Evaluating dynamics of Organizational Networks via Network Entropy and Mutual Information

Yuan Lin ^α Kevin C. Desouza ^{α, β} Sumit Roy^β

^αThe Information School
^β Electrical Engineering, College of Engineering *University of Washington*

Command and Control Research and Technology Symposium 2009

Organizational performance & network structure

- Organizational performance depends on timely access to information and the ability to use this information to make appropriate decisions.
- The structure of organizational network (formal & informal) impacts communication patterns and thus information diffusion.

Organizational adaptation & Network dynamics


- Uncertain environment asks for continuous organizational adaptation
- Organizational adaptation depends on the structural agility of organizational networks
- Structural agility means conducting <u>intended</u> network evolution <u>efficiently</u>.
- What is "intended" and what is "efficient"?

Research Question

- What measures can we use to evaluate network evolution in terms of effectiveness and efficiency?
- Prospective measures are expected to
 - Capture primary structural features as they are pertinent to organizational performance
 - Provide a lens on network evolution, viewing it as a process of related stages
 - Be easily implemented

Information Entropy & Mutual Information

- Shannon (1949)
- Entropy H(X): the amount of uncertainty about a random variable (X), captured by a probability distribution over possible microstates.
- Mutual information I(X;Y):
 change in the amount of
 uncertainty about the desired
 variable (X) by observing a
 related variable (Y).

Entropy & Mutual Information for networks

- Uncertainty in network structure: the degree distribution
- Node degree: the number of one-hop neighbors of the node.
- Network degree (probability) distribution
 - If the network has N nodes and N_i of them have degree i, then the probability that a node with degree i is $p_i = N_i/N$.

Network Entropy (NE)

Definition:

Assume a network *X*. $NE(X) = -E[\log p(X)] = -\sum_i p(x_i) \log p(x_i)$, where $p(x_i) = N(x_i)/N(X)$. There are N(X) nodes in *X*, among which $N(x_i)$ nodes has the degree of *i*.

• Example: a 6-node network *X*

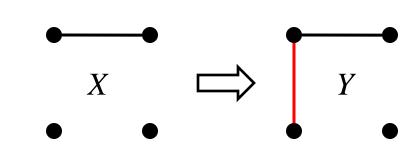
i	0	1	2	3	4	5
$P(x_i)$	0/6	3/6	2/6	1/6	0/6	0/6
$\log_2 p(x_i)$	-	-1	-1.58	-2.58	-	-

$$v_1$$
 v_2
 v_3
 v_4
 v_5
 v_6

$$NE(X) = -\sum_{i=0}^{5} p(x_i) \log p(x_i) = 1.46$$

Mutual Information (MI)

Definition

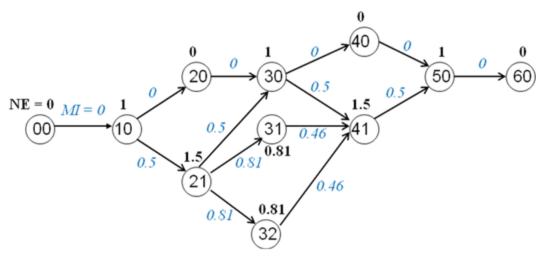

Assume a network whose degree distribution changes from X to Y. $MI(X;Y) = \sum_{i} \sum_{j} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i)p(y_j)}$, where $p(x_i, y_j) = p(y_j \mid x_i)p(x_i)$ is the joint probability of X and Y, when $X = x_i$ and $Y = y_j$. As previously $p(x_i) = \frac{p(x_i, y_j)}{p(x_i)p(y_j)} = \frac{p(y_j \mid x_i)p(x_i)}{p(y_j)} = \frac{p(y_j \mid x_i)p(y_i)}{p(y_j)} = \frac{p(y_j)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)p(y_i)}{p(y_i)} = \frac{p(y_i)p(y_$

,

Mutual Information (cont.)

• Example: a 4-node network changes from Stage X to Stage Y

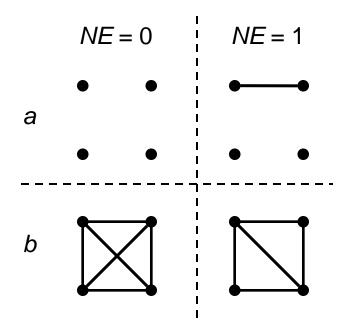
i	0	0	1	1
j	0	1	1	2
$P(x_i)$	2/4	2/4	2/4	2/4
$P(y_j)$	1/4	2/4	2/4	1/4
$p(y_j x_i)$	1/2	1/2	1/2	1/2
$p(x_i, y_j)$	1/4	1/4	1/4	1/4



