSDF, into the shipboard environment. Although the algorithms had been 
tested extensively, most of the evaluations involved simulated sensors in a relatively benign 
environment. Also, at the time that the COMDAT project was initiated, the recognition and 
identification processes were carried out almost entirely by the human operator. Thus, it was 
anticipated that the Navy could face several challenges in an attempt to transition these  
automated recognition algorithms, which involved little or no human interaction in their 
processing, from the laboratory to a more realistic shipboard Command and Control system 
environment, including:  

 understanding how the recognition algorithms would enhance the decision processes used 
by operations room personnel; 

 the integration of the technology into the work processes of operational personnel 
carrying out recognition tasks so as to gain operator acceptance;  

 the requirement for the algorithms to handle input data that was often incomplete, 
unreliable, ambiguous, or conflicting;  and 

 the limited availability of facilities and military test subjects to evaluate the technology 
using realistic scenarios. 

The following sections of this paper describe in more detail the challenges encountered and 
processes used for the design, development and evaluation of advanced recognition concepts 
developed under the COMDAT project. Aspects of the work discussed include: models of the 
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information flows and decision processes used by the HALIFAX Class operations room team in 
performing contact recognition tasks; an assessment of where data fusion technology might 
provide the most effective support to operators; automated recognition capabilities based on the 
truncated Dempster-Shafer fusion of attribute data from ownship and remote data sources; user 
interface concepts and concept of operations for operator interaction with automated recognition 
processes; and, measures and methods for assessing operator and system performance in carrying 
out recognition tasks.  

2.  Models of the information flows and decision processes used by the HALIFAX 
Class operations room team in performing recognition tasks 

For reasons such as the complexity of the shipboard C2 environment, technological limitations 
and the need to adopt a human systems integration perspective, MSDF technologies must, for the 
foreseeable future, be integrated to assist, not replace, operators in performing their picture 
compilation processes. This required conducting work in COMDAT to develop an in-depth 
understanding of those processes. In addition to consulting current doctrine on picture 
compilation processes, knowledge elicitation sessions were conducted over two days with two 
sub-teams of key operations room personnel from the command team and various sensor 
operators. 

Subject Matter Expert (SME) interviews focused on Above Water Warfare (AWW). Knowledge 
elicitation interviews were conducted in three phases: 

1. A structured interview with a number of pre-determined but open-ended questions 
surrounding the detect-to-recognize (D-R) process for contacts. 

2. A structured interview in which the SMEs were presented with a list of contact types and 
asked to describe the process by which the team might detect the contact and subsequently 
arrive at a recognition or identification. 

3. A case study approach, using the Critical Decision Method (CDM) [ 7], that was intended to 
focus the team on one critical incident in order to gain more insight into problem solving and 
decision making for non-routine cases. 

These interviews helped to highlight situations where recognition and identification (R/ID) are 
more challenging for operators. Examples include multi-threat environments, in which the team 
must regularly switch their focus of attention as they build both the air and surface pictures 
simultaneously, and complex surface picture scenarios. SMEs specifically described the 
difficulties in regaining awareness of the ‘big picture’ following a period of focusing on a 
particular contact, such as recognizing and identifying an enemy that is hiding amongst a fishing 
fleet. Discussion in the second of the three phases in the knowledge elicitation interviews also 
provided useful insights into the potential utility of data fusion technology in operator D-R 
processes (see Section 4). The SME data was used to conduct two types of analysis, a descriptive 
analysis and a formative analysis. We now discuss these two types of analysis. 

In the descriptive analysis, data collected from the knowledge acquisition process was 
documented in a series of tables, and/or flow diagrams, for D-R event sequences for specific 
critical types of contact. The general intent of this approach was to tap into many different 
dimensions or aspects of these event sequences, including: 

 The timeline 
 The flow of data 
 Communications 
 Decision points 
 Actions/tasks of different operations room team members 
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 Information used 
 Sources of information and their associated uncertainty 
 Operator strategies 
 Operator assessment of potential utility and role of data fusion functionality. 

The different graphical techniques for representing the data compiled included: information flow 
and processing analysis diagrams [ 13] to illustrate the sequential steps involved in decision 
making (e.g., what options are considered, who makes the decision, and what are the 
consequences); timeline diagrams to depict the sequence of tasks performed by team members 
along a common time base; and flow sequence diagrams of critical D-R tasks for key operator 
positions in a HALIFAX Class operations room. 

Although the various descriptive analyses provided the basis for a user-centred investigation of 
ways to incorporate data fusion technologies into current operations room D-R processes, a 
second approach, based on a formative analytical approach, was also implemented. The goal of 
the formative analysis was to model R/ID processes from a perspective that would provide 
designers with a broader functional perspective of how R/ID could be done (as opposed to how it 
is currently done), thereby providing a design lens that would not be unnecessarily clouded by the 
current process views. One analytical framework that adopts that particular perspective is 
Cognitive Work Analysis (CWA) [ 13]. CWA focuses on analyzing constraints that shape work, 
thereby delimiting both current work trajectories, as well as work trajectories that are difficult to 
specify a priori (e.g., as a result of integrating new technologies in the work environment). 
Although, a full CWA would have involved conducting five separate phases of analysis, we 
concentrated on one specific phase, a Control Task Analysis, with the specific goal of developing 
a formative model of the cognitive activities involved in performing R/ID processes. 

R/ID a surface contact

Manage the recognition and standard 
identification (R/ID) of AWW contacts in 

accordance with mission goals

R/ID an air contact  

Figure 1. Functional hierarchy of R/ID functions. 

