

Attaining Value from Actionable DoD Enterprise Architectures

14th International Command and Control Research and Technology Symposium

C2 and Agility

Topic #9: C2 Architecture and Technologies, #53 June 15-17, 2009

> Steven J. Ring Principal Information Engineer Enterprise Architecture Certificate, NDU Chief Information Officer Certificate, NDU TOGAF 8 Certified Six Sigma White Belt MITRE Corporation, sring@mitre.org

Terrence J. (Terry) Blevins Senior Principal Information Systems Engineer MITRE Corporation, tblevins@mitre.org

© MITRE Approved for Public Release Distribution Unlimited, Case #09-0080 © 2009 The MITRE Corporation. All rights reserved

2

- Current State of Attaining Architecture Value
- How to attain value
 - Start with Integrated Architectures
 - Measure the Quality and "Goodliness" of an Architecture
- Enabling actionable architectures
 - Static Architecture Analysis
 - Dynamic "Executable Architecture" Analysis
- Governance Measurement Instruments
- Conclusion

C2 Enterprise Architectures

- Supports improvements in C2 operational concepts and joint force interoperability
 - Defining the force and force capabilities
 - Allocating human resources to acquire and improve capabilities
 - Equipping the forces with systems and other material resources
 - Transforming to an agile net-centric force
- Supports understanding of highly complex C2 doctrine, organizations, missions and processes

- Characterized by strong direct linkages between human and organizational issues
- This human dimension largely distinguishes C2 assessments from other military operational assessments

© 2009 The MITRE Corporation. All rights reserved.

Current State of Attaining Architecture Value

Agencies and organizations spend significant time and resources on architecture planning and development ... yet rarely get value

Too often architectures are viewed as **mandated compliance** requirement (e.g., JCIDS "*check the box*")

Architecture use (beyond JCIDS) for <u>planning</u>, <u>decision</u> <u>making</u>, and <u>improving operational execution</u> ranges from <u>minimal -to- non-existent</u>

Results in *"architecture for architecture sake"* + *"wallpaper'* + *"shelfware"*

Leads to

[1] uncertainty about how architectures impact future capability and warfighter performance
 [2] difficult enterprise-wide acceptance and support
 [3] increased resistance by senior military and management leaders

Value can be achieved (and resistance overcome) if agencies make their architecture actionable

- In the second state of the second state of
- ...and then communicate that value

"Architecture analytics"...

Set of processes, practices, and procedures that **"transform" architecture data** into **actionable information** that supports the planning, decision making, and operational execution processes

Worth, desirability, importance, or usefulness of something to somebody

Within context of an Enterprise Architecture ...

(Architecture) Value is where

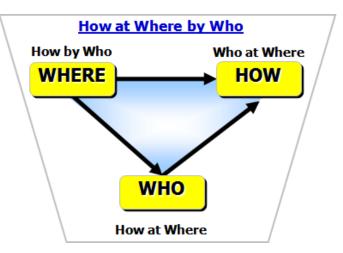
- somebody (enterprises, agencies, etc)
- performs actions (develop architectures)
- to obtain <u>results (analytic)</u>
- that are <u>useful</u> (planning, decision making, & improving operational execution)

- to <u>somebody</u> (businesses, warfighters)

Architectures should be seen as an overall planning and management tool that enables organizations to be agile in reacting to rapidly changing operational environments

Architectures are **reusable assets** that you **invest** in to attain value ... they are **not** an expense

When an architecture is used for <u>value</u>, it becomes **actionable**, hence the term **Actionable Architectures**


