Supporting C2 with a Service Oriented Framework for Opportunistic Sensors and Sensor Networks

Marianela Garcia Lozano, Pontus Hörling, Farshad Moradi, Edward Tjörnhammar

Outline

- C2 challenges and vision
- Related research
- End user Workshop and results
- ---> TOppS Objectives and Architecture
- -----> Framework design
- -----> Summary and conclusions
- Questions, discussion

C2 Challenges

- ----> Survivability
- -----> Rapid development
- ----> Interoperability
- ---> Sensor
 - situation-dependent behaviour

calibration, choice of sensing modes, data fusion, inter sensor queuing and communication, establish connections C2 systems, remote sensor management

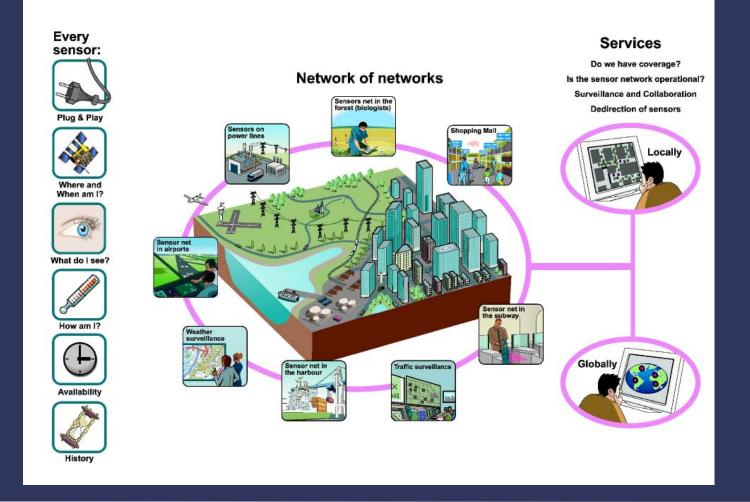
Workshop Scenario

Workshop Results

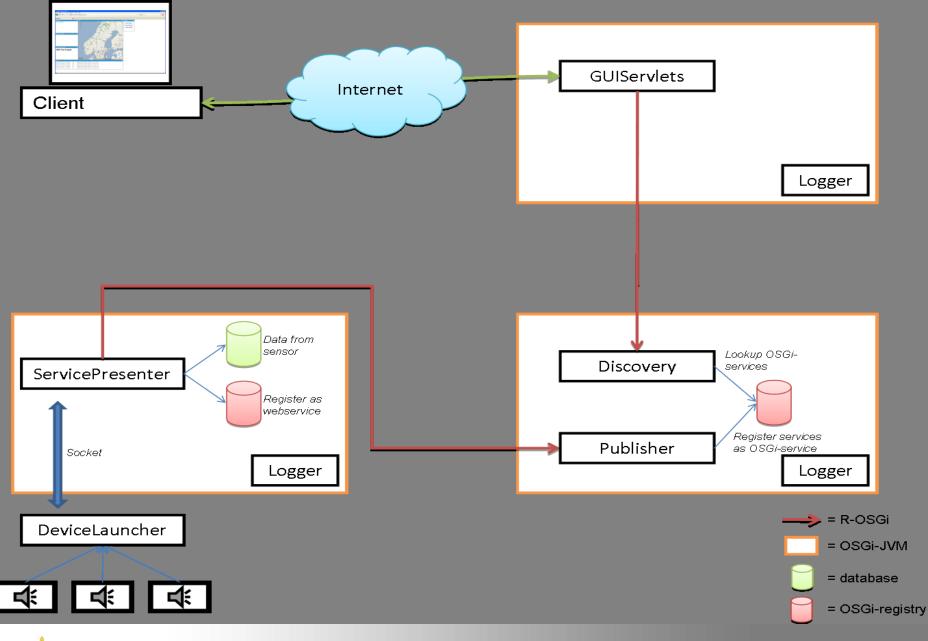
- Requests for a more modular system (both in software and hardware).
- ---> Possibility to incorporate legacy sensors as well as new ones.
- 🛶 Ease of use.
- Plug and Play (automatic sensor configuration, identification and calibration).
- ---> Web of trust amongst sensor producers.
- ---> Light weight, easy to deploy sensors.
- --> Better data control i.e. meta data needed about provided data.

Related Research

Opportunistic Sensors
NECC
OGC, SWE
SOA
Pervasive computing
SODA



Objectives


- ------ To allow opportunistic use of sensors
- ------ To view sensors as web services
- To design and implement a service based framework for Opportunistic Sensors and sensor networks
- ------ To test and evaluate methods and techniques for:
 - querying sensor services
 - composing sensor services
 - achieving plug and play of sensors
 - ------ achieving (location, type) transparency in sensor use

TOppS Vision

Modules: Device Launcher

Resides close to the Operating System and the specific hardware.