Figure 1 shows the functional hierarchy used to separate out the information processing activity 
related to recognizing and identifying individual contacts from the information processing 
activity related to managing all of the streams of R/ID activity in accordance with mission goals. 
This latter type of information processing activity would be associated with any of the following: 
prioritizing, timesharing, or scheduling the R/ID processing of individual contacts; changing 
processing focus among individual contacts or warfare areas; dealing with multiple contacts in 
one or more AWW warfare areas that compete for R/ID processing; or adapting the R/ID activity 
of individual contacts based on factors such as context, a contact’s tactical importance, workload, 
and requests or commands from superiors. The representation of the R/ID of air and surface 
contacts as separate activities reflects the greater complexity of surface picture compilation 
relative to air picture compilation as was highlighted in the knowledge elicitation interviews. 
Analysis of the recognition and standard identification processes for air and surface contacts was 
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based on developing information processing activity models for each of the node functions of the 
functional hierarchy shown in Figure 1. 

The specific information processing activity models developed were three decision ladder (DL) 
models, one for the function “Manage R/ID of AWW contacts in accordance with mission goals”, 
and one for each of the two sub-functions: “R/ID an air contact” and “R/ID a surface contact”, 
shown in Figure 1. The generic DL model template, shown in Figure 2, was used to parse the 
information processing associated with a function according to an opportunistic, contextually 
tailored collection of data/information processing activities (represented by rectangles) and states 
of knowledge (represented by circles or ellipses). The template provides for eight types of 
information-processing activity and a corresponding number of types of states of knowledge. It 
also supported the representation of some aspects of expertise or adaptive information processing, 
associated with a work function, that are the result of characteristics of the decision-making 
context in which the function is performed (e.g., time pressure, uncertainty, information 
availability, information quality). This is done by indicating various shortcuts from one part of the 
ladder to another, including shunts that connect an information-processing activity to a state of 
knowledge, and leaps that connect two states of knowledge. 

Possible target states
for system

System
state

Data/information

Selected
goal

Target
state

ProcedureAlert

Task

Evaluate system performance
with respect to goals & performance criteria

Formulate procedure

Determine system state

Perceive/observe data/information

Define task

Execute

Interpret/predict consequences of
system state/selected goal

Activation

Shunt
Leap

Rectangles: 
Data/information 
processing activities

Circles or ellipses: 
States of knowledge 
resulting from 
data/information 
processing activities

Leap

Shunt

Preset response

Possible target states
for system

System
state

Data/information

Selected
goal

Target
state

ProcedureAlert

Task

Evaluate system performance
with respect to goals & performance criteria

Formulate procedure

Determine system state

Perceive/observe data/information

Define task

Execute

Interpret/predict consequences of
system state/selected goal

Activation

Shunt
Leap

Rectangles: 
Data/information 
processing activities

Circles or ellipses: 
States of knowledge 
resulting from 
data/information 
processing activities

Leap

Shunt

Preset response
 

Figure 2. Generic Decision Ladder template (Adapted from [ 21].) 

The formative modeling approach provided a very coherent and detailed cognitive description of 
the recognition and identification processes, including the management of those processes, and 
specific information used at each step of the process, together with the sources of that 
information. The analyses showed in a generic sense which processes are required and their 
associated decisions, as well as which could be skipped over (shortcuts) in conducting R/ID. The 
formative nature of the analyses permits developing an understanding of what generic support 
could be provided in the future to enhance the HALIFAX Class Command and Control system. 
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However, for detailed system design work, the Control Task Analysis will need to be augmented 
by additional types of work analyses (e.g., a formative organizational analysis to identify new 
ways of allocating information processing roles and knowledge states in the DLs across the 
operations room team) as design options are considered for augmenting capability by 
incorporating data fusion technology. 

3.  Automated recognition capabilities based on the truncated Dempster-Shafer 
fusion of attribute data 

The implementation of an automated recognition capability within the COMDAT testbed’s 
MSDF subsystem is based on a computationally-efficient variant of Dempster-Shafer (D-S) 
evidential reasoning, termed truncated Dempster-Shafer [ 19,  15]. D-S evidential reasoning is a 
generalization of Bayesian subjective probability that supports the representation and 
combination of evidence from multiple sources. D-S has been widely used as a method for 
handling uncertain, incomplete and/or conflicting information based on characteristics that 
include: an explicit representation for ignorance; no requirement for prior probabilities; and, the 
assignment of evidence directly to sets. Using D-S, the recognition domain is defined in terms of: 

 a frame of discernment Θ, comprised of n air and surface platforms, at a recognition level 
of ship class or aircraft type (for example, HALIFAX Class ship or F-18 aircraft), and 
stored in the MSDF subsystem’s  platform database (PDB);  

 a set of propositions, {Pi}, each of which corresponds to a subset of the platforms in Θ, 
and which includes the null proposition  (representing the set of no platforms) and the 
ignorance proposition Θ (representing the set of all platforms); and, 

 a basic probability assignment (BPA) that assigns a mass m(Pi) to each proposition, the 
mass representing the degree of belief accorded to a proposition.   

For each track processed by COMDAT’s MSDF subsystem, D-S is used to maintain a set of 
propositions and associated masses, which together represent the track’s recognition estimate. In 
theory, D-S may generate each of the 2n possible propositions in the frame of discernment (which 
for even a modest database of 100 platforms would exceed 1030 propositions). However, in order 
to achieve a feasible implementation of a real-time automated recognition capability, only a user-
defined maximum number of propositions is maintained (typically eight, in the case of 
COMDAT), using the truncated D-S algorithm. This reduced set of propositions and associated 
masses is termed a proposition set. More detailed descriptions of the truncated D-S algorithm and 
D-S evidential reasoning are presented in [ 15,  19,  3,  20]. 

