

Paper # 157_S

Designing & Evaluating Agile C2 Systems Based on Service Oriented Architectures*

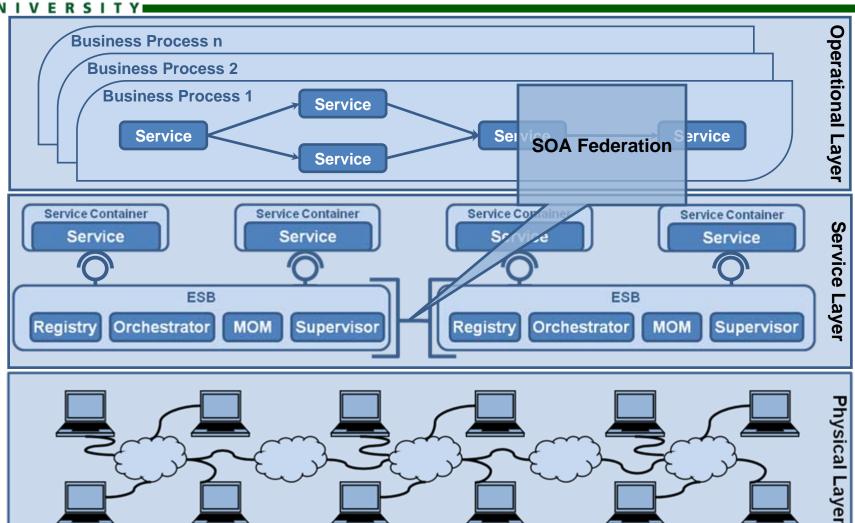
Ashraf M. Abusharekh <aabushar@gmu.edu> Lee W. Wagenhals <lwagenha@gmu.edu> Alexander H. Levis <alevis@gmu.edu>

14th International Command and Control Research and Technology Symposium Washington, DC Jun 15-17, 2009

* This work was supported by the Office of Naval Research under grant N00014-06-1-0081

- Introduction & Background
- SOA Environment
- SOA Federation Structure
- Architecting Process
 - Architecture Design
 - Analysis & Evaluation
 - Architecture Deployment
- Case Study
 - Airborne Theater Ballistic Missile Interceptor System (ATIS)
- Conclusions & Future Work

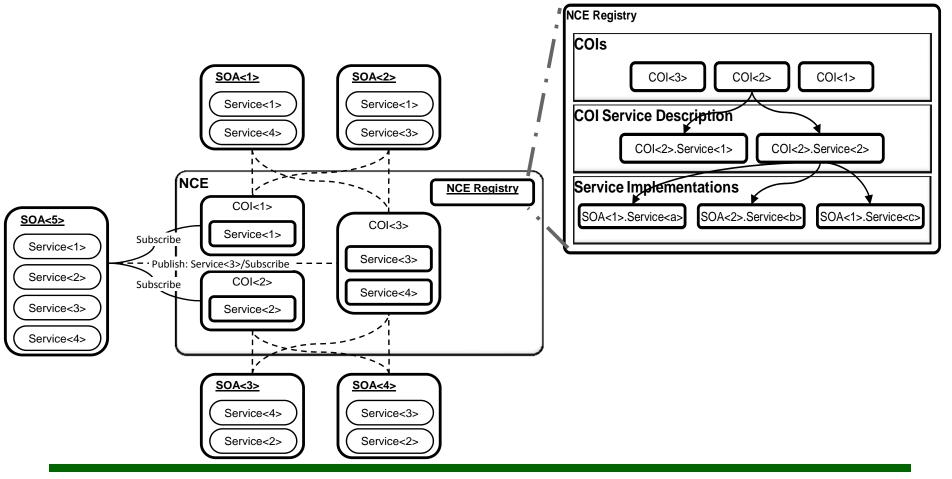
- A key to Command and Control (C2) agility is EFFECTIVE information sharing.
- DoD defined a set of concepts, objectives and strategies to achieve Net-Centric Operations (NCO)
 - Concepts
 - Populate Net-Centric Environment (NCE).
 - Utilize the Net-Centric Environment.
 - Accommodate un-anticipated users.
 - Promote the use of Communities of Interest (COI).
 - Support shared infrastructure.
 - Strategies
 - Net-Centric Data Strategy.
 - Net-Centric Services Strategy.
- DoD views architectures as the mechanism for designing solutions to transform to NCO
- DoDAF v.1.5 is focused on data centricity and uses the Service Oriented Architecture (SOA) paradigm as a key enabler for implementing NCO.



