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operations centers (MOC), in which multiple DMs with partial 
information and partial control over assets are involved in the 
development of operational level plans.  The MOC emphasizes 
standardized processes and methods, centralized assessment 
and guidance, networked distributed planning capabilities, and 
decentralized execution for assessing, planning and executing 
missions across a range of military operations 

  
Abstract—Task-asset assignment is a fundamental problem 

paradigm in a wide variety of applications.  Typical problem 
setting involves a single decision maker (DM) who has complete 
knowledge of the weight (reward, benefit, accuracy) matrix and 
who can control any of the assets to execute the tasks.  Motivated 
by planning problems arising in distributed organizations, this 
paper introduces a novel variation of the assignment problem, 
wherein there are multiple DMs and each DM knows only a part of 
the weight matrix and/or controls a subset of the assets.  We 
extend the auction algorithm to such realistic settings with various 
partial information structures using a blackboard coordination 
structure.  We show that by communicating the bid, the best and 
the second best profits among DMs and with a coordinator, the 
DMs can reconstruct the centralized assignment solution. The 
auction setup provides a nice analytical framework for 
formalizing how team members build internal models of other 
DMs and achieve team cohesiveness over time.   

 [1].  In this vein, 
we are developing analytical and computational models for 
multi-level coordinated mission planning and monitoring 
processes associated with MOCs, so that they can function 
effectively in highly dynamic, asymmetric, and unpredictable 
mission environments.  Two key problem areas are: 1) realistic 
modeling of multi-level coordination structures that link 
tactical, operational and strategic levels of decision making; 
and 2) collaborative planning with partial information and 
partial control of assets.  In the collaborating planning problem, 
each DM “owns” a set of assets and is responsible for planning 
certain tasks.   Each task is characterized by a vector of resource 
requirements, while each asset is characterized by a vector of 
resource capabilities (see Fig. 1).  Multiple assets (from the 
same DM or multiple DMs) may be required to process a task.   
The degree of match between the task-resource requirement 
vector and asset-resource capability vector determines the 
accuracy of task execution.  In addition, the elements of 
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I. INTRODUCTION 

A. Motivation 

In large-scale organizations, information-processing and 
decision making functions are distributed among decision 
makers (DMs) who perform the lower-level tasks themselves 
and coordinate their information and actions in order to achieve 
the overall organizational goals. This is because the 
information processing and decision making capabilities of a 
(human) DM are limited; distributed decision making 
facilitates the workload of each DM to remain below their 
processing capacity thresholds.    

This research is motivated by the mission planning and 
monitoring activities associated with the Navy’s maritime 
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Legend Description Legend Description 
AEW Airborne early warning USW Undersea warfare 

TAMD Theater air/missile defense BDA Battle demage assessment 
MIW 
C2 

Mine warfare 
Command and control 

ISR Intelligence, surveillance 
and reconaissance 

STRK Strike CVN Nuclear aircarft carrier 
AW Air warfare CG Guided-missile cruiser 

BMD Ballistic missile defense DDG Guided-missile destroyer 
CMD Command P3 Anti-submarine aircraft 
SUW Surface warfare SSN Nuclear submarine 

Fig. 1.  Illustration of task-asset matching problem. 
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task-resource requirement and asset-resource capability vectors 
may be affected by the mission environment (e.g., weather), 
and there may be precedence constraints on tasks.   This leads 
to a stochastic allocation problem of matching the task 
requirements with the asset capabilities to maximize the task 
execution accuracy.  The distributed assignment problem with 
partial information considered in this paper is a simplified and 
abstracted version of the collaborative planning problem.    

The objective of assignment problem is to match each row 
(corresponding to a task i) of an n n benefit matrix, A 
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to a distinct column (corresponding to an asset j) in such a way 
that the sum of the corresponding matched entries is maximized. 
In other words, we want to select n elements of the benefit 
matrix, so that there is exactly one element in each row i and 
one in each column j and the sum of the corresponding benefits 
is a maximum.   In this paper, we assume that each DM knows 
only a part of the benefit matrix and has control over certain 
rows (tasks) and certain columns (assets).  We consider a 
blackboard coordination structure 1 , which is a coordination 
mechanism used by team members to ‘share their bidding 
information’.  Here, we extend the auction algorithm to the 
following various information structures: horizontal, vertical, 
block diagonal and checkerboard.  We show that by posting the 
bid, the best and the second best profits to the blackboard, the 
DMs can reconstruct the centralized assignment solution.  
However, different information structures exhibit different 
computation and coordination delays to arrive at the centralized 
solution.  The auction setup provides a nice analytical 
framework to study and quantify the impact of information, 
coordination and organizational structures on speed of 
collaborative planning, and for formalizing how team members 
build internal models of other DMs and achieve team 
cohesiveness over time.   

B. Related Research 

Since Kuhn’s pioneering formulation in 1955, the 
assignment problem has been one of the most popular problems 
in linear programming and in combinatorial optimization 
 [2]− [19].  The Hungarian method  [2] solved the assignment 
problem in polynomial time and which anticipated the later 
primal-dual methods  [3],  [4].  This method was extended to 
general transportation problems  [5].  Jonker and Volgenant  [6] 
developed a primal-dual algorithm for the Hungarian method, 
which contains new initialization routines and a special 
implementation of Dijkstra’s shortest path method. A scaling 
technique was employed to obtain a cost-scaling Hungarian 
algorithm  [7],  [8].   

The auction algorithm is also a primal-dual algorithm having 

pseudo-polynomial time complexity, but high average 
efficiency in practice  [9],  [10].   It is an iterative method for 
finding the optimal prices and an assignment that maximizes 
the net benefit, and is therefore the maximum weighted 
matching  [12]

1 These algorithms have been extended to point-to-point communication 
structures as well. 

 assignment − [14].   Forward (i.e., rows bidding 
for columns) and reverse (i.e., columns bidding for rows), and 
forward/reverse (i.e., alternate application of forward and 
reverse) auction algorithms were developed  [18].  The average 
computational complexity of an efficient implementation of the 
auction algorithm is considerably better than the one for the 
Hungarian method  [10].   Auction algorithms were extended to 
solve the transportation problem  [11], the minimum cost flow 
problem  [12]− [14] and the shortest path problem  [15].    

