

www.aptima.com Boston • DC • Dayton Identifying Critical Resources and Operations of the Adversaries from Incomplete Data

Georgiy Levchuk Bruce Skarin Krishna Pattipati

Presented at 2009 ICCRTS

Date: 06/17/2009

- Definitions
- Problem
- Approach
- Results

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	2

Definition<u>s</u>

Approach

Results

- RED
 - adversaries, target of analysis

BLUE

- friendly forces, users of the tool, analysts

GREEN

- "normal" (local) population, not RED/BLUE

Resources

- people, materials, physical infrastructure, information, etc.

Problem

Definitions-1

Actors

- people, moving objects (e.g., cars), places

Actions

- performed by actors

Attributes

quantitative description for actors (capabilities, preferences, objectives) and actions (requirements, outcomes)

Examples of attributes:

- Choice/req-s attributes: why would a facility be used to carry an activity
 - Example: "assemble weapons in building with electricity supply and extra generator"
- Signal/event attributes: what data might be observable if the activity is taking place
 - Example: "weapons assembly activity would generate a spike in electricity use, which might be observed if electricity flow is monitored"

Sensors / data sources

- HUMINT, SIGINT, IMINT, MASINT, OSINT, GeoINT

Observations

quantitative and qualitative data obtained by sensors about actors and actions

Behaviors

- (patterns of) actions, either oriented by objective or not

Definitions-5: Behavior Types

Single objects...

entering building

digging a hole

Multiple objects...

Static objects...

gas station

kindergarten

Networks

- actors, their roles, and their relationships

Missions / scenarios

- plans composed of patterns of actions oriented by an objective

Behavior Signature

- network(s) + mission(s)

© 2009 Aptima Inc	Definitione	Prohlem	Annroach	Regulte	8
	Deminions	TIODICITI	πρρισαστι	INCOULO	0

Definitions-7: Missions = Coordinated Behaviors

Multiple places... Week 1: Recon area Week 1: Obtain materials Templ assemble 11 л ŵ purchase store+ Different actors... material ssemhl BioLab recon + attack 12 â Different times... store Week 3: Assemble bomb Week 5: VBIED attack

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	9
----------------------	-------------	---------	----------	---------	---

Data

all observations

Models

known patterns of behavior, missions, and network (sub)structures

© 2009, Aptima, Inc. Definitions Problem Approach Results	10
---	----

The Problem

 Given data about urban terrain and knowledge of possible hostile behaviors identify true <u>hostile</u> <u>activities</u> (what, where, when, & who)

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	11

Recognition/classification = <u>what HAS happened</u>

 given set of known behavior signatures and data about activities in the area of interest, identify what has actually been done and by whom (current state)

Forecasting = <u>what WILL happen</u>

 given current state (of networks and missions), identify what actions will be done in the future, where, and by whom (future state)

Learning = what MAY happen

 given sequences of behaviors, learn behavior signatures/patterns (possible states & dynamics)

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	12
----------------------	-------------	---------	----------	---------	----

The Problem: Expanded Schematic

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	13
----------------------	-------------	---------	----------	---------	----

- Knowledge of what <u>has happened</u> or <u>will happen</u> is not enough for action
- Need to understand <u>who</u> will do what and <u>when</u> and <u>where</u>
- To act against specific actions or actors, need to know who/what is CRITICAL, and who/what is not
- Example:
 - Suicide bomber may not be critical because he/she can be replaced by many others, but weapons supplier, or money provider, or shelter/transport source may be critical
- Conclusion:
 - Criticality analysis requires assessing actor-action dependencies and diverse set of possible futures

One More Challenge usually Avoided by Researchers

Not only does

RED signal is mixed with and confused by normal/GREEN events …

... but most importantly

 RED interacts with GREEN (socio-cultural environment), changing its actors and actions

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	15

Our Approach: Advanced Schematic

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	16
----------------------	-------------	---------	----------	---------	----

Component Technologies

Behavior recognition: RED Network and Mission

Social terrain forecasting: Support of RED in Environment

Resource utilization and criticality assessment:

Criticality of RED Resources and Operations

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	
----------------------	-------------	---------	----------	---------	--

- Used several real-world data sets supplemented by synthetic data with ground truth for evaluating our technology
- Achieved >70% accuracy in identifying RED networks and missions under very high noise levels
- Develop forecasts of social terrain indicating changes in RED networks, resources, and support for their operations
- Develop forecasts of alternative future operations and involvement of RED actors
- Develop robust metrics of RED resource and operation criticality derived directly from resource utilization profiles obtained by recognition and forecasting models

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	18
----------------------	-------------	---------	----------	---------	----

Analysis' Inputs and Outputs

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	19
----------------------	-------------	---------	----------	---------	----

Assessing Criticality: Develop Potential Actor-Action Execution Schedules for Unfinished Operations

Input: Predictions of RED Missions, Organizations, and Population

Output: Simulated Actor-Action Schedules (*who does what when, where, and how*)

(b) Alternative Schedules for Prediction 2: Organization=4, Mission=M2

Criticality Analysis: Score Criticality of RED Resources/Actors to their Mission's Success

	Resource	utility loss for p	prediction 1	Normalized Expected Task	Resource	utility loss for p	prediction 2	Normalized Expected Task	Total Normalized	-
				Utility for				Utility for	Expected Task	Top 3 most
Actors	Schedule # 1	Schedule # 2	Schedule # 3	Prediction 1	Schedule # 1	Schedule # 2	Schedule # 3	Prediction 2	L Itility	
ST-2	6	6	1	0.3333333333	3	6	3	0.285714286	0.319047619	
ET-2	6	0	6	0.307692308	0	6	0	0.142857143	0.258241758	RED actors
ST-1	1	1	6	0.205128205	6	1	6	0.30952381	0.236446886	
ET-3	0	6	0	0.153846154	0	0	0	0	0.10/032300	
ET-1	0	0	0	0	6	3	6	0.357142857	0.107142857	
AT-1	1	1	1	0.076923077	1	1	1	0.071428571	0.075274725	
AT-2	1	1	1	0.076923077	1	1	1	0.071428571	0.075274725	
TT-1	1	0	0	0.025641026	6	0	1	0.166666667	0.067948718	
TT-2	0	1	0	0.025641026	1	6	0	0.166666667	0.067948718	
TT-3	0	0	1	0.025641026	0	0	6	0.142857143	0.060805861	
RT-1	0	0	0	0	0	0	0	0	0	
RT-2	0	0	0	0	0	0	0	^	^	
FT-1	0	0	0	0	0	0	0			$u_n^{ij}(r)$

- Example: actor **Support Team-2** scores the highest
 - This result matches the fact that this actor participates in all forecasted alternative mission execution policies for RED and is involved in early stages of its operations
 - Its disruption will degrade RED's performance the most and thus would provide the highest benefit to BLUE
- During our analysis, we obtained the criticality scores of RED resources (members of hostile organization and areas where RED may perform their actions) that have been aligned well with the actual involvement of those resources in future hostile activities

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	21

Planning designs actions

- Actions are designed against specific actors or actions
 - Specific actors or actions can be determined analyzing their criticality to overall RED objectives within corresponding behavior models
 - **RED** is hidden in the GREEN environment and interacts with it
 - **RED** changes its behavior over time
- Therefore, to be successful, planning requires integrated recognition, learning, and forecasting tools
 - Various tools have been under development in several programs sponsored by DoD, and we have recently started to integrate them providing more accurate products for a variety of data sets

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	22