- DoDAF v.1.5: All View (AV), Operational View (OV), Systems & Services View and Technical View
- How to construct an Event Driven Service Oriented Architecture compliant to DoDAF v1.5 ?
- The architecture (SOA) should:
 - Net-Centric Concepts
 - Populate NCE with new capabilities
 - Utilize existing NCE capabilities
 - Accommodate un-anticipated users
 - Promote the use of COI
 - Support shared infrastructure
 - Net-Centric Data Strategy
 - Make data visible, accessible, understandable, and trusted
 - Net-Centric Services Strategy
 - Provide and consume services from the NCE, govern these services and their infrastructure, and monitor and manage them

SOA Federation

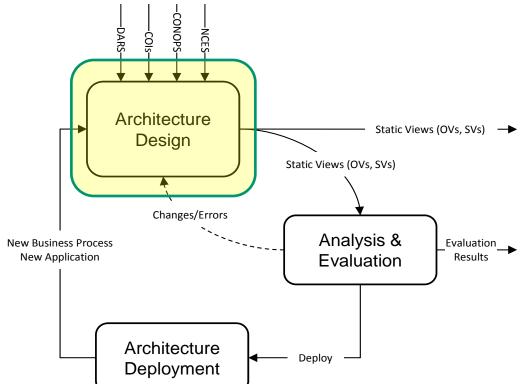
SOA Federation Environment



EORGE

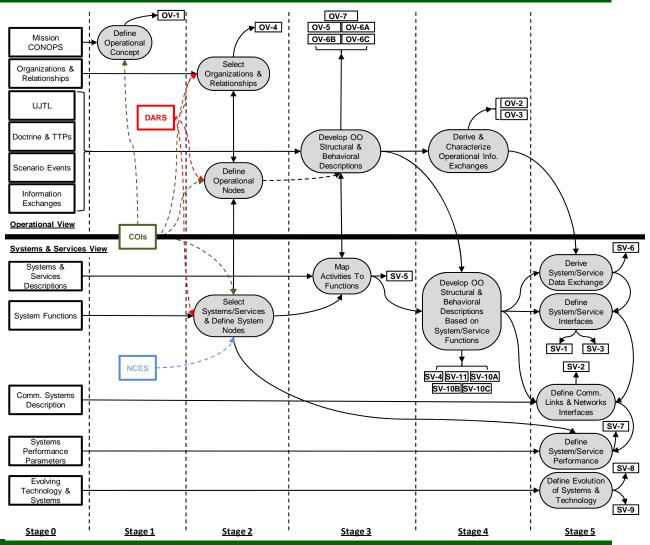
6/29/2009

- SAL
- The concept of Communities of Interest (COI) will be used to enable dynamic federation with pre-defined or un-anticipated users