Start with Integrated Architectures

9

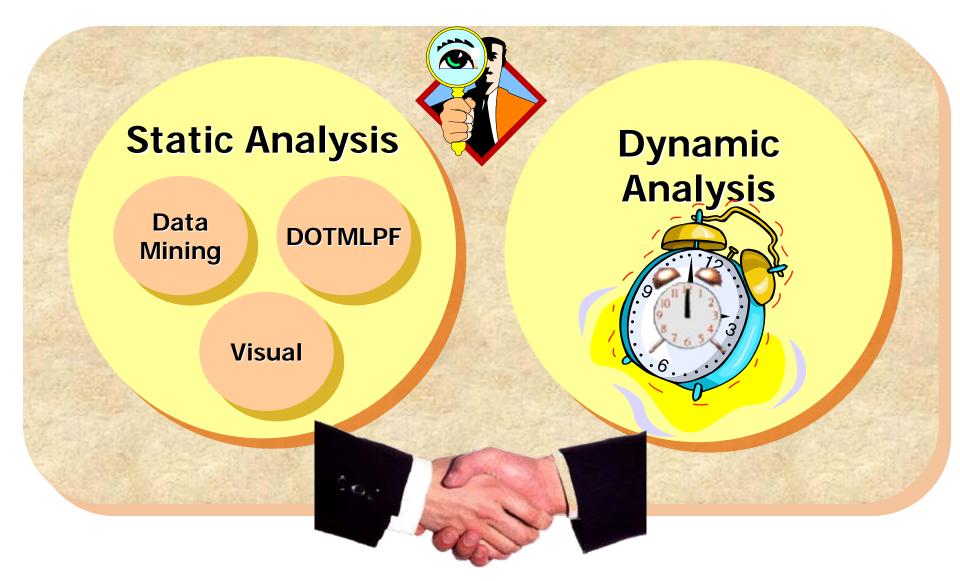
However, before using architecture descriptions for any purposes, one must start with an architecture that is integrated, unambiguous, and consistent

- Activity Based Methodology (ABM)* was developed to improve the practice of DoD architecting
- Architectures developed with ABM answer the six Zachman interrogatives: WHO, WHERE, HOW, WHAT, WHY, WHEN

ABM recognized triple relationship between WHO – WHERE – HOW

* Activity-Based Methodology is a concept developed by The MITRE Corporation and Lockheed-Martin, Copyright © 2003

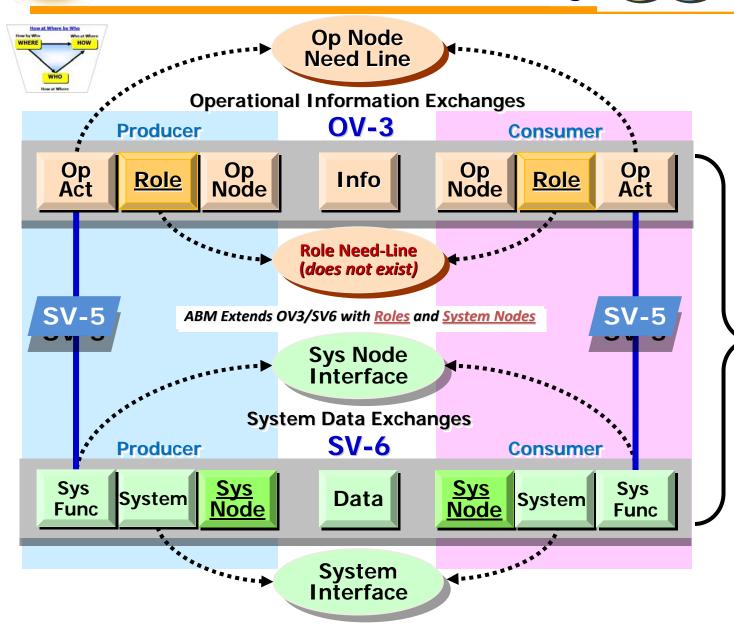
Little Attention Today Paid to Measuring EA Quality "Goodliness"?



