Experimental Evaluation of Advanced Automated Geospatial Tools

Walter Powell - GMU Kathryn Blackmond Laskey - GMU Leonard Adelman - GMU Shiloh Dorgan - GMU Ryan Johnson - GMU Craig Klementowski - VIECORE Rick Yost - VIECORE Daniel Visone - AGC Ken Braswell - AGC

Thanks to the Team!

- U.S. Army Geospatial Center
 - Michael Powers, Technical Director
- GMU Team
 - Eric Nielsen, C4I Center SME
 - Scott Carey, C4I Center SME
- VIECORE, FSB
 - Andrew Goldstein
 - Mike Altenau
- Army Battle Command Battle Lab
 - Mr. Dick Brown
 - MAJ John Rainville

2

Background

- Map is focal point of the command post
- Automated geospatial support tools are rapidly penetrating all command levels
- Empirical research is needed to:
 - Evaluate military value of emerging tools
 - Prioritize future tool development

Why Conduct Experiments?

- Most military R & D tests to requirements
- Hypothesis driven to test value-added
- Statistically significant results
 - Quantitative not just qualitative feedback
- Answer questions:
 - What is the value added for the warfighter?
 - Does the product meet operational needs?
 - How can the product be improved?

Purpose of Research Program

- Sponsored by
 - U.S. Army Engineer Research and Development Center (ERDC)
 - U.S. Army GeospatialCenter (AGC)
- Purpose:
 - Assess the value-added to Military Decision Making from use of Geospatial Decision Support Products (GDSPs)
 - Evaluate contribution of the Battlespace Terrain Reasoning and Awareness – Battle Command (BTRA-BC) suite of geospatial reasoning tools

BTRA-BC II

Objective:

- Empower commanders, soldiers, and systems with **information** that allows them to **understand** and **incorporate** the impacts of terrain and weather on their functional responsibilities and processes
- Products
 - Information and knowledge products that capture integrated terrain and weather effects
 - Tactical Spatial Objects (TSOs) Predictive decision tools that exploit these products
- Some BTRA-BC products have been fielded in the U.S. Army's Digital Topographic Support System (DTSS)
 - Used by U.S. Army for terrain analysis

Current Study

- Study Objective
 - Assess the benefit of BTRA-BC tools to military planners in a complex and realistic scenario
 - Expand on results of previous experiment (presented at last year's ICCRTS)
 - COA generation vs. AA recommendation
 - Planners vs. terrain analysts
 - More complex scenario and tasks
 - More complex decision-making

• Mission:

- Move to seize an objective in the presence of the enemy
 - Analyze actual terrain data
 - Plan a Course of Action (COA)
 - Mechanized Battalion

Primary Hypotheses

- 1. Participants who use BTRA-BC TSOs will produce military planning output *more quickly*
- 2. Participants who use BTRA-BC TSOs will produce a *higher quality* plans
- 3. Participants who use BTRA-BC TSOs will display *as good an understanding* of the impact of the given terrain on military planning
- 4. The quality of the output generated with BTRA-BC TSOs will be *more uniform*
- 5. There will be *little or no learning effect* due to evaluation design
- 6. *Participants will consider using BTRA-BC TSOs superior* when producing a plan with respect to speed, quality, ease and overall

Study Design

- Environment
 - Commander's Support Environment (CSE)
 - Developmental C2 system
 - Originally a DARPA initiative
- Three independent variables
 - **System used** (with and without BTRA-BC TSOs)
 - **System Order** (which system was used first)
 - Scenario Order (Which of two near identical scenarios was used first)

Study Design

- Within Participants design with respect to System used:
 - Each subject will solve a planning scenario in both conditions (with and without BTRA TSOs)
- Between Participants design with respect to
 - System Order
 - Scenario Order
 - Design was counterbalanced on scenario order and system order
- Study design will maintain the required statistical power and minimize the number of participants
- Training prior to trials
 - CSE (4 hours) and
 - BTRA-BC (2 hours)

Study Design (cont)

-Participants

- U.S. Army Majors, Lt. Colonels, Colonels
 - Planning experience
 - Comfortable with digital systems
- Experience
 - Questionnaire
 - Ranked and grouped by experience
 - Randomly assigned to groups
- Anonymous
 - Randomly assigned participant numbers
 - Randomly assigned data designators

