

www.aptima.com Boston • DC • Dayton Developing Automated Intelligence Collection Plans from Probabilistic Behavior Estimates

Georgiy Levchuk Scott Galster Krishna Pattipati

Presented at 2009 ICCRTS

Date: 06/17/2009

- Definitions
- Problem
- Approach
- Results

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	2

Definition<u>s</u>

Approach

Results

- RED
 - adversaries, target of analysis

BLUE

- friendly forces, users of the tool, analysts

GREEN

- "normal" (local) population, not RED/BLUE

Resources

- people, materials, physical infrastructure, information, etc.

Problem

Definitions-1

Definitions-2

Actors

- people, moving objects (e.g., cars), places

Actions

- performed by actors

Attributes

quantitative description for actors (capabilities, preferences, objectives) and actions (requirements, outcomes)

Examples of attributes:

- Choice/req-s attributes: why would a facility be used to carry an activity
 - Example: "assemble weapons in building with electricity supply and extra generator"
- Signal/event attributes: what data might be observable if the activity is taking place
 - Example: "weapons assembly activity would generate a spike in electricity use, which might be observed if electricity flow is monitored"

Definitions-4

Sensors / data sources

- HUMINT, SIGINT, IMINT, MASINT, OSINT, GeoINT

Observations

quantitative and qualitative data obtained by sensors about actors and actions

Behaviors

- (patterns of) actions, either oriented by objective or not

Definitions-5: Behavior Types

Single objects...

entering building

digging a hole

Multiple objects...

Static objects...

gas station

kindergarten

Definitions-6

Networks

- actors, their roles, and their relationships

Missions / scenarios

- plans composed of patterns of actions oriented by an objective

Behavior Signature

- network(s) + mission(s)

© 2009 Aptima Inc	Definitione	Prohlem	Annroach	Regulte	8
	Deminions	TIODICITI	πρρισαστι	INCOULO	0

Definitions-7: Mission = Action Precedence Graph

Model network nodes

 Actions/tasks to be performed by actors

Model network links

 Precedence, info, material flow

Attributes

- Requirements for task/activity resources
- Capabilities of actors/facilities needed for carrying the tasks
- Utilities & preferences

Password communicated

Example of RED Mission

Approach

Results

Definitions-8: Missions = Coordinated Behaviors

Multiple places... Week 1: Recon area Week 1: Obtain materials Templ assemble л ŵ purchase store+ Different actors... material ssemhl BioLab recon + attack 12 â Different times... store Week 3: Assemble bomb Week 5: VBIED attack

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	10
----------------------	-------------	---------	----------	---------	----

Definitions-9

Data

all observations

Models

known patterns of behavior, missions, and network (sub)structures

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	11

The Problem

 Integrate collection planning with probabilistic situation assessment models

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	12
			•••		

- Improve reliability/robustness of situation assessment
 - disambiguate among current predictions
- Identify critical missing information
- Prioritize collection actions to achieve highest information gain under cost constraints

Prediction as Hypotheses Testing

© 2009, Aptima, Inc. Definitions Problem Approach Results ?	© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	14
---	----------------------	-------------	---------	----------	---------	----

Addressed Need: Identification of Critical Information

- Prediction consists of
 - RED mission
 - State of RED mission
 - Mapping of RED mission to areas and actors
 - Probability of mission & mapping

- Need to disambiguate
 - Different RED missions
 - Different RED mission states
 - Different RED mission mappings
- Prediction defines the task mapping for each actor

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	15

Our Approach Workflow

© 2009, Aptima, Inc. Definitions Problem Approach Results	16
---	----

The Meaning of "Probabilistic Disambiguation"

- Simple disambiguation
 - Suppose have multiple information elements (aka predictions) that are defined via vectors of features $\overline{v}^i = (x_1^i, ..., x_n^i), i = 1, ..., M$
 - Then if a feature k is
 - the same for all elements, i.e. $x_k^i = x_k^j, i \neq j$, then it is NOT disambiguating
 - different for all elements, i.e. $x_k^i \neq x_k^j, i \neq j$, then it is most disambiguating

- Probabilistic disambiguation
 - Weights on the "benefit" of disambiguating certain elements

2009, Aptima, Inc.	Definitions	Problem	Approach	Results	17

Idea for Plan Design: Prediction's Behavior Signature Profiles

- Each actor/area is target for intel collection
- For each prediction, we develop actor/area profiles based on mapped task features
- This allows us to see differences that a collection at the actor can make (how many predictions have distinct profile at the actor)

