Evaluation of Buckeye/LIDAR High-Resolution Data

JGES Experiment 3

Walter Powell - GMU

Kathryn Blackmond Laskey - GMU

Leonard Adelman - GMU

Ryan Johnson - GMU

Michael Altenau - VIECORE

Andrew Goldstein - VIECORE

Daniel Visone - AGC

Ken Braswell - AGC

Thanks to the Team!

- U.S. Army Geospatial Center
 - Michael Powers, Technical Director
- Army Maneuver Battle Lab Live Experimentation Division
 - MAJ Mike Cahill
- Marine Corps Warfighting Lab
 - Maj Martin
 - MSgt Sheaffer
 - Mr. Vicklund
 - Capt Daine
 - Cpl Tredo

Background

- Geospatial is focal point of military planning
- Geospatial Decision Support Products are rapidly penetrating all command levels
- Empirical research is needed to:
 - Evaluate military value of emerging products
 - Prioritize future product development

Why Conduct Experiments?

- Most military R & D tests to requirements
- Hypothesis driven to test value-added
- Statistically significant results
 - Quantitative not just qualitative feedback
- Answer questions:
 - What is the value added for the warfighter?
 - Does the product meet operational needs?
 - How can the product be improved?

Purpose of Research Program

Sponsored by

- U.S. Army Engineer Research and Development Center (ERDC)
- U.S. Army Geospatial Center (AGC)

• Purpose:

- Assess the value-added to Military Decision Making from use of Geospatial Decision Support Products (GDSPs)
- Evaluate the value-added of the Buckeye/LIDAR highresolution imagery and elevation data

Buckeye / LIDAR

- Objective:
 - Provide unclassified high-resolution geospatial data that can be applied to tactical missions
- Products High Resolution Data
 - Buckeye
 - 10-15 cm (4-6 in) resolution color digital imagery
 - LIDAR
 - Digital Terrain Elevation Data level 5 (DTED5) comparable elevation data
 - Elevation data +/- 1 meter at 1 meter spacing
 - Co-located on helicopter / UAV
- Buckeye/LIDAR products are currently available in theater on the NIPR and SIPR nets
 - 38,000 sq km data on Iraqi urban areas and supply routes

What is it?

←Without Buckeye?

Controlled Image Base – 1 meter (CIB1)

Buckeye Imagery

₩With Buckeye?

Looks like a school →

Current Study

- Study Objective
 - Assess the benefits of Buckeye/LIDAR to military planners in a complex and realistic scenario
 - To determine the effect of high-resolution data on military decision-making
 - Different approach from two previous experiments (presented at 12th, 13th, 14th ICCRTS)
 - Varied the resolution of data while maintaining computer tools constant.

Study Method

• Mission:

- Evaluate three potential sites for Vehicle Control Point
- Infantry platoon
- Actual in-country urban data
- Three sites per trial

Three trials

- 1) With Buckeye/LIDAR data
- 2) With CIB1/DTED2 data
- 3) CIB1/DTED2 trial with Buckeye/LIDAR data

Hypotheses

- 1. Participants who use the *Buckeye/LIDAR* would be able to derive information more accurately
- 2. Participants who use the *Buckeye/LIDAR* would require *less* additional information in order to actually establish a VCP
- 3. Participants who use the *Buckeye/LIDAR* would produce output *more quickly*
- 4. There will be *little or no learning effect* due to evaluation design
- 5. Participants will consider using the Buckeye/LIDAR superior with respect to speed, ease of use, usefulness of information and overall

Study Design

- Within Participants design with respect to System used:
 - Each subject will evaluate scenarios consisting of three sites in both conditions (with Buckeye/LIDAR data and with CIB1/DTED2 data)
- Between Participants design
 - System Order (which system is used first)
 - Scenario Order (which scenario is used first)_
 - Design was counterbalanced on scenario order and system order
- Study design will maintain the required statistical power and minimize the number of participants
- Training prior to trials
 - CSE (1 hour) and
 - Buckeye/LIDAR (1/2 hour)
 - Sample evaluations (1 hour)

Study Design (cont)

-Participants

- 15 U.S. Army Personnel
 - In country experience establishing VCPs
 - Experienced varied: command, platoon Sgt, fire team leader
 - Ft. Lewis (11) and Ft. Benning (4).
- Anonymous
 - Randomly assigned participant numbers
 - Randomly assigned data designators
- Experience Questionnaire
 - Unable to control for experience
 - Post Hoc analysis
- Randomly assigned to groups

