

"Mission Assurance in a Distributed Environment"

14th ICCRTS – C2 and Agility

Track 8 - C2 Assessment Tools and Metrics

Authors Chad DeStefano and Thomas A. Clark AFRL / RISF

Document cleared for public release with Case Number 88ABW-2009-2512

- Problem
- Objective
- Defining Mission Assurance (MA)
- **DEEP Description**
- Applying MA to DEEP
- Future Work
 - Metrics and Experimentation
- Summary

- Shift from individual hackers to sophisticated teams operating at will in complete stealth
 - Website defacement, Denial of Service (DoS) attacks, identify theft are overt, and nearly immediate to detect
 - Persistent access designed to influence in subtle or perhaps violent ways is becoming the new threat
- Continued shift to network-centric C2 with information processing distributed over computer networks at geographically dispersed locations presents technical challenges
 - The biggest threat is to our core mission planning and processing systems, examples:
 - Target coordinate, inventory decrement manipulation

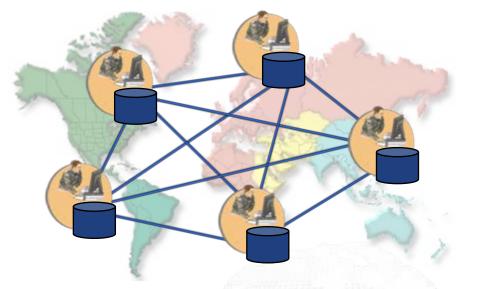
- Define and illustrate mission assurance concepts within a distributed application operating in a notionally contested environment
 - Use the Distributed Episodic Exploratory Planning (DEEP) as an exemplary planning environment
 - Identify DEEP components that can be enhanced to maintain operations under duress
 - Initial "fight-through" capability
 - Formulate a test environment to conduct experimentation and determine metrics

Defining Mission Assurance

- Use standard information assurance (IA) tenets as a baseline
 - Attribution holding a user accountable for their actions
 - Authentication ensuring only privileged users access appropriate information
 - Availability ensuring information and services are available when required
 - Confidentiality ensuring information destined for an individual or group is exclusive
 - Integrity information is kept unmodified by unintended sources
- IA Extensions
 - Availability a function of prioritized mission tasks mapped to network capabilities
 - So degraded states can be specified and measured
 - Trust must be built on top of attribution, authentication, confidentiality and integrity
 - So that contributors to mission success will be given increased responsibility
 - Mission workflow must be formally specified as business processes
- Exploring Trust
 - Trust is integral regarding either human or machine interaction
 - DEEP does not address trust formally yet (trust is assumed)

