Utilizing Resource Brokering Within Virtual Environments to Support Distributed Collaboration and Rapid Team Configuration

> Robert Holder & Dr. R. Scott Cost JHU/APL

14th ICCRTS: C2 and Agility 17 June 2009

The Johns Hopkins University

APPLIED PHYSICS LABORATORY

Outline

- Background
 - Dynamic Collaborative Action Teams (DCAT)
 - Resource Brokers (RB)
- Virtual Environments
- Prototype
- Issues
- Next Steps

Background

- Dynamic Collaborative Action Teams (DCAT)
 - Framework for rapidly creating teams of experts
 - Use of predefined requirements "patterns"
 - Procedure to match and solicit appropriate personnel
 ACTIVATE

Background (2)

- **Resource Broker**
 - Component of DCAT framework
 - Determines feasible team given pattern and resource metadata

🕌 Ty stClientGUI _ 🗆 🗵 Results Facts Rules Engine Pattern: ChemBioAttack 💌 -Role Definition Wed Aug 13 15:46:34 EDT 2008 Cocal adapter TeamResult:{ [Team 1: POLICE(required)->Resource[POLICE((id=108),(lastName=Gree C RoleDefinition Rule Server: http://localhost/ [Team 2: HAZMAT(required)->Resource[HAZMAT((id=103),(lastName=Jone Resource Definition-Cocal adapter C Resource Fact Server: http://localhost/ C ODBC Resource Server: jdbc:odbc:DCATResource suggested -Resource Status Definition -Cocal adapter solutions C ResourceStatus Fact Server: http://localhost/ invoke resource -Team Constraints Cocal adapter request C TeamConstraint Rule Server: http://localhost/ Write results to file: .\output.xml Send Server Request Generate Console Properties File • Clear Tabs Start Local Web Server

select pattern,

e.g. "ChemBioAttack"

Real-World DCAT Challenges

- Collaboration
 - Coordination of time and space
- Visualization
 - Limited dimensionality
 - 2D display, 3D physical model
 - Limits due to physics of real world
 - no "zoom" capability
 - difficult to see "inside" model
- Training & Simulation
 - Time and expense to set up scenarios
 - Limited ability to replay performance

Overview of Virtual Environments

sophisticated meeting spaces features beyond physical world

Overview of Virtual Environments (2)

About	Space	Find	View	Avatar	Talk	Tools	?

Resource Brokering in Virtual Environments: Motivating Scenario

G. Reece, A. Tate, D. Brown, and M. Hoffman. The PRECiS Environment. In Proceedings of National Conference on Artificial Intelligence (AAAI-93) DARPA-RL Planning Initiative Workshop, 1993.

Motivating Scenario (2)

Prototype

- Proof-of-concept implementation
 - Croquet environment
 - Open source freeware
 - Peer-to-peer
 - Based on Smalltalk and Squeak
 - Import of real world resources into virtual environment
 - Ability to collaborate by moving between worlds
 - Shows resource broker ability to access and make choices based on environment state

Alice (USA) has a Resource Broker

Prototype (3)

 Alice imports Resource Broker interface into virtual environment

Prototype (4)

Paul (Pacifica) transitions to Alice's virtual world

Prototype (5)

- Alice and Paul use the Resource Broker
- Resource Broker generates team based on awareness of current participants in virtual world

<'body'> [POLICE] [true] [POLICE] [id] [108] [lastName] [Green] [language] [English] [yearsExperience]

[2] [firstName] [Gene] [HAZMAT] [true] [HAZMAT] [id] [105] [lastName]

[Smith] [skill] [mustardGas] [language] [English] [firstName] [Sally] [HAZMAT] [true] [HAZMAT] [id] [103] [lastName] [Jones] [skill] [anthrax] [language] [English] [firstName] [Bob] [POLICE] [true]

Challenges Moving Forward

- Diverse environments
- Unexpected constraints
- Security and privacy
- Interoperability between virtual environments
- Communication between physical and virtual environments
- Connectivity
- Collaboration stability

Diverse Environments

- Virtual environments can facilitate collaboration between disparate individuals and resources.
- The consequence of this is a wider range of differences that must be accounted for.
- In terms of individuals, we may have to consider differences in terminology and culture.
- In terms of resources, we may have to consider data formats and platform assumptions.