The COMDAT testbed processes data from a subset of available ownship sensors (medium-range 
and long-range radars, IFF, ESM) and remote data sources (Link-11 and Global Command and 
Control System – Maritime (GCCS-M)). A representative set of data attributes that are input from 
these sensors and sources is summarized in Table 1. The attributes Type, Ship Class, and Country 
are recognition attributes, with Type encompassing recognition levels  from a general category 
(e.g., air, surface) to a more specific platform type (e.g., bomber, destroyer) and Ship Class (e.g., 
HALIFAX, AEGIS) being at the recognition level of the frame of discernment. Allegiance is an 
identification attribute (e.g., Friend, Neutral), with IFF and ESM sensors providing values based 
on contact measurements and Link-11 and GCCS-M providing off-board identification 
assessments. Frequency and Speed differ from other attributes in that they are continuous-valued, 
rather than having discrete values. The Speed attribute is derived from MSDF track kinematic 
estimates and the source for this attribute is indicated accordingly as ‘MSDF’ in Table 1. The 
COMDAT testbed, as a concept demonstrator, is not designed to process all of the operational 
inputs to the recognition process, including, for example, relational attributes. Implications of this 
limitation are discussed in Sections 4 and 5.  
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Source Type Ship 
Class 

Allegiance Country Emitter Freq Speed 

Radar X       
IFF   X     
ESM X  X  X X  
Link-11 X  X   X  
GCCS-M X X X X  X  
MSDF       X 

Table 1. Summary of attribute data processed by COMDAT’s MSDF subsystem. 

The three primary functions that make up COMDAT’s automated recognition capability are 
identity alignment, identity update, and identity output. Identity alignment converts raw attribute 
data from input reports into D-S proposition sets, termed input proposition sets. For an input 
attribute with discrete values, a typical input proposition set has two elements: a proposition 
corresponding to the attribute’s value, with a mass based on a general assessment of the accuracy 
and reliability of the sensor; and an ignorance proposition that is assigned the remainder of the 
evidence. As an example, the attribute value Type = Air is translated into an ‘Air’ proposition 
which represents the set of PDB platforms which are of type ‘Air’. The Air proposition might 
then be assigned a mass 0.8, and the remaining mass of 0.2 is assigned to ignorance. The result is 
the input proposition set {(Air, 0.8), (Θ, 0.2)}. Continuous-valued attributes, such as speed and 
frequency, are first converted to discrete values using a fuzzy set-based approach. 

Identity update updates an MSDF track’s proposition set with evidence provided by input 
proposition sets, using Dempster’s rule of combination. Given information from two sources of 
evidence, characterized by BPAs m1 and m2, Dempster’s rule defines the new BPA m3  
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where the conflict κ, which quantifies the degree to which two BPAs are contradictory, is defined 
by  
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The factor 1/(1-κ) in Dempster’s rule re-normalizes the BPA by redistributing the conflicting 
belief over the non-null propositions. Identity update may result in the creation of new 
propositions. Consequently, truncation rules are applied after each execution of Dempster’s rule 
to control the size of the proposition set. 

Identity output generates two categories of output data for use by the operator: generic 
propositions, which are analogous to the terms in a recognition hierarchy; and specific 
propositions, which are the elements of the proposition set. COMDAT generates generic 
propositions at two recognition levels: Category, from the set {Air, Surface, Subsurface}, and 
Sub-Category, from the set {Missile, Helicopter, Fighter, Bomber, Commercial Air, Carrier, 
Cruiser, Destroyer, Frigate, Fishing Boat}. The level of confidence in each generic proposition is 
calculated based on the D-S concept of Belief, defined as the sum of the mass assigned directly to 
a proposition and to all of its subsets.  Several alternative display concepts used for displaying 
generic propositions are possible including: displaying all members of the proposition set along 
with associated belief values; displaying only the proposition having the highest belief, and its 
associated belief value; displaying only the proposition having the highest belief, and then only if 
its belief exceeds a threshold value. The latter concept is currently implemented in COMDAT. 
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The above functions are performed in conjunction with MSDF subsystem functions for data 
association and kinematic fusion. It is important to note that identity update assumes the correct 
assignment of input reports to MSDF tracks, as determined by the data association function. 

One of the key challenges in implementing an automated recognition capability has been to 
provide accurate and reliable recognition estimates in spite of possibly conflicting and dependent 
input attribute data.  Sources of conflicting data in the recognition process include spurious input 
reports that are inserted into the recognition process; inconsistencies between the attribute data 
contained in input reports and the content of the PDB; and basic errors in the attribute data 
received from input sources. An extreme example of conflicting data would be one sensor report 
that asserts a contact is an aircraft and a second sensor report that asserts the same contact is a 
surface ship. Dependent data violate one of the key assumptions of D-S theory, that each input 
proposition represents an independent piece of evidence. If dependencies are ignored, the 
accuracy of the beliefs assigned to competing recognition propositions may be affected.  
Independence assumptions can be violated by input reports that contain multiple attributes, but 
which may or may not be derived from independent measurements, and by multiple input reports, 
having different timestamps, but containing one or more of the same attribute values. 

Errors in the data association process can also negatively impact recognition by inserting spurious 
and potentially conflicting attribute data - originating from contacts other than the contact 
undergoing recognition - into the identity update function.  Conversely, the presence of 
conflicting recognition data can be used as an indication that information items do not originate 
from the same source (based on the assumption that if different input reports do originate from 
the same real-world object, and if that object’s recognition is static, then the input reports’ 
recognition-related attributes should be consistent). In COMDAT, the conflict κ is used as one of 
three constraints within the data association process (the other two constraints being a traditional 
kinematics-based likelihood function and a constraint based on track number). Using D-S conflict 
as an association criterion has proven to be beneficial in improving data association performance, 
particularly in situations such as closely spaced or crossing contacts, where kinematic constraints 
alone may be insufficient to make high-confidence association decisions. 