DEEP Objective

Current AOC Planning

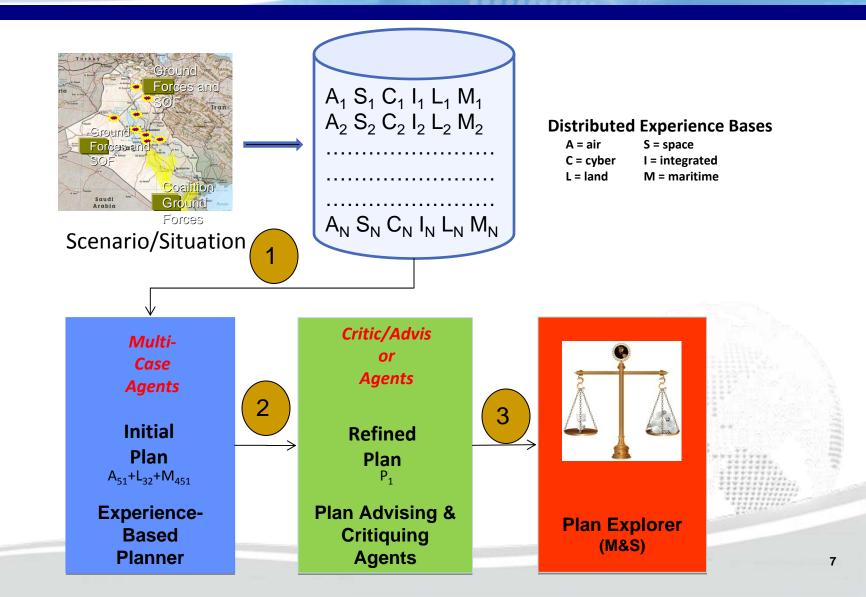

BOGSAT

Bunch of Guys/Gals Sitting Around a Table

Constrains planning

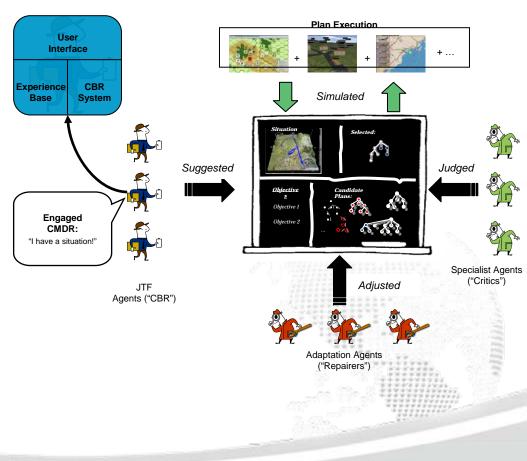
- Quality
 - **Finite experience**
- Speed
 - Limited automation
- Creativity
 - **Finite diversity**

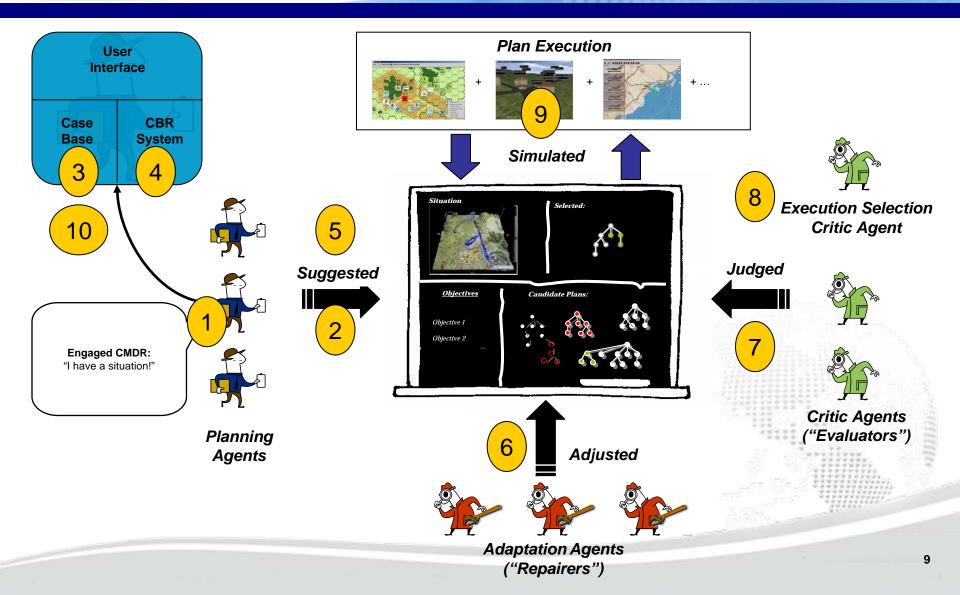
Improve planning quality, speed, and creativity


- **Experienced-based**
 - Orient and decide faster than adversaries with better plans

Mixed-initiative

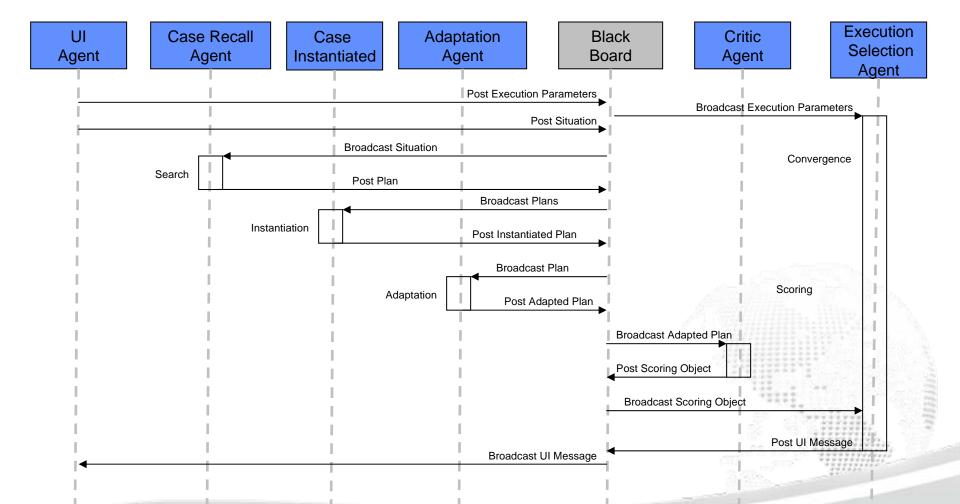
- Syntheses of the strengths of both human and machine
- Net-centric
 - Expert team formation with greater diversity and creativity