In the 1990s, many sequential methods for the assignment 
problem (especially auction, shortest path-based Hungarian 
method, and primal simplex algorithms) have been parallelized 
and computationally tested on parallel machines.  In the 
original distributed implementation, each node is a processor 
adjusting its own dual prices on the basis of local information 
communicated by adjacent nodes  [12].  It shows finite 
convergence of a totally asynchronous, distributed version of 
the algorithm, wherein some processors compute faster than 
others, some processors communicate faster than others, and 
there can be arbitrarily large communication delays  [12].  
These methods, however, do not provide large speedups  [12].   
A later parallel auction algorithm, where multiple bids are 
carried out in parallel, and the calculation of each bid is shared 
by several processors, provided better speedups  [17].  As an 
extension of  [17] to the case where only local information 
(corresponding to vertical or single column information 
structure considered here) is available due to limited 
communication capabilities of agents, a distributed auction 
algorithm with local communication is proposed in the context 
of networked systems  [18], showing that it maximizes the total 
assignment benefit via a proper selection of the value for 
-complementary slackness (CS)  [16], n.   However, the 
point-to-point communication can result in significant time 
delays in propagating the global information due to many 
communication iterations among DMs, namely, multi-hop 
information propagation  [18],  [19].   

Different from the previous approaches,  we propose a 
distributed auction algorithm assuming that each DM only 
knows the partial elements of the benefit matrix of its own 
assets and tasks with various information structures, viz., 
horizontal, vertical, block diagonal and checkerboard patterns. 
We seek to address two key questions: 1) what is the 
information that each DM needs to coordinate with other DMs 
in order to provide a solution that is the best for the overall team, 
viz., a centralized solution; and 2) how to create incentive 
mechanisms among DMs so that the team achieves this solution.  
A solution to the first problem is that each DM solves his own 
assignment problem, and transmits local information, viz., bid, 
best profit and second best profit, to the blackboard 
(information sharing space).  A solution to the second problem, 
although not discussed here, is to reward the team members on 
the basis of both team reward and individual rewards.   

http://en.wikipedia.org/wiki/Maximum_weight_matching
http://en.wikipedia.org/wiki/Maximum_weight_matching
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The contributions of this paper are three fold. We consider 
distributed assignment problems, wherein there are multiple 
DMs and each DM knows only a part of the weight matrix and 
controls a subset of the assets (columns).  The second 
contribution is that the paper formalizes distributed auction 
algorithms with a number of information structures: horizontal, 
vertical, block diagonal and checkerboard (block matrix) 
structures.  The blackboard communication structure is used to 
coordinate the bids and assignments.  The third contribution is 
that our approach enables us to quantity the impact of various 
information structures on speed of collaborative planning.    

C. Scope and Organization of the Paper  

The paper is organized as follows. The information 
structures considered in this paper are described in section II.   
In section III, the distributed auction algorithms for the various 
information structures based on blackboard communication 
structure are developed. Performance results for the algorithms 
are given in section IV.  The paper concludes with a summary 
and future research directions in section V. 
 

II. INFORMATION AND COORDINATION STRUCTURES  

A. Information Structures 

Here, we consider four (of many) information structures: 
horizontal, vertical, block diagonal and checkerboard (block 
matrix) structures.  The information structure for the normal 
assignment problem is termed the centralized information 
structure. 

In the horizontal information structure, each DM knows 
certain rows of the benefit matrix corresponding to a set of tasks 
(see Fig. 2 (a)).  Here, the number of DMs is m.  In the vertical 
information structure, each DM knows certain columns of the 
benefit matrix corresponding to a set of assets (see Fig. 2 (b)).  
Here, the number of DMs is l.  In the block diagonal 
information structure, each DM knows the benefits for his own 
task-asset pairs while the coordinator knows the benefits for the 
rest of the task-asset pairs (see Fig. 2 (c)).  Note that there is no 
overlap in rows/columns among DMs (de-confliction among 

DMs is inherent in the structure) and the number of DMs is m, 
and the index of the coordinator is (m+1).  In the checkerboard 
information structure, each DM has its own assets and tasks, 
but with significant overlaps in both rows and columns.  In this 
structure, each DM knows the benefits for his own task-asset 
pairs, but needs to collaborate horizontally or vertically to share 
the bidding information (see Fig. 2 (d)).  This configuration 
seeks to approach edge interaction, where each DM also acts as 
a coordinator, with neighboring DMs.  Here, the number of 
DMs row-wise is m and the number of DMs column-wise is l, 
so that the total number of DMs in the checkerboard 
information structure is m  l.  Appendix A formalizes the 
information structures.  

The four information structures above correspond to a 
number of organizational models found in practice, viz., 
divisional, functional, hybrid and matrix organizations  [21].  In 
a divisional organization (akin to the horizontal information 
structure), each DM “owns” all the necessary assets 
(corresponding to columns).  Typically, the activities 
conducted by the members in this organization are restricted to 
a certain geographic area of responsibility (see Fig. 3).  Thus, 
DMs are responsible for their respective tasks, but this may lead 
to operational inefficiencies when the task distribution among 
geographic areas changes.  On the other hand, DMs in the 
functional organization (akin to the vertical information 
structure) control a single asset type having specialized 
knowledge of them, and perform a specialized set of tasks (all 
the tasks in the rows) (see Fig. 3).  Thus, the activities of a 
functional organization may span multiple geographic regions.  
This structure leads to operational efficiencies within those 
DMs, but it could also lead to a lack of communication between 
the functional DMs within an organization, making the 
organization slow and inflexible.  The matrix structure (akin to 
the checkerboard information) groups DMs by both function 
and division so that they can take advantage of both structures, 
i.e., operational responsiveness of a divisional structure and 
efficiency of a functional structure.  DMs must work with each 
other (both row-wise and column-wise), and collaborate to 
accomplish their activities; these activities require a great deal 
of time, communication, effort and skill to collaborate with 
other DMs.  In the hybrid structure (akin to a block diagonal 
information structure), each DM mainly allocates his own 
assets to his own tasks, except that the coordinator facilitates 
supporting-supported relationships among team members. The 
four information structures provide a range of possible 
organizational constructs for evaluating the distributed auction 

 
Fig. 3.  Information-based organizational models. 

 
Fig. 2.  Information structures. (a) Horizontal. (b) Vertical. (c)
Block diagonal. (d) Checkerboard. 
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algorithm. 

B. Parameterization of Information and Organizational 
Structures 

Here, we parameterize the performance of the information 
structure  by a speedup function f() 
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where t(centralized) is the centralized auction (termed the 
normal auction) time with centralized information structure;  
t() is the distributed auction time for each information 
structure.  Here 1, 2, 3 and 4 denote horizontal, vertical, 
block diagonal and checkerboard information structures, 
respectively.  The performance (speedup) is the ratio of 
(sequential, centralized) normal auction time and the (parallel) 
distributed auction time.  Efficiency is the ratio of speedup and 
the number of DMs.  The relative performance measures 
(computation and coordination delays) are measured via 
numerical simulations in section IV. 