Unexpected Constraints

- In software engineering, when the behavior of an element is unexplainable given the published interface, it is called a "leaky abstraction."
- Virtual environments promise the ability to collaborate in a manner that hides the underlying physical representation.
- However, these physical implementations have constraints that can lead to unexpected behavior in the virtual world.
- Consider two virtual entities supported by one physical server.

Security and Privacy

- In physical environments, we rely on established physically-based artifacts such as walls, doors, and locks.
- Such protocols in virtual environments have less meaning, as they are enforced not by laws of nature, but code in computers which may be flawed or compromised.
- Privacy in virtual environments has a different meaning as well because all information to render a virtual entities ultimately must be transported from a server and interpreted by a client.

Virtual Environment Interoperability

- The current state of virtual environments is immature enough that many are being developed for specialized purposes.
- We are starting to see efforts towards standardization and interoperability between virtual environments.
- Currently, a sophisticated widget that works in one virtual environment will likely have reduced capability, and, more likely, be useless.

Communication Between Virtual and Physical Environments

- Transitioning resources between virtual and physical environments can be a nontrivial exercise.
- In particular, a resource that is useful in a virtual environment may not be easily represented in a physical environment.

Connectivity

- Both lack of connectivity and overabundance of connectivity makes for difficulty in finding and choosing appropriate resources to suit collaboration needs.
- High connectivity results in difficulty in choosing the most appropriate resource.

Less than expected connectivity leads to too few results.

21

Collaboration Stability

- Ease of changing business partners and the increase pace of business leads shorter-lived collaborations
- Similar effects lead to collaborations in which needs and requirements change.
- Virtual environments are both affected by and contribute to this effect.
- A good Resource Broker will take these possibilities into account, suggesting solutions that are versatile or easily adapted, or allow a user to easily change specifications.

Next Steps

- Advance government and DoD awareness of virtual environments
 - Some current use, e.g. military training
- Understand how to best utilize virtual environments to address specific real world needs, e.g.
 - Usability
 - Data manipulation
 - Collaboration over shared information
- Develop requirements that determine platform selection

Next Steps (2)

- Integration across virtual environments
- Integration of virtual environments with real world
 - Sharing resources across virtual world / real world boundaries

Summary

- Virtual environments have potential to be a powerful tool in collaborative work.
- Resource Brokering automates resource acquisition for collaborations.
- APL has implemented a proof-of-concept demonstration of a resource broker operating in a virtual environment.
- Full utilization of this concept requires addressing several key challenges.
- References
 - R. Scott Cost, Markus E. Dale, David P. Glock, James Mayfield, Christine O. Salamacha, and David P. Silberberg. Support for dynamic collaborative action teams. In *Proceedings of the Command and Control Research and Technology Symposium (CCRTS 06)*, 2006.
 - G. Reece, A. Tate, D. Brown, and M. Hoffman. The PRECiS Environment. In *Proceedings of National Conference on Artificial Intelligence (AAAI-93) DARPA-RL Planning Initiative Workshop*, 1993.
 - Christine O. Salamacha, N.R. Briscoe, and Steven L. Forsythe. Managing Dynamic Collaborative Action Teams in a Net-Centric Environment. In Proceedings of 10th International Command and Control Research and Technology Symposium (ICCRTS): The Future of C2, 2005.
 - Christine O. Salamacha, R. Scott Cost, Michael Cramer, Timothy Frey, and David P. Glock. Dynamic collaborative action teams: Implementing a transformational concept. *In Proceedings of Command and Control Research and Technology Symposium (CCRTS 06),* 2006.