Experimental Tasks

- The evaluation scenario began with analysis of specific terrain and continued to the point of generating a plan of movement and a Course of Action (COA).
- Specific tasks :
 - Digital Plan
 - Plan movement
 - Identify Mobility Corridors (MC)
 - Categorize Mobility Corridors by size
 - Group Mobility Corridors to form potential Avenues of Approach
 - Identify Choke Points on Avenues of Approach
 - Calculate travel times and coordinate simultaneous arrival
 - Identify Engagement Areas
 - Identify Battle Positions
 - Identify Ambush Sites
 - Identify Named Areas of Interest (NAI)
 - Generate battalion graphics including subordinate echelon Areas of Responsibility

BTRA-BC Tier 1 TSOs

13

BTRA-BC Tier 2 TSOs

14

Battle Positions

Hide Positions

Engagement Area

Experimental Tasks (cont)

- Specific tasks (cont)
 - Operation Order
 - Commander's Intent
 - Concept of Operations
 - Explanation of graphics
 - Impact of terrain on mission
 - Terrain Understanding Questionnaire
 - System Comparison Questionnaire

Measures

- Time to complete scenario (H1, H5)
 - Objective
 - Significant in prior experiment
 - Possibly less significant in more complex planning
- Quality of solutions as judged by expert evaluators (H2, H4, H5)
 - Subjective
 - 45 criteria in 15 categories
 - Independent SMEs
- Scores on a questionnaire evaluating subject understanding of the terrain (H3, H5)
- Scores on a questionnaire evaluating subjective perception of w/ BTRA-BC (H6)
 - Scale Normal and Reversed

Preliminary Results: Plan Quality (H2)

• There is statistical evidence that:

Participants produced a *higher quality* output using CSE w/ BTRA-BC [F(1,4) = 5.35, p = 0.08]

- Performed a repeated-measures
 ANOVA on the average of all 13 measures of plan quality
- Approached traditional 0.05 significance level
- No other effects appeared significant.

Preliminary Results: TSO-related Measures (H2)

- Participants produced a *higher quality* output using measures directly related to BTRA-BC TSOs [F(1,4) = 12.62, p = 0.02]
- Performed a repeated-measures (ANOVA) on the average of the TSO related measures
- Possible learning effect for CSE w/o BTRA-BC [p = 0.08](H5)
- No other significant effects

Preliminary Results: Terrain Understanding (H3, H4)

- There is no statistical evidence that participants *knowledge of the impact of the given terrain on military planning* differed when using CSE w/ BTRA-BC (H3)
- Participants who used CSE w/ BTRA-BC first had *significantly less variance (more uniformity) in measures of their terrain understanding* than those who used CSE w/o BTRA first [F(1,7) = 0.10, p = 0.00] (H4)
- CSE w/ BTRA-BC first Var = 0.25
- CSE w/o BTRA-BC first Var = 2.46⁻

Preliminary Results: Subjective Perception (H6)

- There is strong statistical evidence that:
 - 1. Participants believe they can produce an output of *higher quality* w/ BTRA-BC than w/o BTRA-BC
 - 2. Participants believe that overall CSE with BTRA-BC was *superior* to CSE w/o BTRA-BC
- The results provide marginally significant evidence producing a plan using CSE with BTRA-BC TSOs was *easier* than with BTRA-BC TSOs.
- No effect for *speed*

Summary (1 of 2)

- Preliminary results are encouraging
- BTRA-BC TSOs improved the planning process
 - Participants produced a *higher quality* output using CSE
 w/ BTRA-BC when all measures are considered
 - Participants produced a *higher quality* output using measures directly related to BTRA-BC TSOs
 - Participants who used CSE w/ BTRA first had significantly less variance (more uniformity) in measures of their terrain understanding
 - There is a *learning effect* in that participants who used CSE w/BTRA-BC first produced *higher quality* output when they used CSE w/o BTRA-BC

Summary (2 of 2)

- Participants believe they can produce an output of *higher quality, more easily* and that overall CSE with BTRA-BC was *superior* to CSE w/o BTRA-BC
- Participants did not generate the output more quickly
- Participants *knowledge of the impact of the given terrain on military planning* was not degraded
- These results will be strengthened when data from the full set of 16 participants is analyzed.

Next Experiment in the Series

- Object: Assess the value of Buckeye's 4-inch resolution imagery and DTED 5 elevation data
- Examining accuracy of data vice effectiveness of tools
- Experimental Design
 - Platoon / reinforced squad
 - Iraqi city where CIB1 and Buckeye data are available
 - Planning task: Evaluation of potential sites for Vehicle Control Point (VCP)
 - Environment CSE
 - Participants: 16 infantry E6-E7 or O2-O3 with experience in-country

Questions?