In identity alignment, the translation of input attribute data to input propositions is achieved using 
the a priori knowledge of the expected attribute values for each platform, which is stored in the 
PDB. However, this process will generate conflict, in the form of null input propositions, if there 
are no PDB platforms that match an input report’s attribute values. The underlying cause for this 
type of mismatch can lie with the input source (for example, if there are errors in the input data), 
with the translation between attribute values used in input reports and the attribute values in the 
PDB,  or with the content of the PDB (for example, if the PDB is incomplete or contains incorrect 
data values). The translation between input report and PDB attribute values can be particularly 
complex, because it must be performed independently for each input source, and then can be 
complicated further by factors such as attribute values with alternate names (an example being the 
HALIFAX Class, which has the alternate name, Canadian Patrol Frigate).   

The identity alignment process is further complicated in the case of input reports containing 
multiple attributes. If attributes are assumed to be dependent, as can be the case for input reports 
from remote data sources, it is appropriate to generate a single proposition set, based on the 
intersection of the individual attributes’ values. This approach will generate null propositions if 
two or more of the input attributes are in complete conflict and will have the unwanted effect of 
discarding the attribute data contained in the input report.  

D-S has been demonstrated to provide some tolerance to the occasional piece of conflicting input 
data. Through the use of Dempster’s rule, conflicting data can be accommodated via the 
ignorance proposition Θ: as long as an input proposition set has a non-zero mass assigned to Θ, it 
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will never be entirely in conflict with an existing recognition proposition. However, if the conflict 
is large, significant changes in proposition masses can result from the re-normalization process. 
This can result in undesirable effects, such as oscillations in the belief between competing 
propositions [ 20]. The truncated D-S algorithm, which maintains a minimum level of ignorance 
in the recognition proposition set, bounds the possible level of conflict and is able to recover 
more quickly from the effects of a conflicting data input than the conventional D-S algorithm [ 3]. 

In order to better understand options for improving the identity alignment process, a study [ 4] was 
conducted to compare the effect of different independence assumptions and evidence 
combination methods on the identity alignment of both conflicting and non-conflicting multi-
attribute input reports. In addition to Dempster’s rule, other evidence combination methods 
included: five rules based on Dempster-Shafer Theory (Yager’s [ 22], Smets’ [ 18], Dubois and 
Prade’s [ 6], Murphy’s [ 11] and the Disjunctive [ 5] rule); two rules based on Dezert-Smarandache 
Theory (DSmT) [ 17]; the Taxonomy method [ 16]; and a method, termed Best Intersection [ 4], 
proposed during the implementation of COMDAT. The other Dempster-Shafer based rules differ 
from Dempster’s rule in their approach to how conflicting evidence is handled. For example, 
Yager’s rule transfers conflict to the ignorance proposition, whereas Dubois and Prade’s rule 
transfers conflict to the union of the conflicting propositions. In the case of independent 
attributes, the study indicated that the standard combination of data using Dempster’s rule is 
adequate. In the case of dependent attributes, the study indicated that: 

 treating dependent data as independent (combining attributes using Dempster’s rule) 
results in over-confidence in the resulting beliefs; 

 the decision as to which data to combine is more important then the choice of evidence 
combination method. The study proposed a heuristic that the minimal set of independent 
and conflicting data be selected for combination; 

 the choice of evidence combination rule is not significant when conflict is small; 

 the Taxonomy, Dubois and Prade’s, and DSmT rules provide more accurate results in 
cases of highly conflicting evidence; but, 

 taking into account efficiency and ease of use, Dempster’s rule is recommended for 
overall use, based on the use of the data selection heuristic. 

Various methods have been devised to modify the identity update process to handle dependent 
data resulting from repeated attribute measurements. As a starting point, each MSDF track can 
store a record of the input source for each reported attribute and then use this information to filter 
out duplicate attribute measurements. However, filtering out all duplicate attribute measurements 
has the disadvantage of making the recognition process vulnerable to random errors in received 
attribute values. A second approach, described in [ 2], allows multiple attribute measurements 
from the same sensor, but only if they are well enough separated in time to be considered 
independent. COMDAT implements a variant of this approach, termed the consecutiveness 
criterion. A third approach, also implemented in COMDAT, allows multiple attribute 
measurements from the same source but only while the conflict exceeds a user-defined threshold.  

4.  Assessment of the potential role of an automated evidential reasoning capability 
to support recognition tasks 

A significant outcome of the various analyses described in Section 2 was the development of a 
Concept of Operations (CONOPS) and Operator-Machine interface (OMI) for an automated 
decision support capability based on incorporating D-S algorithms (see Section 5). In COMDAT, 
the analyses helped to focus design attention on the work operators face in performing their 
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recognition tasks. One specific way in which this was done was to look more generally at the role 
of evidential reasoning in the D-R processes that operators currently engage in when processing 
contacts. 

By evidential reasoning we mean the process of examining individual and multiple pieces of data 
to determine what information content they collectively provide to make as complete a 
recognition of a contact as possible. In general, as attribute information is acquired on contacts, 
operations room team personnel make a number of recognition decisions, such as: “Is the contact 
an air or surface contact?”, “Where is the contact?”, “What is its IFF, altitude, etc.?”, “Have I 
seen this before?”, “Do I have information to expect something?” D-S functionality in COMDAT 
(as described in Section 3) represents a particular scheme for effecting automated evidential 
reasoning. 

While the analysis of operators’ recognition processes provided evidence of evidential reasoning, 
comparative assessments of the nature of this processing with automated reasoning algorithms 
suggested a limited number of operational situations where such functionality could be especially 
beneficial. Such situations included circumstances around a saturated air attack where the ability 
of the team to identify and recognise contacts of interest could be compromised, such that data 
queues start to form. In such cases, it is possible that an automated evidential reasoning capability 
could usefully enhance the performance of the team by automatically processing the data 
available to make recommendations about recognition characteristics.  

A further situation where this functionality could improve upon the speed and rate of processing, 
is when the team as a whole is focused on a specific contact and a large number of other contacts 
build in the interim in the wider area. Automation could then have a role in processing these 
contacts in the background to facilitate the team in rebuilding the wider picture. However, the 
team’s immediate requirement in regaining the larger picture is to identify the most pressing 
threats, and existing operations room functionality already provides some guidance and 
information in this respect. In both of the cases described above, further investigation is required 
to quantify the benefit to the recognition process of adding an automated reasoning capability. 