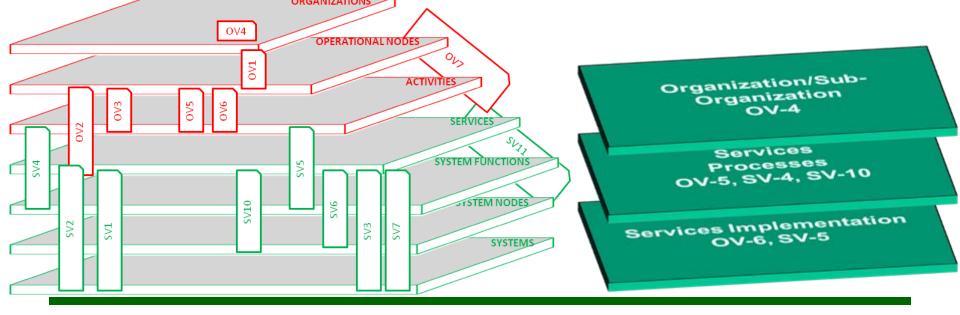


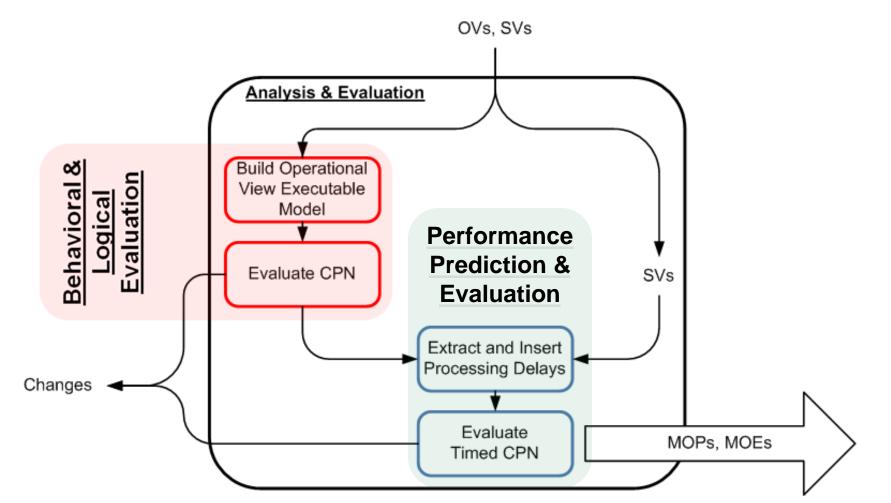
Architecting Process

- Architecture Design phase: Produce DoDAF v.1.5 products
- Analysis & Evaluation phase:
 - Synthesize the executable model (EM).
 - Use it to evaluate and verify the architecture.
 - Reflect corrections or changes back in the DoDAF
 products
 - Compute Measures of Performance and Measures of Effectiveness of the architecture.
- Architecture Deployment phase: new processes will trigger the design process again

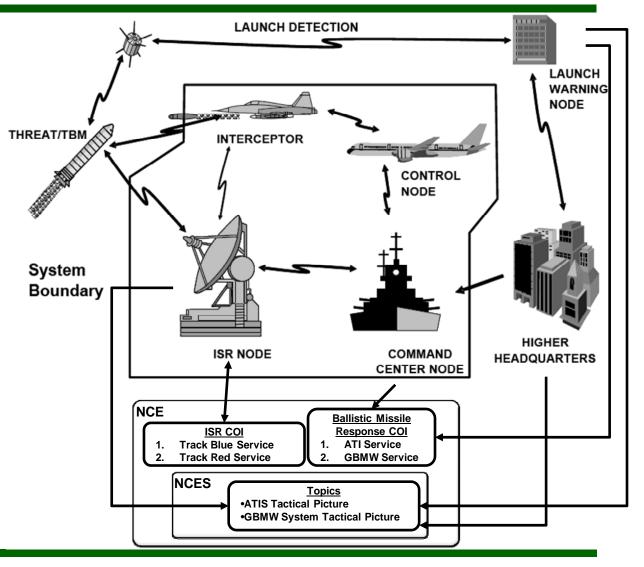


Architecture Design


- Based on the OO approach introduced by Wagenhals et. al
- Additional sources of information needed:
- 1) Information about existing COIs and the services they expose
- 2) Information about architectures of systems implementing capabilities that might be leveraged by the new architecture
- 3) Access to existing Net-Centric Enterprise Services (NCES) currently available through the Net-Centric Environment


- A dynamic model of the business services and processes is built using CPN Tools
- Scenarios are defined to evaluate the logical and behavioral aspects of the architecture
- Formal analysis of system properties (Reachability, Boundedness, Liveness, etc...) is conducted
- State Space analysis to detect errors and unwanted behavior is carried out
- Corrections and changes are reflected back to the architecture description

Analysis & Evaluation (2)