Formal Plan Design Process

- Generalizations to information-theoretic planning
 - Actors = information elements
 - Action types = features
 - Action mapping = actor feature vectors
- Objective:
 - Maximize Information Gain (minimize entropy) of collection actions

$$gain(O) = \underbrace{H(G_M, S_M | G_D)}_{\text{current information}} - \underbrace{H(G_M, S_M | G_D, O)}_{\text{new information}} - \underbrace{H(G_M, S_M$$

- Process:
 - Prioritize information elements in the order of increased information gain (reduced entropy) constrained by the cost of commensurate collection actions
 - Cluster related collection actions
 - Generate the plan as a decision tree with each decision nodes defined with information collection action and each outgoing link associated with possible outcome of collection

- Used several real-world data sets supplemented by synthetic data with ground truth for evaluating the technology
- Showed that ISR collection planning improves the accuracy of situation assessment by targeting the information collection most critical to current predictions

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	20

Example Data Set: Terrain

- Terrain included buildings and actors of various types
- Information (possibly noisy) about their capabilities / objectives was available

(a) Area Layout for Dataset

Area	Function
BioLab	Plant
Mall	Infrastructure
Airport	Infrastructure
Park	Social
Farm	Infrastructure
Government	Government
FinancialService	Infrastructure
Oil/Gas Facilities	Military
SensorNet	NetworkNode
Military Administration	Military
WaterStation	Infrastructure
AdminAccount	Government

(b) Example of Building List and Functions

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	21

Example Data Set: Actors and Actions/Tasks

Variety of actions and actors was modeled in the dataset

						Res	ource Re	equirem	ents					Target Requirements												
Role	SZ	SEC	STR	MAT	TEC	KNW	MON	REC	POIS	AINF	PINF	BACT	CSENS	SZ	SEC	STR	MAT	TEC	KNW	MON	REC	POIS	AINF	PINF	BACT	CSENS
Acquiring poison	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Recon	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Storing explosive materials	0	0	0	1	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0
Assemble bomb	0	0	0	1	0	1	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0
Insert Trojans to Capture Additional Passwords and Changes	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Siphon Funds from Compromised Accounts and Change Passwords to Lock out Users and Admins	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Gain control over network to disable/manipulate sensors/monitoring capabilities/system	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Create false threat of bomb attack against government building	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(a) RED Model Tasks/Activities

							Capat	oilities					
Facility	SZ	SEC	STR	MAT	TEC	KNW	MON	REC	POIS	AINF	PINF	BACT	CSENS
BioLab	2	0	1	0	1	0	0	0	1	0	0	0	0
Mall	4	1	3	0	0	0	2	0	0	0	0	1	0
Airport	10	0	3	3	2	0	0	0	0	0	0	0	1
Park	3	3	0	0	0	0	0	0	0	0	0	0	0
Residential	1	5	1	0	0	0	0	0	0	0	0	0	0
Commercial	3	2	3	1	2	0	1	0	0	0	0	0	0
AdminAccount	0	0	0	0	0	0	0	0	0	1	0	0	0
SensorNet	0	0	0	0	0	0	0	0	0	1	0	0	1

							Capal	oilities					
Role	SZ	SEC	STR	MAT	TEC	KNW	MON	REC	POIS	AINF	PINF	BACT	CSENS
SecurityDetail	0	1	0	0	0	0	0	0	0	0	0	0	0
Hackers	0	0	0	0	0	0	0	0	0	1	1	1	0
Attacker	0	0	0	0	0	0	0	0	1	0	0	0	0
Financier	0	0	0	0	0	0	1	0	0	0	0	0	0
Recon	0	0	0	0	0	0	0	1	0	0	0	0	0
Bombmaker	0	0	0	0	0	1	0	0	0	0	0	0	0

(c) RED Actors

(b) RED Areas/Facilities

9	200	09,	Aptima,	Inc.
---	-----	-----	---------	------

Example Data Set: RED Mission Hypotheses

 Several hypothetical RED missions were designed for dataset, for example:

Mission: Airport Capture/Hostages

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	23

Example Data Set: Observations

 Simulated events have been converted into actor profiles thru noise component

© 2009, Aptima, Inc.