- How do you know when you are "done" and claim your architecture can be used for decision making purposes?
- When you reach that "done" state, how do measure architecture quality, verifiability, traceability, compliance and completeness?
- What Quality Control/Quality Assurance process was the architecture subjected to assess its structure and data quality content?
- Were there any inconsistent or physical/ logical impossibilities that would result in invalid analysis?
 - OV-3 and SV-6 exchanges where it is *physically* or *logically* impossible to exchange anything – e.g., Air Force AWACS node with Army Tank Unit node
 - Tools cannot prevent this because they have no way knowing any physical or logical impossibilities

Measuring architecture quality increases architecture value

Enabling Actionable Architectures



Static Architecture Data Mining

Data

Mining

Reveals and discovers <u>hidden</u> rules, practices, gaps, seams, relationships, <u>requirements</u>, and <u>patterns</u> on how an enterprise conducts its business

OV3 v

SV6

12

MITRE

Gaps, Overlaps, Redundancies

Determine "what if" effect and impact of change

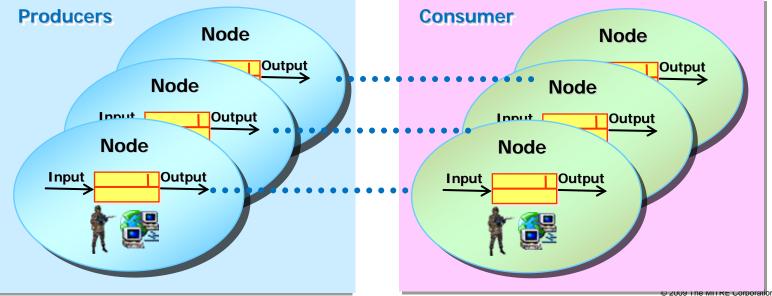
Typical Data Mining Analysis Examples

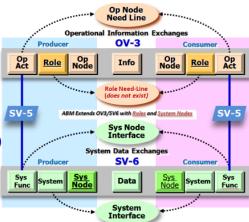
- Inputs, Outputs, Producer and Consumer Resources (Roles, Systems), Nodes, and their work Activities
- Aggregation of...
 - Places (N) where Producers(R) and Consumers (R) do work (A)
 - Work (A) and who performs that work (Resources)
 - Products(0) & which Resources produce them
 - Resources & what they produce (0), & their work Requirements(I)
 - **Resources & their work Responsibilities (A)**
- Which...

Data Mining

How at Where by Who

WHO


How at Whe


Who at Whe

How by Who

WHERE

- Producers(R) communicate with which Consumers (R)
- Producing Places (N) exchange information with which Consuming Places (N)
- Roles (Producing & Consuming) use which Systems (Producing & Consuming)
- Etc, etc, etc....

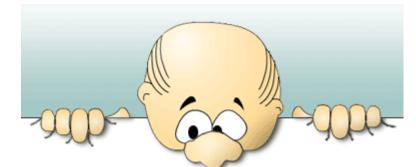
MITRE

COUPLINE WITKE Corporation. All rights reserved

Static DOTMLPF Analysis

Organizations of **Trained People**

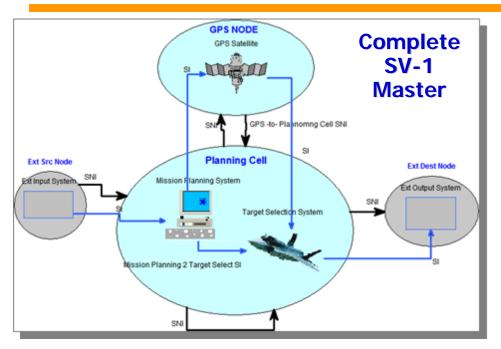
- led by effective and competent **Leaders** (human resources within organizations **WHO** do work)

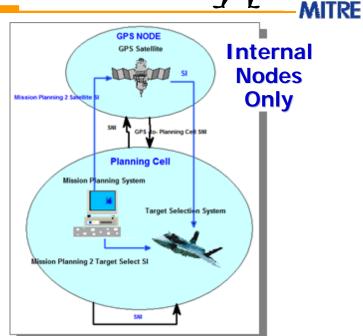

- performing **Doctrinal** operations (HOW work is performed)
- at **Facilities** (locations WHERE work is performed)
- using **Material** resources (system resources **WHO** do work)