Finally, it is important to note that the analyses compiled significant evidence of the differences 
between recognition processes as currently conducted in a HALIFAX Class operations room and 
the processing of the D-S recognition algorithms that were implemented in COMDAT. Some of 
these differences relate to the range and types of information and a priori knowledge that 
operators employ. For example, not surprisingly, operators use a large amount of contextual 
knowledge in making their recognition assessments which are not currently accounted for in D-S 
processing. This suggests: the need for careful consideration of operator intervention and 
interaction with automated D-S functionality; the need to incorporate mechanisms to make D-S 
processing sufficiently observable and directable by operators; as well as the potential extension 
of the processing capability of D-S recognition algorithms to include contextual information, 
where possible. 

5.  Concept of operations and user interface concepts for operator involvement with 
automated recognition processes 

5.1 Concept of operations 

At the time the COMDAT project was initiated, it was recognized that the necessary human 
factors research to support the implementation of MSDF did not exist. Thus, a significant 
component of the overall project was devoted to the development of relevant human factors 
knowledge [ 8]. A major goal of this research was to develop a CONOPS and prototype OMI for 
the provision of a semi-automated and automated decision support capability based upon the D-S 
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algorithms to assist the processes of contact recognition and identification in the HALIFAX Class 
frigate.  

The basis for the CONOPS and the OMI were the results of the information flow and decision 
process analyses and the capabilities of the D-S algorithms discussed in the previous sections. 
This information was used to identify the relevant decision processes that would be impacted by 
the algorithms, to develop an implementation concept, and finally to develop OMI concepts. 

An overriding assumption in the development of the CONOPS was that the human operator 
would continue to make assessments of contact data in parallel with the algorithms. Based on the 
results of the analysis, there was always the possibility that operators would have access to 
information that was not part of the data analysed by the algorithms including contact behaviours 
(such as changes in previous patterns of activity, unexpected changes in course or speed) and the 
geographical location of contacts. Moreover, it was envisaged that this approach would lead to 
greater operator acceptance. This decision meant that the CONOPS would need to fully integrate 
the output of ongoing human analysis processes in detection and recognition, so that the D-S 
algorithms could leverage the information provided by humans to amplify and modify the data 
provided by the sources available to them.  

The process followed in developing the CONOPS considered the following steps: 

 Determine if the implementation will be evolutionary or revolutionary in terms of 
existing systems and personnel organization,  

 Resolve the respective roles of the human and the decision support system in making 
decisions,  

 Establish the appropriate level of support for human decisions, and 

 Integrate decision support functionality into the operational context. 

The design and implementation of a revolutionary system generally assumes a clean slate. Hence, 
it is rarely possible to implement a revolutionary system. Even if a system is installed in a new 
class of ship, it is unlikely that the personnel operating the system would have different roles and 
responsibilities. Since MSDF must support current tasks (i.e. recognition and identification), it is 
even more critical that the implementation be evolutionary. Thus, a critical constraint on the 
implementation was that it be evolutionary. 

The second step was to consider roles and responsibilities the human and MSDF would have in 
the new system. In the current system, the assignment of Standard Identification (ID) is ultimately 
the responsibility of the Commander of either the ship or the task group. That authority is usually 
delegated under well defined conditions. For example, the recognition and identification of 
contacts traveling in commercial air lanes, where the contact data are typically consistent with 
those of commercial aircraft, may be assigned to a junior operator. To maintain this capability, a 
requirement of the system was that it should allow the human to specify the responsibilities that 
MSDF can assume within a specified context.  

The third step investigated the level of automation or decision support to be implemented.  Table 
2 [ 14] shows the levels of support that a decision support system could provide ranging from 
manual to complete automation. 

With simple systems, a high level of automation may be appropriate. However, when the decision 
support system is replacing some of the operator’s decision making responsibility, a more 
conservative level of automation may be preferable. In naval operations, there are critical Rules 
of Engagement (ROE) to adhere to that provide the operators the legal framework under which to 
take potentially lethal action. Moreover, operators want to be in control or feel they are in control, 
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especially over circumstances that are potentially life threatening. A more conservative approach 
to decision support is less likely to lead to conflicts in authority between the human and the 
system, and the rejection of the decision support system. 

On the other hand, a too conservative automation level is likely to result in sub-optimum human-
system performance. It is important that the decision support operates at a high enough level to 
reduce the workload that would otherwise be required to gather and comprehend the information 
needed to make an informed decision. By providing operators with support levels that should 
provide tangible benefits, there will be more immediate initial acceptance and a likely change in 
subsequent attitudes that may allow higher levels of support to be implemented in the future.  

Level Description 

10 The system acts autonomously without human intervention 

9 The system informs the user after executing the action only if the system decides it is 
necessary 

8 The system informs the user after executing the action only upon user request 

7 The system executes an action and then informs the user 

6 The system allows the user a limited time to veto before executing an action 

5 The system executes an action upon user approval 

4 The system suggests one alternative 

3 The system narrows the selection down to a few 

2 The system offers a complete set of action alternatives 

1 The system offers no assistance 

Table 2: Hierarchy of levels of decision support. 

Based on the above analysis, the following factors were considered in choosing the appropriate 
level of support: (a) the importance of the decision and consequences for error, (b) the rate at 
which the system (including the human operator) must process data and (c) the operator’s 
ongoing workload.  In the case of COMDAT, it was decided that it would be appropriate for a 
human to be the final arbiter of major decisions but that MSDF would work in the background to 
bring all the relevant pieces of information to the attention of the operator to support decision 
making. This role was particularly critical with respect to factors (b) and (c) since under some 
tactical situations data rates could be very high and the operator would typically only have 
sufficient moment to moment capacity to attend to a specific situation that was most time 
sensitive. Thus, after a period in which the operator was focused on a critical tactical problem, the 
decision support system should allow the operator to readily re-acquire wide area picture situation 
awareness by processing relevant data in the background and presenting the operator with a 
summary of what new information had been acquired relevant to the operator’s pre-defined 
information requirements. 