C. Blackboard Coordination Structure 

We consider the blackboard coordination structure (how the 
team of DMs ‘shares bidding information’).  In the blackboard 
coordination structure (see Fig. 4), the DMs and a coordinator 
post their bids, best profit and second best profit information to 
the blackboard.  It is operationalized as follows: 1) each DM 
bids for the best asset to process each task, as well as the best 
and the second best profits to the blackboard; 2) if the 
coordinator can ensure better profit for a task using another 
asset, it posts a revised bid for the new best asset to the 
blackboard; 3) each DM may choose to update its bid after 
observing the bids on the blackboard.  Suppose there are M 
DMs, where M = m l for the horizontal vertical information 
structure; M = (m + 1) for the block diagonal information 
structure, and M = (m × l) for the checkerboard information 
structure.  Here, m is the number of DMs row-wise and l is the 

number of DMs column-wise (see Fig. 2).  Let Dk{•••} = {bid, 

best profit, second best profit}k be the bidding data set of DM k, 

where ‘•’ denotes the transmission status of bidding data 

attribute.  For example, Dk{111} denotes that the transmitted data 

set includes the bid, the best profit and the second best profit, 
respectively.  Then, the cumulative bidding data set on the 
blackboard is the union of the all DM’s bidding data given by  
 

{ }
1

{ }
M

B k
k

D D 


  .  (3) 

 

III.  DISTRIBUTED AUCTION ALGORITHMS WITH  VARIOUS 

INFORMATION STRUCTURES   

Appendix B formulates the assignment problem and briefly 
describes the forward and reverse auction algorithms.  
Appendix C includes the distributed formulations of the 
assignment problem for the four information structures.  
Appendix D provides the pseudo code for the distributed 
auction algorithms.  See Table III of Appendix D for variable 
definitions in this section.  

A. Distributed Forward Reverse Auction with Horizontal 
Vertical Information Structure 

Let • denote entities for the reverse auction algorithm.  For 
the blackboard coordination structure, the distributed forward 
reverse auction algorithm has four processing steps: 1) for 
each assigned task asset, each DM bids for its current best 

asset task; 2) DMs send their bids, viz., Dk{100} to the 

blackboard; 3) after scanning the bids on the blackboard, the 
coordinator invokes the assignment phase of the forward 
reverse auction and posts it to the blackboard;  and 4) each 
DM updates his bid after observing the bids on the blackboard. 

 
Fig. 4.  Blackboard coordination structure.  



15th ICCRTS: The Evolution of C2 5

Where Have We Been? Where Are We Going? 
 

The algorithm for the distributed forward reverse auction 
with horizontal vertical information structure is listed as 
‘Algorithm 1’ in Appendix D.  

As a running illustrative example, we consider a 5 × 5 benefit 
matrix A (see Fig. 5 (a)) with initial prices pj, the value for 
-complementary slackness (CS)  [16],  = 0.2, and 5 DMs 
having a row-wise task i  Ik = Ii and entire column-wise assets 
j  Jk = JT.  The forward auction process steps are as follows: 
1) Each DM k bids for its tasks {ik} and finds the best asset 

ki
j  J : bids = {7.2, 2.2, 9.2, 33.2, 14.2}, e.g., bid for task 1  = 

92 – 85 + 0.2 = 7.2, bid for task 2 =  97 – 95 + 0.2 = 2.2, etc.; 2) 
DMs 1, 2, 3 and 4 send their bids to the blackboard to share 
their bids (see Fig. 5 (b)); 3) Comparing his own bids and his 
subordinates’ bids on the blackboard, the coordinator assigns 
an asset j to the best task i attaining the maximum bid and posts 
the bid to the blackboard for each asset j; and 4) DMs 2 and 3, 
updates their bids after observing the bids on the blackboard 
(see Fig. 5 (c)). 

B. Distributed Forward Auction with Block Diagonal 
Information Structure 

In the block diagonal information structure, the coordinator 
accesses the blackboard and revises DMs’ bids if he can ensure 
better profits for tasks.  The distributed (forward) auction 
algorithm with block diagonal information structure has five 
processing steps: 1) the bidding step for each DM k is the same 
for all the algorithms in this paper, even though they work 
differently for each information structure; we call this bidding 
step as ‘the common bidding step for each DM’ from now on; 
2) DMs send their bids, as well as the best and the second best 

profits, viz., Dk{111} to the blackboard; 3) if the coordinator can 

ensure better profit for a task, the coordinator revises the bid 
and posts it to the blackboard; 4) the coordinator invokes the 
assignment phase in the same way as in the horizontal 
information structure case and posts it to the blackboard;  and 5) 
each DM and the coordinator update their bids after observing 

the bids on the blackboard. 
The distributed forward auction algorithm with block 

diagonal information structure is listed as ‘Algorithm 2’ in 
Appendix D.  If DMs employ reverse auction algorithm, the 
coordinator must employ reverse auction algorithm as well.  It 
can alternately use forward and reverse auction steps as well. 

As an illustrative example, we consider the same benefit 
matrix A, initial prices pj,  (= 0.2) as in the horizontal 
information structure case with 5 DMs having a row-wise task i 
 Ik = Ii and a column-wise assets j  Jk = Ji, and the 
coordinator knowing the rest, i.e., i  I6 = IT \ and j  

J

5
1 ,k kI

6 = JT \ 5
1 .k kJ   Here  and \ denote set union and set 

subtraction, respectively.  Note that the DM’s tasks and assets 
are diagonal components as highlighted in Fig. 6 (a).  The 
algorithm steps are as follows: 1) The common bidding step for 
each DM: bids = {74.2, 59.2, 92.2, 14.2, 8.2}, e.g., bid for task 
1 = 74 + 0.2 = 74.2, bid for task 2 = 59 + 0.2 = 59.2, etc.; 2) 
DMs send their bids as well as the best profits of each DM  = 
{74, 59, 92, 14, 8}, to the blackboard.  Note that there are no 
second best profits in this example because all DMs have only 
one task and one asset; 3) The coordinator finds the best asset 
for each task ik  Tk(jk), where Tk(jk) is the set of tasks of a DM 
k from which an asset jk receives a bid, the best profits = {92, 97, 
83, 85, 82} and the second best profits = {85, 95, 58, 52, 68}.  
Based on these, the coordinator decides on the best bids = {7.2, 
2.2, 9.2, 33.2, 14.2}, e.g., bid for task 1 = 92 – 85 + 0.2 = 7.2, 
bid for task 2 = 97 – 95 + 0.2 = 2.2, etc., and posts these bids on 
the blackboard (see as Fig. 6 (b)); 4) The coordinator assigns an 
asset j to the best task i and posts the bid to the blackboard for 
each asset j; and 5) DMs 2 and 3, and coordinator update their 
bids after observing the bids on the blackboard (same as in Fig. 
5 (c)) 