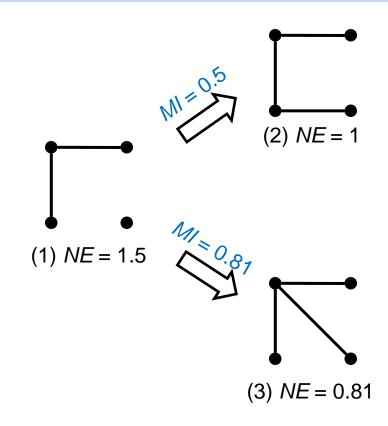
$$MI(X;Y) = p(x_0, y_0) \log \frac{p(x_0, y_0)}{p(x_0)p(y_0)} + p(x_0, y_1) \log \frac{p(x_0, y_1)}{p(x_0)p(y_1)} + p(x_1, y_1) \log \frac{p(x_1, y_1)}{p(x_1)p(y_1)} + p(x_1, y_2) \log \frac{p(x_1, y_2)}{p(x_1)p(y_2)} = 0.5$$

Measuring Network Evolution

#	topology	m	p(0)	p(1)	<i>p</i> (2)	p(3)	NE
00		0	4/4	0	0	0	0
10		1	2/4	2/4	0	0	1
20		2	0	4/4	0	0	0
21		2	1/4	2/4	1/4	0	1.5
30		3	0	2/4	2/4	0	1
31		3	0	3/4	0	1/4	0.81
32		3	1/4	0	3/4	0	0.81
40		4	0	0	4/4	0	0
41		4	0	1/4	2/4	1/4	1.5
50		5	0	0	2/4	2/4	1
60	\boxtimes	6	0	0	0	4/4	0


<u>Example</u>: Adding links to a 4-node empty network until it becomes fully connected, one link at a time

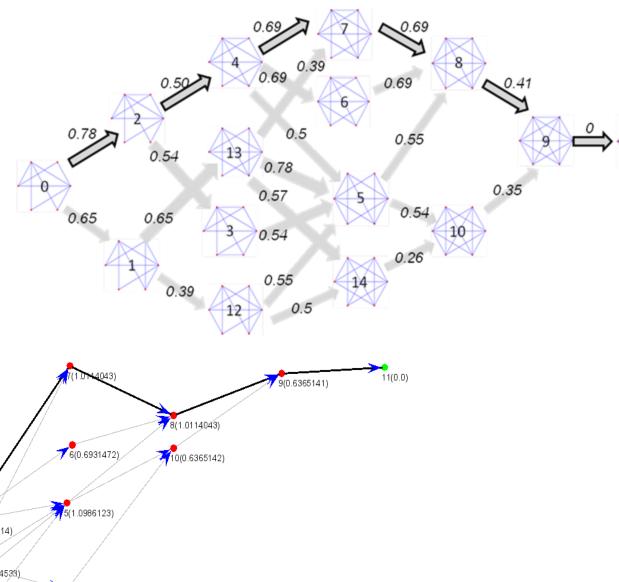
Graph of Network Evolution

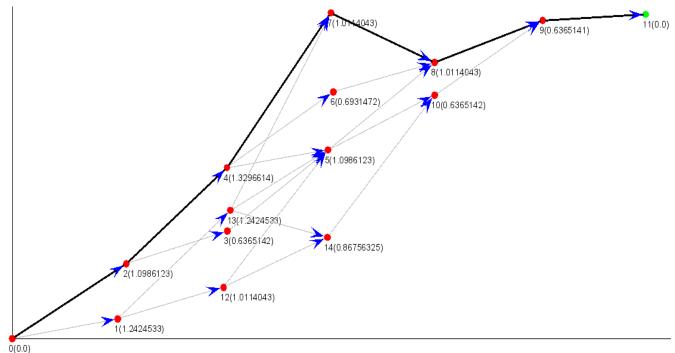

Measuring Network Evolution

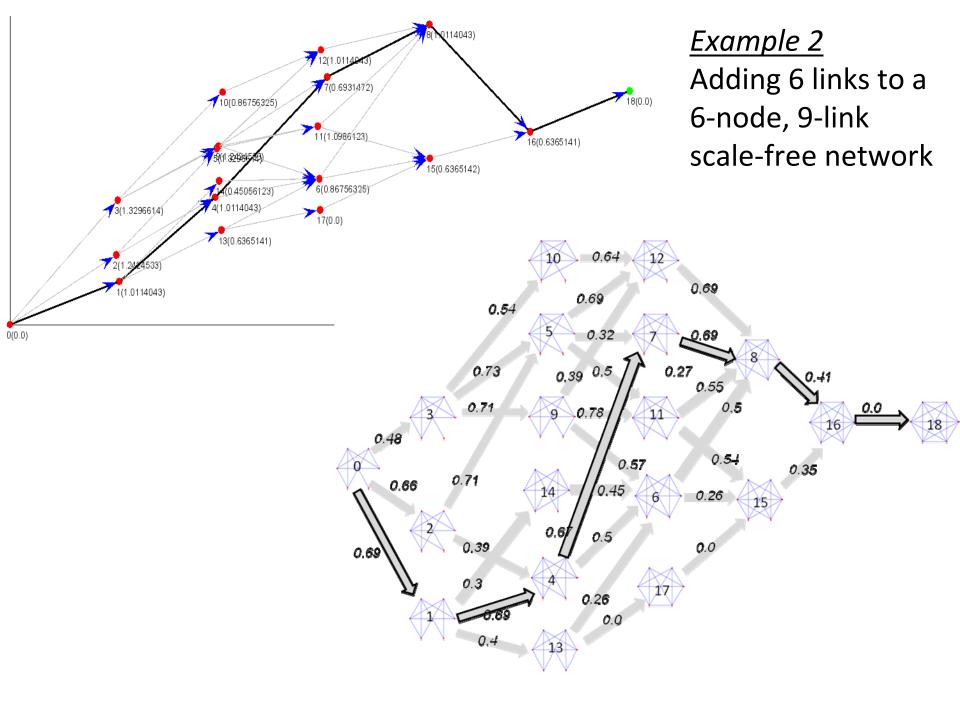
- NE measures the start and end network states (effectiveness).
- Small NE implies most nodes are similar in degree. Yet there are two probabilities:
 - a. <u>Centralized structure</u>: Most nodes connect to a few hubs and are thus separated from each other.
 There are relatively fewer links in the network
 - b. <u>Decentralized structure</u>: Most nodes connect to each other. There are relatively more links in the network.