Definitions

Problem

Approach

Several types of errors introduced into observations

(a) True Attribute Vector

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	25
----------------------	-------------	---------	----------	---------	----

Example of Analysis: Predictions/mappings

Task Name	Mapped Area/Actor	Mapped Area/Actor	Mapped Area/Actor
	(1)	(2)	(3)
Attacking with explosives	Military	Military	Military
	Administration-1	Administration-1	Administration-1
Diversionary explosives attacks/Stage	Government	Government	Government
Mine/Crack User and Admin Passwords for Accounts	PersonalAccount-2	PersonalAccount-3	Bank
Insert Trojans to Capture Additional	Military	Military	Bank
Passwords and Changes	Administration-3	Administration-1	
Create false threat of bomb attack	PersonalAccount-3	PersonalAccount-3	PersonalAccount-3
Sell all stocks, bonds, and securities	Bank	Bank	Bank
Siphon Funds	Military	Military	Military
	Administration-2	Administration-2	Administration-2
Gain control over network	Military	Military	Military
	Administration-1	Administration-1	Administration-1
% correct	100%	75%	75%

Mapping of Actions to Actors (yellow cells indicate incorrect predictions)

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	26

Example of Analysis: Sensitivity of Predictions

- Accuracy goes down when receive more but ambiguous observations
- Indicates importance of collecting data that disambiguates rather than data that increases the confusion

2009, Aptima, Inc.	Definitions	Problem	Approach	Results	27

© 2009, Aptima, Inc.

Example of Analysis: Profiles & Critical Information

- Example behavior signature profiles for the analyzed dataset
 - Task profiles = mapped task types (high-level info element disambiguation analysis)
 - Feature/event profiles = aggregated task requirements (detailed disambiguation analysis)

	Task Profile				Feat	ture/Ever	nt Profile				
Map1		KNW	ATK	AINF	PINF	BACT	CSVC	CINFR	HACK	PER	Feature/event profile for "Military
Military Administration-1	[1,0,0,0,0,0,0,1]	0	1	1	0	0	0	0	1	1	Administration-1" looks the
Military Administration-2	[0,0,0,0,0,0,1,0]	0	0	0	1	1	0	1	1	0	same for all three mappings –
Government	[0,1,0,0,0,0,0,0]	1	0	0	0	0	0	0	0	1	additional data collection will not
PersonalAccount-2	[0,0,1,0,0,0,0,0]	0	0	0	0	0	0	0	1	0	disambiguate these mappings
PersonalAccount-3	[0,0,0,0,0,0,0,0]	0	0	0	0	0	0	0	0	0	
Bank	[0,0,0,0,0,1,0,0]	0	0	0	1	0	1	1	1	0	
Map2											
Military Administration-1	[1,0,0,1,0,0,0,1]	0	1	2	0	0	0	0	2	1	
Military Administration-2	[0,0,0,0,0,0,1,0]	0	0	0	1	1	0	1	1	U	
Government	[0,1,0,0,0,0,0,0]	1	0	0	0	0	0	0	0	1	"PersonalAccount-3" can
PersonalAccount-2	[0,0,0,0,0,0,0,0]	0	0	0	0	0	0	0	0	0	disambiguate all three mappings
PersonalAccount-3	[0,0,1,0,1,0,0,0]	0	0	1	0	0	0	1	1	0	It has 0-feature vector for
Bank	[0,0,0,0,0,1,0,0]	0	0	0	1	0	1	1	1	0	mapping 1, and its non-zero
Мар3											feature vectors for mappings 2
Military Administration-1	[1,0,0,0,0,0,0	0	1	1	0	0	0	0	1	1	and 3 are distinguished by
Military Administration-2	[0,0,0,0,0,0,1 0]	0	0	0	1	1	0	1	1	9	feature type/event "HACK"
Government	[0,1,0,0,0,0,0,0,0]	1	0	0	0	0	0	0	0	1	
PersonalAccount-2	[0,0,0,0,0,0,0,0,0]	0	0	0	0	0	0	0	0	0	
PersonalAccount-3	[0,0,0,0,1 0,0,0]	0	0	1	0	0	0	1	0	0	
Bank	[0,0,0,0,1,1,2,0]	0	0	0	1	0	1	1	1	0	
"PersonalAccount-2" cannot disambiguate all three mappings as it has same 0-feature vectors for mapping 2 and 3											
Definitions				Prob	olem				Ap	oroa	ach Results

- Developed approaches for automating integration between adversarial reasoning / situation assessment and ISR collection planning technologies
- Obtained high accuracy of behavior/mission pattern recognition and activity mapping for large levels of data uncertainty
- ISR collection planning improves the accuracy of the situation assessment further by targeting the information collection most critical to current predictions
- We have illustrated the process of situation assessment and ISR planning on the example dataset

© 2009, Aptima, Inc.	Definitions	Problem	Approach	Results	29