 
Price, pj 0 0 0 0 0 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 
Task 1 74 85 43 29 92 
Task 2 95 59 57 94 97 
Task 3 37 38 92 83 58 
Task 4 85 52 51 14 20 
Task 5 38 68 82 38 8 

(a) 
Price, pj 0 0 0 0  
Bids Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 
For task 1     7.2 
For task 2     2.2 
For task 3   9.2   
For task 4 33.2     
For task 5      

(b) 
Price, pj 33.2 0 14.2 0 7.2 
Bids Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 
For task 1     7.2 
For task 2    

 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 
Task 1 85 43 29 92 74 
Task 2 95 57 94 97 59 
Task 3 37 38 83 58 92 
Task 4 85 52 51 20 14 
Task 5 38 68 82 38 8 

(a) 
Price, pj 0 0 0 0 0 
Bids Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 

74.2

 2.2 
For task 3   9.2   
For task 4 33.2     
For task 5   14.2   

(c) 

Fig. 5.  (a) Benefit matrix. (b) and (c): Bids on the blackboard 
sent by DMs and posted by the coordinator.  

For task 1     7.2 
59.2For task 2     2.2 

  9.2, 92.2For task 3    
33.2   14.2For task 4   

  14.2  8.2For task 5  

(b) 

Fig. 6.  (a) Benefit matrix for block diagonal information 
structure. (b) Bids on the blackboard updated by the 
coordinator.  
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C. Distributed Forward Auction with Checkerboard 

Information Structure 

For the checkerboard information structure, the distributed 
forward auction algorithm has five processing steps: 1) the 
common bidding step for each DM (r.c); 2) all DMs post their 

bids, as well as the best and the second best profits, viz., Dk{111} 

to the blackboard. Note that multiple DMs may send bids for 
the same task i; 3) after scanning the bids on the blackboard, the 
coordinator decides on the best bid of a task i for assets ji of all 
DMs in the same row; 4) the assignment is made by the 
coordinator after completing the bidding process for every row, 
and posts it to the blackboard; and 5) the bid update step is 
performed after observing the bids on the blackboard.  

The distributed forward auction algorithm with 
checkerboard information structure is listed as ‘Algorithm 3’ in 
Appendix D. 

As an illustrative example, we again consider the same 
benefit matrix A, initial prices pj,  (= 0.2) as in the previous 
examples, except that we have 25 DMs (DMr.c) having a 
row-wise task i  Ir = Ii and column-wise asset j  Jc = Ji.  
Note that each cell (highlighted) corresponds to a DM, who is 
responsible for only one task and one asset (see Fig. 7 (a)).  The 
(forward) auction process with checkerboard information 
structure has five processing steps: 1) The common bidding 
step for each DM; 2) All DMs post their bids, as well as the best 
profits to the blackboard (see Fig. 7 (b)); 3) The coordinator 
decides on the best bid of task ir  Ir for assets 

ki
j  JT in the 

same row and updates bids on the blackboard  (see Fig. 7 (c)); 
4) The coordinator assigns an asset j to the best task i and posts 
the bid to the blackboard for each asset j; 5) DMs 2, 3 and 
coordinator update their bids after observing the bids on the 
blackboard  (same as in Fig. 5 (c)). 

 

IV. SIMULATION RESULTS 

A. Numerical Model Setup 

We compare the performance of distributed auction 
algorithms in terms of computation and coordination delays of 
the blackboard communication structure for the four 
information structures.  We also provide results for the 
centralized (normal) auction algorithm that has access to the 
entire benefit matrix.  The computation delay tcomp includes 
bidding time tbid, processing time tproc and assignment time 
tassign.  The coordination delay tcoord measures data distribution 
time tdist, that is, delay in distributing the benefit matrix among 
DMs, bid-update/posting time tpost and communication time 
tcomm between DMs and the coordinator and between DMs and 
the blackboard communication structure.  Two key parameters 
for analyzing the performance of distributed auction algorithm 
are the size of benefit matrix for a fixed number of DMs, as well 
as the number of DMs for a fixed size benefit matrix.  This 

enables us to synthesize the optimal number of DMs for a given 
benefit matrix size and vice versa. 

B. Performance (Delay) Measurement Model 

The computation delay in the normal auction is defined as 
the sum of bidding time, processing time and assignment time, 
i.e., , i.e., tcomp = tbid + tproc + tassign.  The computation delay of a 
DM k in the distributed auction is defined as the sum of bidding 
time, processing time and assignment time of a DM k, i.e., 
(tcomp)k = (tbid)k + tproc + tassign. Then, the overall computation 
delay for distributed auction is  

 
max{( ) } .comp bid k proc assign

k
t t t t    (4) 

 
Note that bidding is parallel; thus, the bidding time can be 
measured by finding the maximum bidding time among DMs 
and the coordinator (the latter in the case of block diagonal 
information structure only).       

For the coordination delay, the normal auction has 
posting/bid-update time, but there is no data distribution time 
and communication delay, i.e., tcoord = tpost.  The coordination 
delay of a DM k is defined as the sum of data distribution time, 
bid-update/posting time, and communication delay, i.e., 
(tcoord)k = tdist + tpost + (tcomm)k.  Then, the overall coordination 
delay for distributed auction is 

 
max{( ) }.coord dist post comm k

k
t t t t    (5) 

 
Note that the communication between DMs and the blackboard 
occurs simultaneously; thus, the communication time can be 
measured by finding the maximum communication time among 
DMs.   