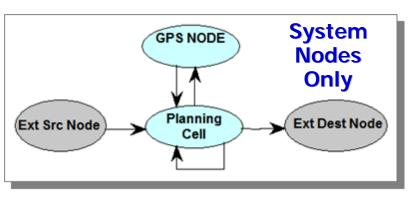
Leads to better definitions of agile military warfighting capabilities

- Gaps- shortfalls duplications ?
- Tactics, Techniques and Procedures?
- Personnel solutions new personnel or personnel with better qualifications?
- Materiel solutions a new system?
- Organizational Solutions?
- NON-MATERIAL Solutions education? Skill?
- HOWEVER standard DOTMLPF analysis guidance lacking

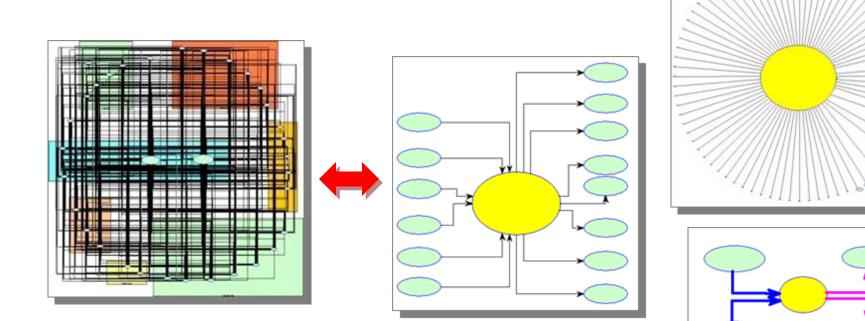
- "Management View" Visual way to educate and communicate architecture value to senior management and military leaders
 - Present architecture value in short, concise visual ways in their language and in terms they understand


Two approaches


Visual


- v1) Selectively depict certain element and relationship sets in multiple versions of the same product
- v2) Structuring a single product multiple ways

V1. Visually Selective Depicting: Example: SV-1



ommand & Control Cent

50

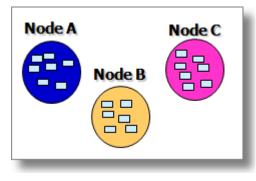
V1. Visually Selective Depicting: Example: OV-2

Typical OV-2

Node Centered OV-2 (s)

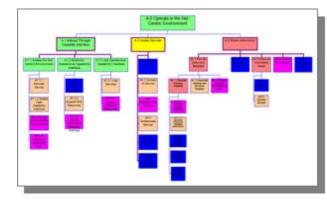
V2. Visually Structuring a Single Product Multiple Ways - OV-5 Node Tree

Classification: by Functional Area


Define Measure Improve Control

More complete Node Tree

Organization: by Leaf Activities


Executable Model(s)

OV-2 Nodes showing Activities

Grouping:

by Node, by Role, by ...