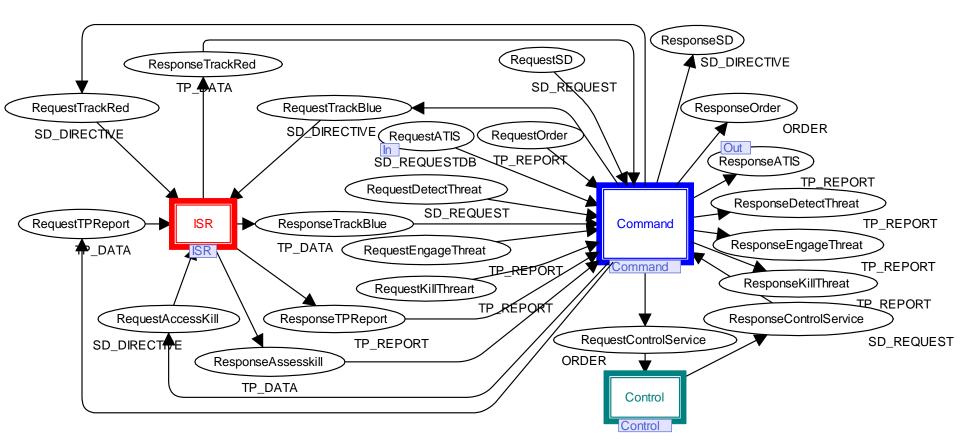


- Deployment phase: the architecture is instantiated and deployed to accomplish its missions and business objectives
- New business processes or changes to existing ones as a result of a SOA instance being deployed should trigger an architecture review
- This requires maintaining and calibrating the executable model of the architecture after deployment to support such exploration

Case Study: Airborne Theater Ballistic

 Operational Concept graphic (OV-1): shows main operational nodes and Net-Centric Environment (NCE) support

- Main objectives
 - Determine if the operational concept can be made to work.
 - Assess the impact of evolving this system into a federated SOA,
 - Determine how to make its business services or their composition* (business processes) accessible by anticipated and un-anticipated users
- Assumptions:
 - Two COIs:
 - Ballistic Missile Response COI
 - Intelligence, Surveillance, and Reconnaissance (ISR) COI
 - A Global Ballistic Missile Warning (GBMW) Service is deployed and is published through the Ballistic Missile Response COI
 - Net-Centric Enterprise Services (NCES) and capabilities are available and accessible. "e.g. Discovery, Messaging, Mediation Services"
 - * Business processes are composed of multiple business services


GEORGE ATIS Business Services & Processes SALE

		Business	External	External
Services	System Node	Process	Anticipated	Un-anticipated
		Name	User	User
EngageOrder	ATIS Command	-	-	-
DetectThreat		DetectThreatBP	-	-
EngageThreat		EngageThreatBP	-	-
KillThreat		KillThreatBP	-	-
SD		-	-	-
ATIService		ATISBP	GBMWS	BMR COI
TrackRed	ATIS Radar	-	-	ISR COI
TrackBlue		-	-	ISR COI
AssessKill		-	-	-
TPReport		-	-	-
Control	ATIS Control	-	-	-

ATIS CPN Top Page

Input Variables (Parameters)					
Name	Description	Values			
Number of TBMs	Total number of TBMs launched by adversary (fixed).	10			
TBM Inter-arrival	Time interval between TBM arrivals.	0, 25,50,75,100 (seconds)			
Number of Interceptors	Total number of ATIS Interceptors.	3, 4, 5			

Output Variables (Measures of Performance – MOPs)				
Name	Name Description			
Average Response Time	The average time between the ATIS detecting the TBM until the TBM is engaged.	<= 400 seconds		
Number of Leakers	Total number of TBMs not destroyed within 400 seconds of being detected by ATIS.	<=2		

Results

- 3 interceptors can handle the 10 threats (with a max of four leakers) if they arrive at a rate slower than 1 in 25 seconds
- 4 interceptors can handle the 10 threats (with a max of two leakers) if they arrive at a rate slower than 1 in 25 seconds
- 5 interceptors can handle the 10 threat with no leakers

Number of Interceptors	TBM Inter-arrival	Average Response Time	Number of Leakers
3	0	347.1	4
	25	270.1	1
	50	180.6	0
	75	159	0
	100	159	0
4	0	283.9	2
	25	212.9	0
	50	159	0
	75	159	0
	100	159	0
	0	245.5	0
	25	180	0
5	50	159	0
	75	159	0
	100	159	0

MOE = 93%

- A formal dynamic model of federated SOAs suitable for analysis and evaluation
 - Dynamically federate with NCE systems through COI registries and by utilizing the NCES to share enterprise-level information
- An approach for constructing an event driven SOA compliant to DoDAF v1.5
- Behavioral and Logical evaluation of business service and processes, and baseline performance measures of SOA using Colored Petri Nets
- Future work
 - Extend the analysis and evaluation to capture SOA infrastructure

QUESTIONS?