 
 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 

74 85 43 29 92 Task 1 
95 59 57 94 97 Task 2 
37 38 92 83 58 Task 3 
85 52 51 14 20 Task 4 
38 68 82 38 8 Task 5 

(a) 
Price, pj 0 0 0 0  
Bids/  

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 
Best Profits

92.2/ 92 For task 1 74.2/ 74 85.2/ 85 43.2/ 43 29.2/ 29 
97.2/ 97 For task 2 95.2/ 95 59.2/ 59 57.2/ 57 94.2/ 94 
58.2/ 58 For task 3 37.2/ 37 38.2/ 38 92.2/ 92 83.2/ 83 
20.2/ 20 For task 4 85.2/ 85 52.2/ 52 51.2/ 51 14.2/ 14 

38.2/ 38 68.2/ 68 82.2/ 82 38.2/ 38 8.2/ 8 For task 5 
(b)  

Price, pj 0 0 0 0  
Bids Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 

74.2For task 1  85.2 43.2 29.2 7.2 
95.2For task 2  59.2  57.2  94.2 2.2 
37.2For task 3  38.2 9.2 83.2 58.2  

52.2For task 4 33.3  51.2 14.2 20.2 
38.2For task 5  68.2 14.2 38.2 8.2 

(c) 

Fig. 7.  (a) Benefit matrix for checkerboard information 
structure. (b) and (c) Bidding data on the blackboard sent by 
DMs and updated by the coordinator.  
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Total delay is the sum of the computation delay and 
coordination delay, i.e., tdelay = tcomp + tcoord. 

C. Numerical Results 

In this section, we discuss the results of applying the 
distributed auction algorithm using three cases.  Our 
experimental setup is as follows: benefit matrix sizes range 
from 160 × 160 to 800 × 800, we vary the number of DMs from 
2 to 10, and we average delays over 100 Monte Carlo 
simulation runs on a Quad-Core AMD Opteron™ Processor 
2376 (3.29GHz, 15.9GB of RAM) and implemented in 
MATLAB.    

1) Case 1− benefit matrix size is fixed:  In this case, we fix 
the benefit matrix size as 800 × 800 and test the algorithms by 
varying the number of DMs from 2 to 10 (see Fig. 8 and Table 
I).  Fig. 8 (a) shows the total delays for each information 
structure.  Here, all the distributed auction algorithms exhibit 
less total delay than the normal auction.  Note that the total 
delay for normal auction is 24.71 (sec.).  The numbers of DMs 
having least total delay are 5, 5, 6 and 25 (5 DMs row-wise and 
5 DMs column-wise) for the horizontal, vertical, block 
diagonal and checkerboard information structures, respectively 
(see Fig. 8 (a)).  Fig. 8 (b) displays the coordination and 

computation delays of distributed auction.  The performance of 
distributed auction becomes worse with increasing number of 
DMs because the coordination delay increases linearly for more 
than 2 DMs (4 DMs with checkerboard information structure) 
and its increase is more than the decrease in computation delay 
for more than 6 DMs (see Fig. 8 (b)).  This implies that the 
coordination delay including data distribution time, 
bid-update/posting time and communication time are not 
significant up to 5, 5, 6 and 25 DMs for the horizontal, vertical, 
block diagonal and checkerboard information structures, 
respectively.  The speedups with optimal numbers of DMs for 
distributed auction with horizontal, vertical, block diagonal and 
checkerboard information structures are 2.7, 3.3, 2.8 and 2.7, 
respectively (see Table I). The corresponding efficiencies 
(ratios of speedup and number of DMs) are 0.55, 0.66, 0.46 and 
0.11.  The distributed forward/reverse auction with 
horizontal/vertical information structure provides the best 
performance for 5 DMs, while the distributed auction with 
block diagonal information structure has the best performance 
for 6 DMs because it has less coordination delay than other 
structures.  

2) Case 2−number of DMs is fixed:  Here, we fix the number 
of DMs as 5 and test the algorithms for various sizes of the 
benefit matrix up to 800 × 800 (see Fig. 9 and Table II).  Fig. 9 
(a) shows total delays for each information structure.  Beyond 
500 × 500 benefit matrix size, all the distributed auction 
algorithms show gradually less delay than the normal auction 
because the computation delay of normal auction increases 
rapidly, while the coordination delay of distributed auction 
increases slowly (see Fig. 9 (b)).  The matrix size having 
maximum speedup is 800 × 800 for distributed auction 
algorithms with horizontal, vertical and block diagonal 
information structures, while it is 640 × 640 for distributed 
auction algorithm with checkerboard information structure, and 
the corresponding speedups are 2.7, 2.8, 2.8 and 3.1, 
respectively (see Table II).  The corresponding efficiencies are 
0.50, 0.60, 0.24 and 0.05.  The horizontal/vertical information 
structure has better performance than other structures.   

(a)

(b)
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Total Delays (matrix size = 800; 100MC runs)
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c)

 

 

Horizon. Coord

Vertical. Coord
B. Diago. Coord

Checker. Coord

Horizon. Comp

Vertical. Comp
B. Diago. Comp

Checker. Comp

 

Fig. 8.  Performance measures for Case 1. (a) Total delays. (b) 
Coordination and Computation delays.  
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3) Case 3−both parameters are varied: Here, we vary both n 
and m to find optimum value of the matrix size and the number 
of DMs.   Assuming a parallel organizational structure, the 
benefit matrix sizes were varied from 30 × 30 to 810 × 810, and 
the optimal number of DMs for each information structure was 
found.  The results are shown in Fig. 10.  The optimal number 
of DMs exhibit staircase behavior with the matrix size.  The 
optimal numbers of DMs with both block diagonal and 
horizontal structures increase slower than the other two 
structures. 

D. Discussion 

Now we point out several practical insights into 
organizational design with the quantified impacts of our 
experiments.  In our experiments, the vertical information 
structure (akin to a functional structure) with 5 DMs is the best 
for an 800 × 800 matrix size showing best efficiency (0.66).  
The horizontal information structure (akin to a divisional 
structure) with 5 DMs is efficient for matrix sizes larger than 
480 × 480.   Experiments suggest that horizontal and vertical 
structures have better performance than block diagonal and 
checkerboard information structures; specifically, 
checkerboard information structure (akin to a matrix structure) 
shows the worst performance due to significant coordination 
delays and overlap among DMs.  However, this structure may 
be robust to changes in elements of reward matrix and number 
of DMs.  Block diagonal information structure (akin to a hybrid 
structure) shows reasonable performance because the 
coordinator resolves row-wise (divisional) and column wise 

(functional) conflicts.  Thus, this structure is applicable to 
either divisional (horizontal) or functional (vertical) structures.   

   

V. CONCLUSION AND FUTURE WORK  

In this paper we introduced a novel variation of the 
assignment problem, wherein there are multiple DMs and each 
DM knows only a part of the weight matrix and controls a 
subset of the assets.  This work was motivated by our ongoing 
work on analytical and computational models for multi-level 
coordinated mission planning and monitoring processes 
associated with MOCs.  Here, we extend the auction algorithm 
to such realistic settings with partial information structures.  
We show that by posting the bid, the best and the second best 
profits to the blackboard, the DMs can reconstruct the 
centralized assignment solution.  The performance of various 
information structures was evaluated by comparing the delays 
involved in converging to a centralized solution.  The 
distributed auction model in this paper provides a nice 
analytical framework for formalizing how team members build 
internal models of other DMs and achieve team cohesiveness 
over time.   