V2. Visually Structuring a Single Product Multiple Ways - Formatted OV-3 Report

A	B	C	D	E	F	G	Н		
1 2	Forn Activity	From Node	Point Ophooedciluity	CON ATOW	ro acum	To Nove	70 Policies Policies Policies		
2 Travel Directions Detected	Receive Travel Directions	Baltimore	"Travel Clerk"	Travel Directions Detected	Notify all Travel Departments	United State	s		
3 Correlated Travel Data	Process Travel Assessment	Boston	"Travel	Correlated Travel Data	Update Common Travel Picture	Cleveland	"Travel Director"		
4 Request for Travel Assessment	Requested Travel Assessment	Boston	"Travel	Request for Travel Assessment	Re-Redirect Travel Plans	Cleveland	"Travel Director"		
5 Merged Travel Data	Coordinate Effects	Boston	"Travel	Merged Travel Data	Decide to Look at Travel Plan	Denver	"Travel Planner"		
6 Correlated Travel Data	Process Travel Assessment	Boston	"Travel	Correlated Travel Data	Update Internal Infomation	United State	s		
7 Confirmed ID	Report Target Data	Chicago	"Travel Manager"	Confirmed ID	Coordinate Effects	Boston	"Travel		
8 Travel Assessment	Report Travel Assessment	Chicago	"Travel Manager"	Travel Assessment	Process Travel Assessment	Boston	Travel		
9 Confirmed ID	Report Target Data	Chicago	"Travel Manager"		ReAnalyze Travel Directions	Cleveland	"Travel Director"		
10 Travel Assessment	Report Travel Assessment	Chicago	"Travel Manapar"	Travel Accoccment	Discass Travel Assessment	Claudand	"Traval Diractor"		
11 Confirmed ID	Report Target Data	Chicago	"Travel Mana	Page 1 of 3		Travel E:	xample OV3 Matrix	in 'Trav	elEx'
12 Travel Assessment	Report Travel Assessment	Chicago	"Travel Mana	Input/Output	FromActiv		mNode ToNode		ToAdivty
13 Confirmed ID	Report Target Data	Chicago	"Travel Mana	1 NodePairs=1			timore		
14 Travel Assessment	Report Travel Assessment	Chicago	"Travel Mana	1		IERCnt=1	1 United States		
15 No Travel ID	Report Target Data	Chicago	"Travel Mana	1 1 Travel Directions De	tected 2.7 Rece	ive Travel Dire	ctions	L	7 Notify all Travel Departm
16 Correlated Travel Data	ReAnalyze Travel Directions	Cleveland	"Travel Direct	2 NodePairs+4			Boston		
17 Destination Configuration Data	Redirect Travel Plans	Cleveland	Travel Direct	2		IERCnt=2			
18 Travel Configuration Data	Re-Redirect Travel Plans	Cleveland	"Travel Direct	2 1 Request for Travel A		ested Travel A		L	5.2 Re-Redirect Travel Plans
19 Traveling Configuration Data	Redirect My Traveling Plans	Cleveland	"Travel Direct	3 2 Correlated Travel Da	ta 5.3 Proc	ess Travel Asse		L	5.8 Update Common Travel i
				4 1 Merced Travel Data		IERCnt=1 dirate Effects	2 Denver		3.4 Decide to Look at Travel

Page 1	1 of 3	Travel	Example	OV3 Matrix i	n 'Trav	elEx'	11
	Input/Output		romNode	ToNode		ToAdivty	
1	NodePairs=1	в	altimore				
	1	IERCrit		United States			
1	1 Travel Directions Detected	2.7 Receive Travel Dir	ections		L	7 Notify all Travel Departments	E
2	NodePairs-4		Boston				
	2	IERCnb		Cleveland			
2	 Request for Travel Assessment 	5.1 Requested Travel		t	L	5.2 Re-Redirect Travel Plans	L
3	2 Correlated Travel Data	5.3 Process Travel As			L	5.8 Update Common Travel Picture	L
	3	IERCrib		Denver			
4	 Merged Travel Data 	3.3 Coordinate Effect			L.	3.4 Decide to Look at Travel Plan	L
	4	IERCrit		United States			
5	 Correlated Travel Data 	5.3 Process Travel As	sessment		L.	4 Update Internal Infomation	E
3	NodePairs-9		Chicago				
	5	IERCrib	2 1	Boston			
6	1 Confirmed ID	3.1 Report Target Da	a		L	3.3 Coordinate Effects	L
7	2 Travel Assessment	5.7 Report Travel Ass	essment		L	5.3 Process Travel Assessment	L
	6	IERCrib	2 2	Cleveland			
8	1 Confirmed ID	3.1 Report Target Da	a		L	3.2 ReAnalyze Travel Directions	L
9	2 Travel Assessment	5.7 Report Travel Ass	esment		L	5.3 Process Travel Assessment	L
	7	IERCrit	2 3	Houston			
10	1 Confirmed ID	3.1 Report Target Da	a		L.	3.5 Receive Travel Data	L
11	2 Travel Assessment	5.7 Report Travel Ass	essment		L	5.3 Process Travel Assessment	L
	8	IERCrit	4 4	Miami			
12	1 Confirmed ID	3.1 Report Target Da	a		L	4.1 Conduct Travel Analysis	L
	9	IERCrit	1 5	New York			
13	1 Travel Assessment	5.7 Report Travel Ass	essment		L	5.3 Process Travel Assessment	L
	10	IERCrit	1 6	United States			
14	1 No Travel ID	3.1 Report Target Da	ta		L	6 No Traveling Identification	E
4	NodePairs=10	c	eveland				
	11	IERCnb	1 1	Boston			
15	1 Correlated Travel Data	3.2 ReAnalyze Travel	Directions		L	3.3 Coordinate Effects	L
	12	IERCrit	3 2	Chicago			
16	1 Traveling Configuration Data	1.3 Redirect My Trave	ling Plans		L	3.1 Report Target Data	L
17	2 Destination Configuration Data	2.3 Redirect Travel Pl			L	3.1 Report Target Data	L
18	3 Travel Configuration Data	5.2 Re-Redirect Trave	Plans		i.	5.7 Report Travel Assessment	L.