The fourth step in the process was deciding how to integrate MSDF into the operational context. 
If a decision support system is fully developed, as was the case with COMDAT, its functionality 
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is fixed, potentially restricting the designer’s flexibility in implementing an optimal level of 
support based on operator requirements. As a result, it may be difficult to successfully integrate 
the system into either the existing technology or the culture of the organization. However, it is not 
impossible. Moreover, the technology is always evolving. By designing the interface to meet the 
operator requirements, one can hopefully guide the evolution of the underlying decision support 
algorithms in a direction that will lead to greater operator acceptance and consequently a more 
effective system. 

Thus, the proposed implementation was based on the analyses of operator requirements discussed 
above, but took into account the potential limitations of MSDF as implemented in the COMDAT 
project. As mentioned previously, even with the potentially useful integration, or fusion, of 
numerous data sources to arrive at an assessment of recognition or ID, MSDF under COMDAT 
did not have the capacity to integrate all the available data sources used by human operators in 
compiling the picture, such as intelligence and contextual information. Contextual information 
may reduce the number of possible recognition options presented by MSDF about a specific 
contact. This possibility influenced the decision to position MSDF as a collaborator in rather than 
a replacement for the current picture compilation processes carried out by the operator. In order 
for MSDF to be an effective collaborator, it was important that it be able to accept operator input. 
Most existing approaches to the implementation of decision support algorithms do not necessarily 
provide for this capability.  

In the case of the current CONOPS, this was done by building a capability for operators to define 
different operating modes including: the ability to weigh or discount various sources, to define 
thresholds for various actions to be taken, and to interact with the various recommendations 
presented by MSDF. 

5.2 Operator machine interface concepts 

The user interface that was developed as a result of the CONOPS had four main components:  

1. A setup page for configuring the system, 

2. Three types of data pages through which the operator interacts with the system while it is 
operational, 

3. Alerts and indicators which are operator-configured to provide improved situation awareness 
under prescribed conditions, 

4. A contact symbol and data block in the tactical situation display. 

The setup page allowed the operator to configure the level of autonomy or operating mode that 
MSDF would have and the conditions under which the system was to alert the operator. For 
example, the operator might request that the system issue an alert whenever a contact going faster 
than speed “x” was within distance “y” of own ship. Communication between the MSDF 
algorithms and the operators occurred through the data pages. The most important of these was 
the overview page. It provided the operator with a summary of all the contacts being monitored 
by MSDF as well as any alerts associated with them. The operator would use the overview page 
to regain situation awareness about the overall tactical picture and to select the next contact 
requiring evaluation. Since an evolutionary implementation was envisaged, these pages would be 
used in conjunction with, rather than replacing, the current tactical situation display. The tactical 
display provides the geospatial picture while the overview page provides MSDF’s overall 
assessment of the contacts it is monitoring.  A more detailed description of some of these OMI 
concepts can be found in [ 9]. 

The most relevant concept in support of the recognition process was the Operator As Input (OAI) 
function. This function was designed to allow the operator to influence the recommendations 
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provided by an MSDF system that normally would not accept operator input. For each contact the 
operator could bring up a single contact proposition page (Figure 3). The “organic MSDF” 
column on that page shows the current recommendation for that contact (based on the D-S 
analyses described earlier). If the operator disagreed with one of these probabilities, they could 
enter an alternative recommendation in the “operator input” column including the reason for the 
recommendation. This change would not affect the MSDF-only analysis, but would be processed 
in the parallel OAI MSDF analysis. For example, MSDF might indicate that there was a 72% 
probability that a contact is a merchant vessel based on its speed. However, the operator might 
have had a visual sighting that the contact was a warship and enters that there is a 95% 
probability that the contact is a warship. The MSDF system would continue to collect data from 
its sources to try to refine its recommendation concerning the type of merchant ship and presents 
this in the “organic MSDF” column. A parallel analysis, using the same data plus the new OAI 
information, would be carried out to further refine the recommendation that the contact was a 
warship (e.g., the type and class of warship). The results of that analysis would appear in the 
“operator input” column. 

 

Figure 3: Proposed OMI concept for displaying the output of MSDF on a single contact and 
allowing operator input to the MSDF system. 

This approach has several advantages. It allow operators to use the decision support system to test 
out their own hypotheses and also provides a second check on those hypotheses through a 
comparison of the recommendations from the MSDF-only analysis and those from the OAI  
analysis. If the MSDF algorithms simply cannot support the operator input assessment, then an 
alert is generated, allowing the operator to reassess the underlying rationale for their assessment. 
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Although a mock-up of the OMI concepts was evaluated by Navy personnel, it was not possible 
to produce a working version of the OMI. Thus, the actual utility of the OAI concept remains to 
be evaluated.  

6.  Measures and methods for assessing operator and system performance in 
carrying out recognition tasks 

6.1 Operator measures of performance 

With the introduction of any new system aimed at improving operator and system performance, a 
key question is “Does it improve performance and, if so, by how much?” At best, the evaluation 
of a new system involves subjective assessments by experienced operators whose opinion is often 
biased by their attitude towards the new technology. There are no objective evaluations to 
determine if operators can conduct their tasks more efficiently or effectively using the new 
system. A major hindrance to a more objective evaluation is the lack of standard Measures of 
Performance (MOPs) and estimates of performance with the current system. To overcome this 
limitation, one component of COMDAT was the development of relevant MOPs for the 
recognition process and the collection of baseline data. 