There are numerous extensions of this research.  We mention 

TABLE II 
THE NUMERICAL RESULTS FOR CASE 1 (800 × 800 MATRIX / UP TO 10 DMS. 

CHECKER BOARD: UP TO 100). 

Auction 
# of DMs 
(Checker-

board) 

Horizon-
tal 

Vertical 
Block 

Diagonal 
Checker-

board 

Delaya 2 (4) 12.03 8.96 12.14 12.24 
(sec.) 4 (16) 8.98 7.25 8.91 9.39 

 5 (25)  8.70 7.17 8.58 8.73 
 6 (36) 8.75 7.33 8.68 8.78 
 8 (64) 8.87 7.63 8.88 8.87 
 10 (100) 9.38 8.26 9.32 9.36 

Speedup  2 (4) 2.0 2.0 2.0 2.0 
 4 (16) 2.7 2.7 2.8 2.6 
 5 (25)  2.9 2.9 2.9 2.8 
 6 (36) 2.8 2.8 2.9 2.8 
 8 (64) 2.8 2.8 2.8 2.8 
 10 (100) 2.6 2.6 2.7 2.6 0 100 200 300 400 500 600 700 800 900

3
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4
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Dist Forward

Dist Reverse
Dist Block Diago.

Dist Checkerboard

a The corresponding delay for normal auction is 24.7 (sec). 

 
TABLE II 

THE NUMERICAL RESULTS FOR CASE 2 (5 DMS, CHECKER BOARD: 25 / UP TO 

800 × 800 MATRIX). 

Auction 
Matrix 
Sizes 

Horizon-
tal 

Vertical 
Block 

Diagonal 
Checker

board 
Delaya 480 0.04 0.04 0.05 0.06 
(sec.) 640 1.90 1.57 2.04 1.41 

 800 8.70 7.17 8.58 8.73 
Speedup 480 1.9 1.9 1.5 1.2 

 640 2.3 2.8 2.2 3.1 
 800 2.7 3.3 2.8 2.4 

a The corresponding delays for normal auction are {0.09, 0.12, 0.07, 4.55, 
24.78} 

 

Fig. 10.  Optimal number of DMs with parallel structure in 
Case 3.  
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Fig. 9.  Performance measures for Case 2. (a) Total delays. (b) 
Coordination and Computation delays.  
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three here.  First, how to develop collaborative planning 
algorithms with partial information and partial control of assets, 
when each task is characterized by a vector of resource 
requirements, and each asset is characterized by a vector of 
resource capabilities?    Second, how to design information and 
coordination structures to maximize organizational efficiency 
and be robust to a range of missions?  Third, given that DMs in 
hierarchical organizations operate at multiple time scales, how 
to synthesize multi-level coordination structures that link 
tactical, operational and strategic levels of decision making is a 
major research issue. In addition, our distributed auction model 
can be applied to network centric enterprises  [22] for 
quantifying the roles of  1) Distributed information structure in 
generating awareness, 2) Communication structure, e.g., 
blackboard or point-to-point, for sharing/improving awareness, 
and 3) Organizational structure for exploiting awareness. 

APPENDIX A 

SPECIFICATION FOR INFORMATION AND COORDINATION 

STRUCTURES 

For the horizontal information structure, let I  {1, 2,, n} 
and J  {1, 2, , n} be nonempty and non-overlapping subsets 
of tasks and assets, respectively, that are unassigned, and r = [r1, 
r2, , rm] denote the vector of rows assigned to the m DMs 

(m n) such that   Then, the set of rows and 

columns of a DM k (see Fig. 11 (a)) is {I
1

.
m

kk
r n




k, Jk}, where  
 

1

1 1

1, , 1, 2, .., ,

{1, 2, , }.

k k

k u u
u u

k

I r r k

J n



 

 
   
 



 


m
    (A.1) 

 
For the vertical information structure, let c = [c1, c2, , cl] 

denote the vector of columns assigned to the l DMs (l n) such 

that   The set of rows/columns of a DM k (see Fig. 

11 (b)), {I
1

.
l

kk
c n




k, Jk} are 
 

1

1 1

{1, 2, , },

1, , 1, 2, .., .

k

k k

k v v
v v

I n

J c c k


 



 
   
 
 



l
    (A.2) 

 
In the block diagonal information structure, the number of 

DMs is m, where m n.  The set of rows and columns of a DM 
k, {Ik, Jk} are 

 
1

1 1

1

1 1

1, , 1, 2, .., ,

1, , 1, 2, .., .

k k

k u u
u u

k k

k u u
u u

I r r k m

J c c k



 



 

 
   
 
 

   
 

 

  m

,

 (A.3) 

 
The set of rows and columns of the coordinator, denoted as DM 
(m+1), are  Fig. 11.  The set of rows/columns. (a) Horizontal. (b) Vertical.

 

    ( 1) ( 1)
1

, , \
m

m m T T k k
k

I J I J I J 


  .  (A.4) 

 
where IT = {1, 2, , n} and JT = {1, 2, , n}.  Here  and 
\ denote set union and set subtraction, respectively. 

In the checkerboard information structure, the set of rows 
and columns of a DM (r.c), {Ir, Ic} are  

 
1

1 1

1

1 1

1, , 1, 2, .., ,

1, , 1, 2, .., .

r r

r u u
u u

c c

c v v
v v

I r r r m

J c c c


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

 

 
   
 
 

   
 

 

  l

 (A.5) 

 
For uniform notation, we number the DMs using a single index 
as follows: k = (r - 1)l + c.  This means that a DM (r.c), rth 
row-wise DM and cth column-wise DM, can be represented as a 
DM k counting his row-wise and column-wise location.  For 
example, when m = 5, l = 5, DM2.3 is numbered as k = 8, and the 
corresponding rows and columns are I2 = (r1 + 1, r1 + r2) and 
J3 = (c1 + c2 + 1, c1 + c2 + c3), respectively.  For a given DM k, 

we can find indices (r, c) as follows: r = ڿk / lۀ and c = k – (r - 1)l, 

where ۀ·ڿ denotes the ceiling function. 