V2. Visually Structuring a Single Product Multiple Ways - Formatted OV-3 Three-Way Report

Grandparent - Parent - Child

	FromNode FromActivity	ToNode 1	oActivity
	Boston		
1	Cleveland		
		1	Chicago
		2	
2	Denver		
		1	Houston
		2	United States
2	Chicago		
1	Boston		
		1	Cleveland
		2	Denver
		3	United States
2	Cleveland		
		1	Boston
		2	United States
3	Houston		
		1	Cleveland
		2	United States
4	Miami		
		1	New York
5	New York		
		1	Cleveland
		2	United States
-	Cleveland		
1	Boston	-	_
		1	Denver

Grandparent .NOT-EQUAL. Child

20

20

Г

V2. Visually Structuring a Single Product **Multiple Ways - OV-5 Activity Reports**

By Name

Activity/ Def/ Note/ Source/ Author/ Parent	
ICOM Name Leaf/Ext/Par	
1 Analyze Travel Data L 2.2	
<2> Execute Transportation Plan	By Number
1 O new entitity	
2 O Travel Data	Number Activity/Parent/Definition/Note/Source/Author P/E/Leaf?
3 I Travel Directions	O Execute Travel Plan Context P By Diagram
4 R Travel Director	1 Execute Iravel Plan P
	2 0 Execute Travel Plan Context 1 Execute Travel Plan
5 N Cleveland	11 Sends Travel Report
6 N Houston	12 Analyze Traveling Data 2 Execute Transportation Plan 3 Assess Travel Mission
2 Analyze Traveling Data L 1.2	13 Redirect My Traveling Plans L 4 Conduct Travel Analysis and Mgmnt
<1> Execute Travel Plan	14 Receive Critical Travel Directions L 5 Request Travel Assessment
1 O Travel Data	2 Execute Transportation Plan P 3 1 Execute Travel Plan
2 I Travel Directions	11 Sends Travel Report
	21 Conduct Travel Plan Analysis L 12 Analyze Traveling Data
3 R Travel Director	22 Analyze Travel Data L 13 Redirect My Traveling Plans
4 N Cleveland	23 Redirect Travel Plans L 14 Receive Critical Travel Directions
3 Assess Travel Mission P 3	27 Receive Travel Directions L 4 2 Execute Transportation Plan
<0> Execute Travel Plan Context	3 Assess Travel Mission P 21 Conduct Travel Plan Analysis
1 ***	22 Analyze Travel Data
4 Conduct Total Mission at Houston L 3.6	31 Report Target Data L 23 Redirect Travel Plans
<3> Assess Travel Mission	32 ReAnalyze Travel Directions L 27 Receive Travel Directions
1 0 End of Travel Mission	33 Coordinate Effects L 5 3 Assess Travel Mission
	34 Decide to Look at Travel Plan L 31 Report Target Data
2 I Travel Data	35 Receive Travel Data L 32 ReAnalyze Travel Directions
3 I Travel Mission	36 Conduct Total Mission at Houston L 33 Coordinate Effects
4 R Travel Helper	4 Conduct Travel Analysis and Mgmmt P 34 Decide to Look at Travel Plan
5 N Houston	35 Receive Travel Data
	41 Conduct Travel Analysis L 36 Conduct Total Mission at Houston
	42 Conduct Travel Management L 6 4 Conduct Travel Analysis and Mgmnt
	41 Conduct Travel Analysis