The initial development of MOPs was carried out in conjunction with a cognitive analysis of the 
Operations Room Officer (ORO) position. For each goal identified during the cognitive analysis, 
corresponding criteria, measures, and methods were developed. The criteria identified a 
dimension of evaluation interest; while the measure and method operationalized the criteria. For 
example a key goal in the recognition process is building and maintaining an awareness of the air 
picture. Some criteria associated with this goal are to: 

 acquire and maintain awareness of significant issues with the air picture; 

 detect pertinent changes in key elements of the air picture promptly and accurately; 

 identify hostile contacts. 

Measures that can be used to evaluate these criteria include:  

 percent of current air contacts processed, 

 response time to identify hostile contact, and 

 number of contact changes responded to. 

Methods for assessing these measures could include 

 freeze probe, 

 embedded probes, and 

 SME review of real time or video of the scenario execution. 

The complete set of goals and criteria were analysed and the list refined to focus on the specific 
goals that MSDF might impact. A total of 67 MOPs were identified. The next step was to develop 
a detailed experimental plan to evaluate each MOP and review possible environments for 
conducting the planned studies. Potential environments identified included existing trainers, and 
onboard ship. Not surprisingly, operational and manpower constraints made it difficult, if not 
impossible, to utilize any of these environments to carry out the proposed experimental plan. The 
review did indicate a possible alternative. Training sessions in the Operations Room Team 
Trainer (a simulation/training facility used for the team training of HALIFAX Class operations 
room personnel) utilized a wide range of scenarios that were carried out by experienced naval 
personnel. Archives of these sessions were maintained including an audio/video recording of all 
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team interactions. These recordings could be played back in parallel with the captured screen and 
keystroke information. A preliminary analysis indicated that baseline data on 64 of the MOPs 
defined earlier could be collected using archived training records. Although analysis of the 
training records appeared feasible, it proved extremely time intensive. A critical recommendation 
therefore was that the evaluators observe the actual training sessions in order to mark critical 
incidents or responses for later review.  

The final step was to carry out a Baseline Study. Multiple anti-air and anti-surface warfare 
scenarios were analysed and means and standard deviations computed on 27 anti-air warfare and 
17 anti-surface warfare MOPs. The resulting data set, while still relatively small, did show the 
potential of the approach and the type of data that could be collected. Relevant data were  
collected on task times and accuracy in initiating and resolving air contacts, task times and 
accuracy in detecting and recognizing surface contacts and task times and accuracy for first and 
subsequent standard ID for both air and surface contacts. In addition, errors that could be 
impacted by the introduction of MSDF were documented. These errors were categorized as 
procedural, situational awareness, or attribute recognition. It was concluded that the majority of 
performance errors could have been helped by MSDF-related support tools. 

Although the method proved useful, there were limitations.  The variance in the data collected 
was quite large. This is not surprising since each data point was based on a unique situation (i.e. 
different contacts, different sensors etc). In classical experimental studies, the data is collected 
using multiple instances of the same or very similar stimulus situations. Although the training 
sessions are more realistic, the probability of finding a statistically significant difference in 
performance between the baseline system and a prototype system such as COMDAT would be 
very low (at least using inferential statistics) unless very large quantities of data were collected. 
Given the workload-intensive nature of the data extraction process, this could be costly and time 
consuming. However, some methods for simplifying data collection were identified during the 
COMDAT study.  

A further problem with this approach is correlating the baseline data with data collected using the 
new technology. Ideally, the prototype system would be installed in the Trainer. This was not 
feasible within the constraints of the COMDAT project. One recommendation is that future 
projects build this requirement into their project. A better approach to evaluation would be to 
build a simulation of the current system that was designed to easily incorporate new technology. 
This possibility is currently being pursued. 

Despite these limitations, the resulting data does provide more objective estimates of current 
performance that developers can use as benchmarks in evaluating future systems. Moreover, the 
MOPs have value for use in more objectively evaluating team performance during training as 
well as the training regime itself. If the MOPs were used to evaluate training outcomes, data 
collection and analysis could probably be partially automated. Moreover, ongoing baseline data 
would be generated that would be of use not only for the training staff, but also for future 
development projects.  

6.2 System measures of performance for automated recognition 

Work was also conducted, as part of COMDAT, to develop an experimental process for the 
shore-based test and evaluation of the automated recognition capability implemented in the 
COMDAT testbed. The work included development of a test environment, methodology, 
scenarios, and system measures of performance. Eleven MOPs associated with the fusion of 
contact attribute information were considered which take into consideration the clarity, 
timeliness, accuracy, and completeness of the estimated recognition. 
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A test environment was established using the Navy’s Combat System Test Center (CSTC) Mini-
System, a test system used for the maintenance, development and testing of the HALIFAX Class 
combat system software. The CSTC Mini-system uses the Combat Systems Simulation (CSS) 
system, which simulates ownship sensors and weapons, as well as targets and tactical scenarios. 
The CSTC Mini-System was selected from other options, that included development and test 
facilities and operational trainers, on the basis of criteria that included cost, availability, security 
level, scenario development capabilities, supported data sources, data recording capabilities, and 
required infrastructure upgrades. 

Six scenarios were developed to support areas of investigation that included fusion of multiple 
sources of attribute information, the impact of conflicting attribute data on recognition 
performance, and the impact of attribute data on data association. The approach used to develop 
the scenarios was to overlay a set of specified target manoeuvres on regions of differing sensor 
coverage. The topology of a sample scenario is shown in Figure 4. The scenario includes single 
targets as well as closely spaced target clusters. Scenario complexity is based on factors including 
the number of target clusters, the complexity of target manoeuvres, and by the degree of 
difference in the ground-truth recognitions of targets making up target clusters. 
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Figure 4. Sample scenario topology for shore-based trial. Included are: target trajectories 
(indicated by target symbols and arrows) and sensor coverage areas (indicated by green rings). 