DEEP Approach

- Specifically
 - Distributed Al Blackboard for multi-agent, non-deterministic, opportunistic reasoning "at the edge"
 - Experience-Based Reasoning to capture experiences (successes and/or failures)
 - Episodic Memory for powerful analogical reasoning
 - Multi-Agent System for mixedinitiative planning
 - ARPI Core Plan Representation for human-to-machine dialog
 - Constructive Simulation for exploration of plausible future states

DEEP Approach


- Protecting internal and external applications requires a model of the overall business process
- In DEEP, the business process is modeled at the application level and we can determine:
 - The sequence of prioritized events/activities
 - Event dependencies
 - Events that are not as important to the core business as others
- Knowing this information allows us to make decisions on redundancy, contingency plans, resource management for IA, and the impacts of resource losses
- In some cases, DEEP handles intrusions intrinsically
 - Plans have to survive a critical review process that would eliminate plans that were not fit for the objective
 - Critic agents do not have authority to modify plans

Applying MA:

Modeling the Process

DEEP Process

- Agent Control Center (ACC)
 - Agents are an integral part of DEEP, so proper synchronization and control is important
 - The ACC automatically and manually controls agents and monitors the system and network, it should:
 - Monitor traffic, move agents, shutdown agents, restart agents, ping agents, conduct behavior analysis based on connection patterns, and assess agent interaction as a foundation for determining trust
 - Some of these functions are provided by the Java Agent Development Framework (JADE) used to develop the DEEP agents
 - Detect network issues like congestion and attempt to automate system restart on an operable network

Fight-Through : Information

- Data concerns
 - Modification (both minute and large)
 - Deletion
 - Theft
- Solutions
 - Encryption
 - All traffic should be encrypted
 - Data repositories should be encrypted
 - Hold data integrity using signature techniques to ensure data has not been modified
 - ACC could monitor traffic and alert based on irregular data movement
 - Redundant stores of data and rollback capability to ensure steady recover in the event of intrusion
 - Authentication to data repositories (limit access to a need to know basis – blackboard has panes / layers concept)

- The human in the loop can pose problems for the mission as well
 - Classic "insider threat"
 - Insiders may have access to critical data and knowledge of how to use it
 - Very tough problem to solve
 - Solutions
 - Enable authentication procedures
 - User privileges blackboard using authentication and proper registration to specific zones of information

- Networks that applications operate on also provide an attack vector
 - Examples of issues include limited bandwidth, loss of bandwidth (DoS, kinetic attack)
 - Solutions
 - Control center and network examining tools should detect loss of communication and attempt to regain functionality.
 - Software component movement or restart with state
 - Use of another mode of communication

- Better establishment of metrics / experimentation
 - Experimentation
 - Emulation of rogue agent behavior sending out messages it shouldn't
 - Conducting a DoS attack at critical pressure points
 - Emulation of component loss
 - Data modification Can DEEP intrinsically handle data changes during the process?
 - Metrics (area of interest)
 - Must be able to achieve the above issues
 - Rollback must be faster than full restart

- Establish a generic framework to apply to other programs
- Integration of AFRL IA in-house technology
- Multi-agent control
- Trust (can we employ wisdom of the crowds voting mechanic or control procedures to ensure trust?)

- Providing mission assurance is not an option, but a requirement for surviving in a contested network environment
- Emphasize building applications and systems that are reliable, self-sustainable and trustworthy
- Applying mission assurance using DEEP allows for experimentation as well as the creation of a generic model of mission assurance

Thank You and Questions

Chad.destefano@rl.af.mil

Backups

- Business Process Execution Language (BPEL)
 - Web service standard for specifying interactions
 - Model executable and abstract processes
- Business Process Modeling Notation (BPMN)
 - Graphical representation of business processes in a workflow
- Unified Modeling Language (UML)
 - Use standard UML diagrams to model the system
 - Component, sequence, activity diagrams