42 Conduct Travel Management

© 2009 The MITRE Corporation. All rights reserved.

V2. Visually Structuring a Single Product Multiple Ways - OV-5 Activity Reports

By Name

	Activity/Def/Note/Source/Author/Parent			
	ICOM Name Leaf/Ext/Par			
1	Analyze Travel Data L 2.2	Dry Niumshaw		
	<2> Execute Transportation Plan	By Number		
1	0 new entitity			
2	0 Travel Data	Number Activity/Parent/Definition/Note/Source/Author	P/E/Leaf?	
3	I Travel Directions	0 Execute Travel Plan Context	<u>Р</u>	By Diagram
4	R Travel Director	1 Execute Travel Plan	P	2 0 Execute Travel Plan Context
5	N Cleveland	the Court Tourist		1 Execute Travel Plan
6	N Houston	11 Sends Travel Report	L	2 Execute Transportation Plan
-		12 Analyze Traveling Data 13 Redirect My Traveling Plans		3 Assess Travel Mission
2	Analyze Traveling Data L 1.2	14 Receive Critical Travel Directions		4 Conduct Travel Analysis and Mgmnt
	<1> Execute Travel Plan		P	5 Request Travel Assessment
1	0 Travel Data	2 Execute Transportation Plan	- P	3 1 Execute Travel Plan
2	I Travel Directions	21 Conduct Travel Plan Analysis	L	11 Sends Travel Report
3	R Travel Director	22 Analyze Travel Data	L	12 Analyze Traveling Data
4	N Cleveland	23 Redirect Travel Plans	L	13 Redirect My Traveling Plans
	Assess Travel Mission P 3	27 Receive Travel Directions	L	14 Receive Critical Travel Directions
	<0> Execute Travel Plan Context	3 Assess Travel Mission	P	4 2 Execute Transportation Plan
	***		· ·	21 Conduct Travel Plan Analysis
1		31 Report Target Data	L	22 Analyze Travel Data 23 Redirect Travel Plans
	Conduct Total Mission at Houston L 3.6	32 ReAnalyze Travel Directions	L	27 Receive Travel Directions
	<3> Assess Travel Mission	33 Coordinate Effects	L	5 3 Assess Travel Mission
1	O End of Travel Mission	34 Decide to Look at Travel Plan	L	31 Report Target Data
2	I Travel Data	35 Receive Travel Data	L	32 ReAnalyze Travel Directions
3	I Travel Mission	36 Conduct Total Mission at Houston	L	33 Coordinate Effects
4	R Travel Helper	4 Conduct Travel Analysis and Mgmnt	Р	34 Decide to Look at Travel Plan
5	N Houston			35 Receive Travel Data
	in housen	41 Conduct Travel Analysis	L	36 Conduct Total Mission at Houston
		42 Conduct Travel Management	L	6 4 Conduct Travel Analysis and Mgmnt
				41 Conduct Travel Analysis
				42 Conduct Travel Management

© 2009 The MITRE Corporation. All rights reserved.