Measuring Network Evolution

- MI measures the changing process (efficiency)
- Large MI implies more changes in network degree distribution, which can be interpreted as
 - a. Agility (bigger step to intended structure)
 - b. High change cost

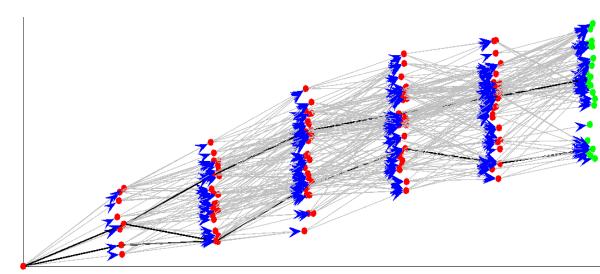

Level of centralization: (1) < (2) < (3)


The Best Path & the Agility of Organizational Network

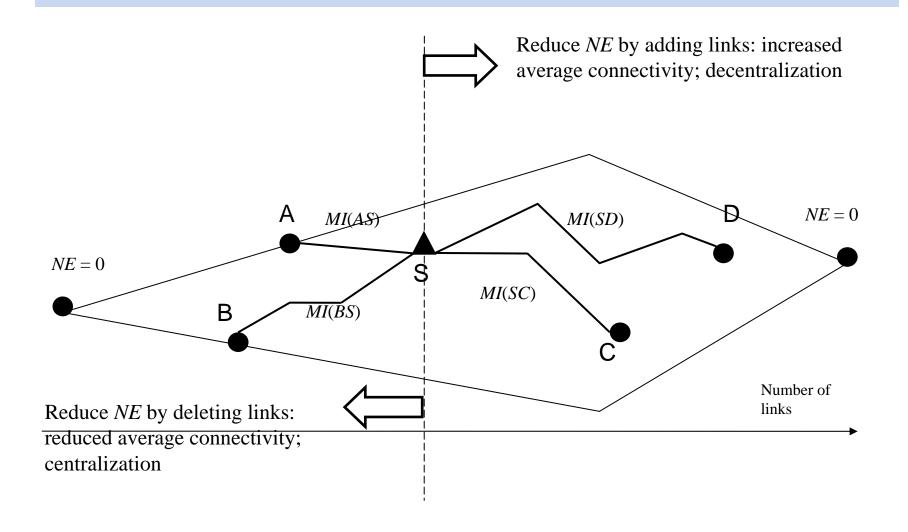

- Given the same type of network evolution (e.g., link addition), a path with large sum of MI indicates an agile organizational network, which moves between centralization and decentralization in the biggest magnitude
- The best path: the <u>longest</u> path in terms of *MI* in the graph of network evolution
- Find the best path
 - Construct the graph of network evolution
 - Associate each link in the evolution graph with the opposite number of MI
 - Find the shortest path using Bellman-Ford algorithm

Example 1

Adding 6 links to a 6-node, 9-link random network



Example 3


Adding 6 links to a 10-node, 33-link real-data network (data adapted from Knoke & Kuklinski,1982)

Example 4

Adding 6 links to an 11-node, 32-link real-data network (data adapted from Hlebec, 1993)

Future Work: Combination of NE & MI

Conclusions

- Two measures—NE & MI—for evaluating the dynamics of organizational networks
 - Built on network degree distribution
 - See network evolution as a process of related stages
- The evolution path with large sum of MI indicates an agile organizational network
- Together they show the relative advantage of different organizational adaptation strategies, regarding the intended topological state and the evolution path an organization should take

Thank You

For more information:

Yuan Lin linly@u.washington.edu

Kevin C. Desouza kdesouza@u.washington.edu

Sumit Roy sroy@u.washington.edu