Provides for simple adaptation of a sensor to the framework to facilitate basic communication, i.e. bootstraps the sensor into the framework.

Is specialized and aligned to the communication protocol of a specific sensor type i.e. Bluetooth, USB, Ethernet, etc.

Modules: Presenter

 Presents the sensor as a service and describes its communication semantics, i.e. REST.

- Provide an access point for data and instruction streams.
- ----> Sends produced data for logging.

Modules: Logger

-----> Provides a temporary storage of sensor data

- Is implemented as a cyclic buffer in local mode w rt persistence constraints.
- -----> Loggers can be distributed or centralized.

Module: Broker (Publisher/Service Discovery)

- Broker provides a matching between user needs and available services.
- It provides a common interface towards other components.
- -----> It consists of two modules:
 - The publisher registers new services with the Registry.
 - The Service Discovery makes a lookup in the Registry for required services.

Modules: Registry & Composer

••• The Registry:

- keeps track of published services
- performs garbage collection
- might also be a distribution of registries
- ---> The Composer:

- translates the user requests into service types and service properties
- queries the Service Discovery module
- composes a new service if necessary

Composition process

Receive and analyze requests from a user (via a GUI)

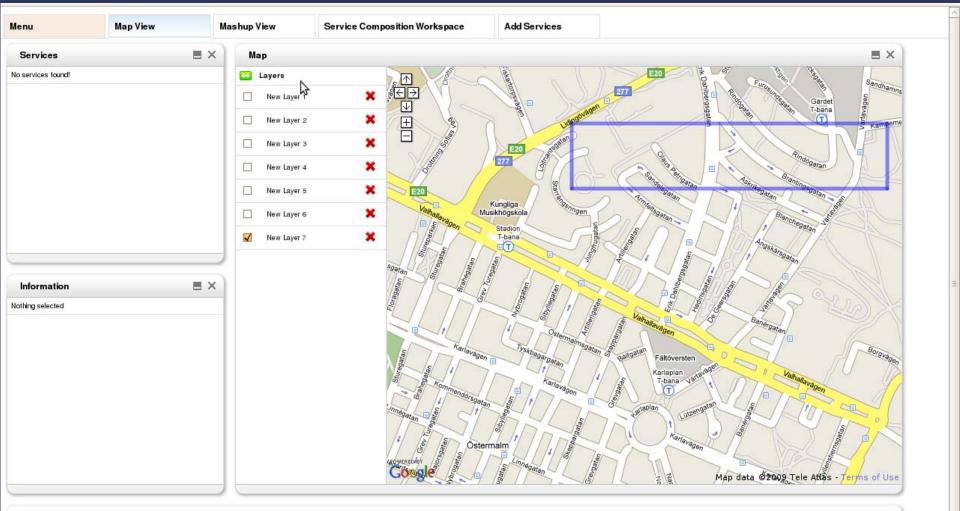
- Discover suitable services
- Possibly combine discovered Services into a new Service and store it in the registry for later use

Composition concept examples

Alarm service e.g. provide me with a video stream when someone enters room 111

- -----> Two heterogeneous sensors: motion detection and camera
- One triggers the other
- Speed service e.g. detect vehicle presence at two different points and calculate speed
 - Two homogeneous sensor services and one calculation service
- Coordinate transformation e.g. give someone's location in long – lat from sensor data in x, y, z
 - One location detection sensor and one transformation service

Modules: Security


Authenticates and Authorize users and services (via Spring Security/LDAP)

----> Three main points of interaction:

- between the GUI and the composer
- the service presenter and the Broker
 - Publishing services
 - Discovering services
- Sensor data is owned by producer

Map View (Sensor Overview)

Logs

Ξ×

Service Composition Workspace

Menu	Map View	Mashup View	Service Composition Workspace	Add Services	
Workspace					
💥 Delete	🕹 Save 📘 🍘 BackToFa	atherBox			
€	Sensor				4
\odot	A		\$		
№ ⇔		Serv	7	•	
	Sensor	tõ;		•	
***	Senso	- Cry		4	
\mathbf{P}	0,20				
	Sensor				- Drag an image from the sidebar to the graph - Doubleclick on a box to get into it
	H				- Doubleclick on a In/Out port to specific type - Shift- or Rightclick and drag for panning - Click and drag a vertex to move and connect
					4 4 4 Ø

Test and evaluation

- ---> The purpose is/was to test:
 - The framework
 - Discovery of services
 - Composition of services
 - Sensor information requests
 - Plug and play functionality of sensors

Second Workshop

Summary

-----> Presented:

- ---> C2 challenges.
- ---> Our vision.
- ---> First workshop and results.
- System outline for an opportunistic sensor-service framework and how it could be used to support C2 systems with opportunistic sensor data.
- Results and current status.

Questions?

----> Thank you!