APPENDIX B 

ASSIGNMENT PROBLEM USING AUCTION ALGORITHM 

The objective of the assignment problem is to match n tasks 
to n assets to maximize a linear benefit function: there is a 
benefit matrix, A = [aij], where aij denotes the benefit of 
assigning asset j to task i.  When n = n, it is called a symmetric 
assignment problem; otherwise, it is asymmetric. 

B.1. Symmetric Assignment Problem 

The symmetric assignment problem is given by  
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1 1

1

1

maxmize   

                 subject to  1, 1,2,.., ,

                       1, 1,2,.., ,

                       0, , 1,2,.., ,

n n

ij ij
i j

n

ij
i

n

ij
j

ij

a x

x j n

x i n

x i j n
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



  
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



 (B.1) 

 
where xij = 1 if the jth asset assigned to the ith task; xij = 0 

otherwise.  The first constraint, , requires that every 

asset is assigned to exactly one task, and the second constraint, 

, requires that every task is assigned exactly one 

asset.  Therefore, these constraints ensure that the assignment 
matrix is a permutation such as  

1
1

n

iji
x


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1
1

n

ijj
x


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1 0 0 0

0 0 1 0
.

0 1 0 0

0 0 0 1

ij n n
P p



 
 
     
 
 

  (B.2) 

 
Letting  i and pj denote the profit of task i and the price of 

asset j, respectively, the dual of the symmetric assignment 
problem (B.1) is 

 

1 1

minimize   

subject to  , , 1, 2, .., .

n n

i j
i j

i j ij

p

p a i j




 



   

 
n

 (B.3) 

 
It is clear from the form of the dual constraints in (B.3) that 

once the values of {pj} are known, 
1

n

ii


  is minimized if we 

set each  i to the largest value allowed by the constraints  i + pj 
≥ aij, which is  

 
max{ }.i ij

j
a p j    (B.4) 

 
This leads to the following equivalent unconstrained dual 
problem  

 

1

minimize max{ } .
n

ij j j
j

i j

a p p



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


n 



  (B.5) 

 
We consider the complementary slackness (CS) conditions 

for the assignment problem, viz., if xij > 0, then  i + pj = aij. 
Using (B.4) to eliminate  i, the second CS condition is 
equivalent to  

  
if 0,  then max{ }.ij ij j i ih h

h
x a p a p      (B.6) 

 

Condition (B.6) admits that each asset h carries a price ph and if 
it is assigned to a task i, there is a benefit, aih. The difference 
(aih − ph) is viewed as the profit to task i derived by using asset 
h. Condition (B.6) then states that each task should be assigned 
to the asset that would yield the maximal task profit.  

B.2. Forward Reverse Auction Algorithm for the Symmetric 
Assignment Problem 

Let • denotes entities for the reverse auction algorithm.  In 
the forward reverse auction algorithm, tasks assets (the 
bidder) compete for assets tasks (the prize) by bidding for 
their best assets tasks, i.e., each task asset bids for the asset 
task that provides the best profit benefit.  The forward 
reverse auction algorithm for the symmetric assignment 
problem proceeds iteratively and terminates when a feasible 
assignment is obtained  [16].  At the start of a generic iteration, 
we have a partial assignment S, which is a set of task-asset pairs 
{(i, j)}, and a price profit vector p = [p1, , pn]  π = [π1, , 
πn] satisfying -CS:  

 

 
max{ }

max{ } .

ij j ih h
h

ij i hj h
h

a p a p

a a



  
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 (B.7) 

 
As an initial choice, one can use an arbitrary set of prices 
profits together with the empty assignment, which trivially 
satisfies -CS  [16].  The iteration of the forward reverse 
auction algorithm consists of two phases: bidding and 
assignment. 

1) Bidding Phase: Let I  {1, 2,, n} and J  {1, 2, , n} 
be nonempty subsets of tasks and assets, respectively, that are 
unassigned.  Each task i I asset j J finds an asset ji J 
task ij  I which offers maximal profit net benefit, that is, 

 
 arg max{ } arg max{ } .i ij j j ij

j J i I
j a p i a i 
     

i

 (B.8) 

 
The corresponding best profit net benefit is 
 
 max{ } max{ }i ij j j ij

j J i I
v a p a 

 
     
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 (B.9) 

 
and the corresponding second best profit net benefit is  
 
 

, ,
max { } max { } .

i j
i ij j j ij

j j j J i i i I
w a p a 

   
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Compute the “bid” of task i asset j for asset ji task ij given 
by  
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 (B.11) 

 
This means that a task i asset j bids for an asset ji task ij that 
gives the maximum profit net benefit.   
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ij

2) Assignment Phase: For each asset j task i, let T(j) A(i) 
be the set of tasks assets from which an asset j task i receives 
a bid in the bidding phase of the iteration. If T(j) A(i) is 
nonempty, increase pj π i to the highest bid: 
 
 

( ) ( )
max  max .j ij i
i T j j A i

p b b
 

     (B.12) 

 
Remove from the assignment S any pair (i, j) if an asset j task i 
was assigned to some task i asset j under S, and add to S the 
pair (ij, j) (i, ji), where ij ji is a task asset in T(j) A(i) 
attaining the maximum above.  The prize (asset) being auction 
off goes to the highest bidder (task) and the object is assigned 
the price of highest bid.  This process goes until the assignment 
matrix become a (non-diagonal) identity matrix shown in (B.2).  
Note that if two or more tasks find the same asset that is equally 
maximally beneficial to them, the asset is simply assigned to 
the lower numbered task.  

APPENDIX C 

DISTRIBUTED ASSIGNMENT PROBLEM USING DISTRIBUTED 

AUCTION ALGORITHM 

Recall the number of DMs, M is defined as m, l, (m + 1) and 
(m × l) for the horizontal, vertical, block diagonal and 
checkerboard information structures, where m is the number of 
DMs row-wise and l is the number of DMs column-wise.  Let 
the set of DMs for the rows and columns be defined as Ki = {k: 
i  Ik} and Kj = {k: j  Jk}.  Then, the assignment problem is 
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 (C.1) 

 
where xij = 1 if the jth asset assigned to the ith task; xij = 0 
otherwise, and aij

(k) denotes that a DM k (kth DM) has 
knowledge of aij.  The dual function of the linear assignment 
problem (C.1)  [20] is  
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Thus, the dual of the linear assignment problem is  
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 (C.3) 

 
Again, let • denotes entities for the reverse auction 

algorithm.  For the horizontal or vertical information structure, 
the dual of the linear assignment problem for the forward 
reverse auction is 
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For the block diagonal information structure, the dual of the 

linear assignment problem for the forward auction formulation 
is 
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 
where (m + 1) denotes the coordinator. 