System MOPs for recognition were identified based on the following aspects of tactical picture 
quality: accuracy – the degree to which the assigned recognition matches the ground-truth 
recognition; completeness – the degree to which all real-world objects have been recognized; 
clarity – the stability of the recognition; and timeliness – the time required to achieve recognition 
to a specified level. Examples of MOPs considered and their relationship to picture quality 
include: 

 fraction of recognition reports matching ground-truth (accuracy); 
 fraction of recognition reports for which recognition is declared (completeness); 
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 time elapsed until recognition is declared (timeliness); 
 number of switches in recognition value (clarity); 
 degree of conflict between different recognition values (clarity). 

Recognition conflict is based on the D-S conflict, κ, and measures the extent to which there are 
competing recognition propositions. In most cases, MOPs are calculated over individual tracks 
(or ground-truth contacts), and statistics gathered over individual scenarios, or over a set of 
scenarios. 

One concept used in some of the MOPs calculations is the identity confusion matrix, an extension 
of the confusion matrix [ 10] used in the assessment of data association performance. With rows i 
corresponding to MSDF tracks ti and columns j corresponding to ground-truth targets gj, an 
identity confusion matrix entry m(i,j) indicates the number of recognition updates for MSDF track 
ti that were generated by input reports originating from a particular ground-truth target gj and that 
match the recognition of gj. The identity confusion matrix has the advantage that it can be used in 
cases where the a priori assignment of input data to ground-truth is not known, as is usually the 
case for experimental trials with real data. 

Performance tests were carried out using three MOPs related to recognition accuracy and 
completeness – RID,  the fraction of recognition reports for which a recognition is declared (the 
belief in the recognition value exceeds a threshold of 0.5); RGT,  the fraction of recognition reports 
which are correct (matches ground-truth);  and RID-GT,  the fraction of declared recognition reports 
which are correct. The recognition reports used for calculation of these MOPs were D-S generic 
propositions at the Category and Sub-Category level. Category was recognized accurately, as is 
consistent with the number of input sources which directly report Category via the Type attribute 
(see Table 1) and the relative degree of ease with which contacts having different Category values 
(Surface or Air) can be discriminated. In contrast, Sub-Category reports were generally correct 
once a recognition was declared but were more easily affected by errors in data association. The 
incorporation of data from attribute-rich sources, such as Link-11 and GCCS-M, noticeably 
increased the frequency of Sub-Category declarations. In addition, the presence of conflicting 
information was more likely to result in no declared recognition rather than an incorrect 
recognition value. 

One challenge in conducting performance tests was to separate out the effects of tracking and 
data association on recognition performance. This was addressed partially through the design of 
the scenarios, by including a baseline of geographically well-separated tracks having minimal 
numbers of manoeuvres which will minimize the number of spurious input reports inserted into 
the tracks’ data. In addition, some tests were conducted first using data with noise-free position 
reports (which had minimal tracking error) and then repeated with more realistic position data. 

7.  Conclusions 

At the time it started, COMDAT was unique in its support of both a human factors component 
and decision-support technology research component that ran in parallel while providing input to 
each other. As a result of this approach, a broad range of knowledge and capabilities were 
provided to the Navy for potential integration into their capital acquisition programmes. One of 
the most important outputs of COMDAT was the detailed understanding of the recognition and 
decision processes used by operators. This knowledge was essential for determining where the  
D-S algorithms could be most effectively used and the development of a flexible CONOPS that 
would ensure the successful integration of the D-S algorithms into an operations room used to 
manual recognition and identification. The second important outcome was the development of 
MOPs and assessment methods to assess both system performance (hardware and software) and 
human-in-the-loop performance (hardware, software and human) that could be used across a wide 
range of environments including the shipboard environment itself. This outcome provided the 
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Navy with the capability to objectively assess new technologies and interfaces and to specify 
meaningful criteria that new systems must meet. Finally, significant extensions were made to the 
pre-existing D-S recognition algorithms based on the requirements to process realistic data and to 
consider new data sources such as GCCS-M. 

Some of the important lessons learned from the various research efforts include: 

 the importance of conducting cognitive analyses and work flow analyses of key decision 
making processes early in the project. 

o the development of algorithms preceded a detailed human factors analysis and so 
was based on technology-driven assumptions regarding the appropriate level and 
type of automation, and 

o the development of the OMI did not really occur until close to the end of the 
project. Thus, it was not possible to produce a working interface. 

 the requirement for a capability that permits system evaluation at the earliest possible 
stage in the development process using a realistic representation of the operational 
environment 

o considerable effort was expended revising the algorithms in order to handle the 
characteristics of real input data. 

 the inclusion of a plan to integrate the new technology (including the OMI) into a 
realistic representation of the existing environment. 

o the critical comparison of human-in-the-loop performance between the existing 
system and the D-S enhanced system was not possible. 

o because a single test environment that could accommodate system-level and  
human-in-the-loop (single operator and team) performance was not available 
time and resources were expended in developing and validating multiple test 
environments. 

The recognition concepts developed under COMDAT can be extended in several areas. First, the 
OMI concept for user involvement with MSDF-based recognition processes has still to be 
implemented and tested. As part of such a development some adaptation of the truncated D-S 
algorithms is expected. Second, extensions to the existing D-S capability, such as the processing 
of selected relational attributes and the incorporation of some aspects of contextual information, 
are also possible. Third, implementation of the OMI concept should be followed by human-in-
the-loop testing, using the measures and methods for assessing operator performance developed 
under COMDAT, and compared against baseline performance on the existing CCS.  Finally, 
many of the broader issues raised in the modeling of the recognition process deserve further 
attention, a specific case being the further analysis of operational situations where automation, 
such as that based on D-S evidential reasoning, can have the greatest impact on the recognition 
process. The net result of this approach to development should be technology which is well-
integrated with the work demands of the shipboard environment and which can provide 
maximum benefit in increasing the overall effectiveness of the Maritime Tactical Picture. 
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