Experimental Tasks

- Evaluate three sites as to its potential for establishing a VCP
- Specific tasks:
 - Evaluate the potential of each site on 28 criteria in 6 categories
 - Area Characteristics (guidance)
 - Requests for additional information (RFIs)
 - Respond to questions requiring deriving information from the data
 - Respond to a questionnaire designed to obtain the participants perceptions of the potential relative value of Buckeye/LIDAR and CIB1/DTED2
 - Weight categories and criteria
 - Participate in post-trial debrief

Measures - Objective

- Answers to questions requiring analysis of the data (H3)
 - Imagery Questions
 - Elevation Data questions
- Need for additional information RFIs (H2, H4, H5)
 - Proxy for the value of information contained in the data
 - 28 Criteria in 6 categories
- Time to complete scenario (H1, H4, H5)
 - Significant in prior experiment
- Responses to a questionnaire evaluating subjective perception of Buckeye/LIDAR (H6)
 - 10 criteria
 - Imagery and elevation

Accuracy of Information (H3)

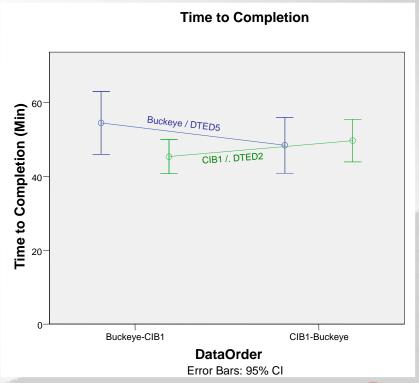
- In all cases participants were able to derive more accurate information from Buckeye/LIDAR data than from CIB1/DTED2 data [p < 0.001]
 - Chi-Squared tests on answers to questions

	Percentage of Correct Responses			
	Buckeye	LIDAR	CIB1	DTED2
Overall	72.80%		15.60%	
Elevation		74.40%		23.40%
Imagery	71.20%		7.80%	

Requests for Additional Information (H2)

• Participants using Buckeye/LIDAR required less additional information [p < 0.001], on average, than when using CIB1/DTED2

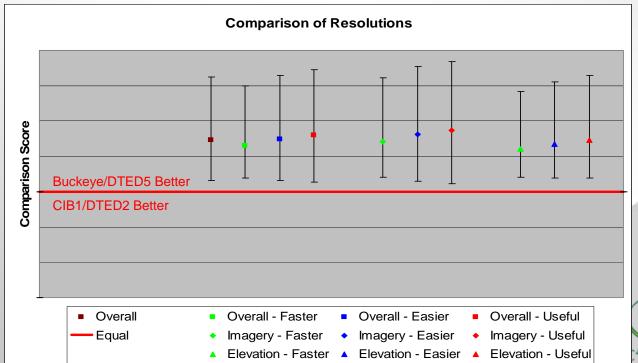
Buckeye/LIDAR RFI score: 4.26


- CIB1/DTED2 RFI Score: 2.97

- RFIs are an inverse proxy for the value of the information contained in the data.
- As RFI's are costly in time and manpower, fewer RFIs result in increased tactical flexibility, improved force security, and lower demands on intelligence staffs

Time to Solution (H1)

- Average time to scenario completion (H1)
 - Repeated measures ANOVA [p < 0.001]
 - Buckeye/LIDAR: 51.67 min
 - CIB1/DTED2: 47.40 min
 - Average difference was only
 4 min
 - Higher resolution data required more time to analyze
- Learning effect (H5)
 - Average time to completion was shorter for the second system the participants used [p = 0.01]



Subjective Perception (H6)

There is strong statistical evidence [p < 0.001] that, when using Buckeye imagery and LIDAR elevation data, participants believe:

- they can produce the required output more quickly
- it is *easier* to conduct military evaluations
- the information is more useful

Summary

"This is a game changer"

- Higher resolution imagery and elevation data provides :
 - More information to the military decision-maker
 - Information that is more valuable to the decision-maker
- The reduced costs due to fewer RFIs would probably overshadow the slightly longer analysis time required when using higher resolution data
- Participants believe that higher resolution data improves the process of making military evaluations

Questions?