For the checkerboard information structure, the dual of the 
linear assignment problem for the forward auction formulation 
is 
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APPENDIX D 

DISTRIBUTED AUCTION ALGORITHM 

Algorithm 1: Distributed Forward or Reverse Auction with 
Horizontal or Vertical Information Structure  
(see Table III for variable definitions) 
Step 1: Each DM k bids for his tasks {ik} assets {jk}: for each 

task ik  Ik asset jk  Jk, find the best asset  
ki Tj J  

task  
kj Ti I    

x
 (C.2b) 
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Step 2: DMs send their bids to the blackboard  

1 1

Set: { } { }  { } { }
i k i j jk kk

m l

ij i j i j i j
k k

b b b b
 
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Step 3: The coordinator assigns an asset j task i to the best task 
i asset j attaining the maximum below and post the bid 
to the blackboard  

( ) ( )
Assign: max  maxj ij i ij

i T j j A i
p b b

 
   

 
Step 4: Each DM updates his bid after observing the bids on the 

blackboard. 
 

Algorithm 2: Distributed (Forward) Auction with Block 
Diagonal Information Structure 
(see Table III for variable definitions)  
Step 1: Each DM k bids for his tasks {ik}: for each task ik  Ik, 

find the best asset ( )
kk i kj J   
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Step 2: DMs send their bids, as well as the best and the second 
best profits to the blackboard  
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Step 3: The coordinator finds the best asset for each task ik  
Tk(jk), updates the best bid,  and then posts it to the 
blackboard 
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Step 4: The coordinator assigns an asset j to the best task i 

attaining the maximum below and post the bid to the 
blackboard  

( )
Assign: maxj ij

i T j
p b




 
Step 5: Each DM and the coordinator update their bids after 

observing the bids on the blackboard. 
 

Algorithm 3: Distributed (Forward) Auction with 
Checkerboard Information Structure 
(see Table III for variable definitions) 
Step 1: Each DM (r.c) bids for its tasks {ir} to find the best 

asset ( )
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Step 2: All DMs post their bids, as well as the best and the 
second best profits to the blackboard  
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Step 3: The coordinator decides the best bid of task ir  Ir for 
assets 

ki Tj J  in the same row 
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Step 4: The coordinator assigns an asset j to the best task i 
attaining the maximum below and post the bid to the 
blackboard  

( )
Assign: maxj ij

i T j
p b


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Step 5: Each DM updates his bid after observing the bids on the 
blackboard. 
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TABLE III TABLE IV 
THE CARDINALITY OF PROFITS OF THE DISTRIBUTED AUCTION WITH BLOCK 

DIAGONAL INFORMATION STRUCTURE. 
Case Besta 

VARIABLES USED IN THE DISTRIBUTED AUCTION ALGORITHMS. 

Variables Definitions 
Used 

ina 

 The value for -complementary slackness (CS) 
 [16]  

1−3 

m / l  Number of DMs row-wise / column-wise 1−3 

I/T 
(I  /J  )T T

 

Nonempty subsets of tasks / assets, that are 
unassigned (assigned to DMs) 

1−3 

Ik  / Jk Sets of tasks / assets, that are assigned to a DM k 1, 2 

( ) / ( )
kk j k ii i j j

k

 , and j (m+1)   

A task / an asset of a DM k (bids for an asset / a 
task of a DM k), and of a coordinator 

1, 2 

( 1)

( )
(( ) )

k

k

k i

m i

j
j 

 An asset j of a DM k (a coordinator) bids to a task 
i of  DM k  

2 

/r ci j  A task i / an asset j of a row-wise/column wise 
DM r / c 

3 

(( ) )
r ri c ij j  An asset j (of a column-wise DM c) bids for (the 

best) task i of a row-wise DM r 
3 

{ }, {p }  i j
The dual prices: the profit of a task i, the price of 
an asset j 

1−3 

( 1)
( )

k mj ip p


 The price of an asset j of a DM k (a coordinator) 2 

cj
p  The price of an asset j of a column-wise DM c  3 

/i iv w  The best/2nd best profits of a task i (in the 
blackboard) 

2 

/
( / )

k k

k k

i i

j j

v w
   The best/2nd best profits (prices) of a task i (an 

asset j) of  a DM k 
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( 1) ( 1)/
k k

m m
i iv w 

 
The best/2nd best profits of a task i of  a 
coordinator 
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( . ) ( . )
/

( / )
r c r c

r r

i i

i i

v w
v w  The best/2nd best profits of a task i of  a DM (r.c) 

(a row-wise DM r)  
3 

( . *)r ciw
 

The 2nd best profit of the column-wise DM 
having the best profit for a task i of a row-wise 
DM r 

3 

T(j) / A(i) 
(T(jk) / A(ik)) 

The set of tasks / assets from which an asset j / a 
task i (of a DM k) receives a bid 
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 (Ac(i r)) 

The set of assets/tasks of a DM k (a column-wise 
DM c) from which a task i/ an asset j of a DM k 
(a row-wise DM r) receives a bid  

2 (3) 

A(ir) 
The set of assets of from which a task i of a 
row-wise DM r receives a bid 

3 

 / 
( /

i j

k i j kk k
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b b
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1 (1, 
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k m ik

i j

i j

b
b
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1 vi k  wi k  - 

vi k  vi
( 1m )
k  Update bid with new 2nd best and post it 
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2 

vi
( 1m )
k  vi k  Update bid with new best/2nd best and 

post it to the blackboard 
3 

4 vi
( 1m
k

 )  wi
( 1m )
k  

Update bid with new best/2nd best and 
post it to the blackboard 

avi k  and vi
( 1m )
k  are the best profits of a DM k and a coordinator 

bwi k and wi
( 1m )
k  are the 2nd best profits of a DM k and a coordinator 

 

)  The bid from a task i of a DM k to the best asset j 
of a DM k (a coordinator) 

2 

*
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( )( )
r c ir

r c ir

i j

i j

b
b  The bid from a task i of a row-wise DM r to (the 

best) asset j of a column-wise DM c 
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r ir
i jb  The bid from a task i of a row-wise DM r to the 

best asset j 
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/
( /

k k

k i j kk k

i j ij

i j i j

a a
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k k k k ik

k m
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a a
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of a coordinator 

2 

( )( )
r c r c ir

i j i ja a  Benefit when task i of a row-wise DM r bids for 
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3 

a1, 2 and 3 denote Algorithms 1, 2 and 3, respectively 
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