V2. Visually Structuring a Single Product Multiple Ways - OV-5 Role/Node Reports

By Role

				_			
/E/L	Role Activity		Node				
1	Travel Analyze	er					
	Travel And	alyzer					By Node
L	1	4.2 Conduct Travel Management	New York				
L	2	5.3 Process Travel Assessment	New York	<u>T/F</u>	Node/	Activity	
2	Travel Clerk			1	Baltimo		
	Travel Cle	erk		-	1 Daitinio		Receive Travel Directions
L	1	2.7 Receive Travel Directions	Baltimore	2	Boston	21	Receive Have Directions
3	Travel Coordin	nator		~	1	33	Coordinate Effects
	Commande	er			2		Process Travel Assessment
L	1	3.3 Coordinate Effects	Boston		3		Requested Travel Assessment
L	2	5.3 Process Travel Assessment	Boston	3	Chicago		Requested nave researche
L	3	5.1 Requested Travel Assessment	Boston	5	1		Report Target Data
4	Travel Directo	и.			2		Report Travel Assessment
	Chief			4	Clevelan		Report Haver Assessment
L	1	2.2 Analyze Travel Data	Cleveland	-	1		2 Analyze Travel Data
L	2	1.2 Analyze Traveling Data	Cleveland		2		2 Analyze Traveling Data
L	3	5.3 Process Travel Assessment	develand		3		Process Travel Assessment
L	4	3.2 ReAnalyze Travel Directions	develand		4		ReAnalyze Travel Directions
L	5	1.3 Redirect My Traveling Plans	Cleveland		5		Redirect My Traveling Plans
L	6	2.3 Redirect Travel Plans	Cleveland		6		8 Redirect Travel Plans
L	/	5.2 Re-Redirect Travel Plans	Cleveland		7		2 Re-Redirect Travel Plans
L	8	5.8 Update Common Travel Picture	develand		8		3 Update Common Travel Picture
				5	Denver	56	
				5	1		Decide to Look at Travel Plan
					2	-	Receive Critical Travel Directions
							Receive Critical Travel Directions
					3	2/	Receive Have Directions

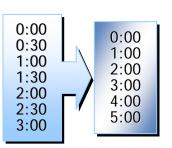
- Enables time-dependent (i.e. Zachman WHEN) repeatable behavior and performance analysis of complex, dynamic operations and human and system resource interactions
- Dynamically assess processes and organization structure to identify bottlenecks, delays, lags and optimize resource allocation
 - Examine responses to 1 time, synchronous, and asynchronous (random) events
 - Stress model (conditions, events, scenarios) to the breaking point ... and beyond
 - Fault analysis how to recover from single/multiple process & resource failures
 - Balance resource workflow and minimize queuing times
- Assesses and measures
 - Measure of Performance (MOP) Individual person/ resource's ability to function in its operational environment
 - Measure of Effectiveness (MOE) Overall organizational/force effectiveness in accomplishing mission objectives

Three Measures of Merit: Areas of Analysis

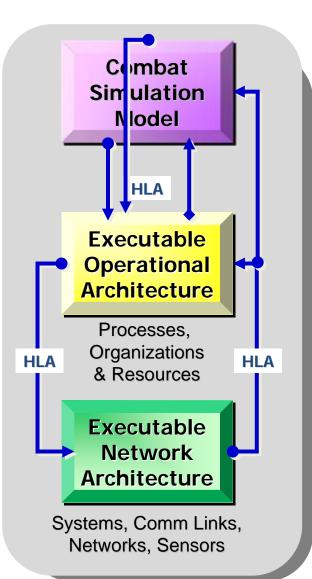
Time	 Time to perform Activitydelays due to bottlenecks – resource not available Increase number of resources Have resources available more often Time to Send informationdelays due to network or task interdependency Alternate ways of communicating information among resources Automate manual tasks FIFO, LIFO strategies
	Utilization of Resources (Human or Mechanical)
Resource	 Bottlenecks (Busy, Over-utilized) or Idle (not-so-busy, Under-utilized) In context of when it performs its designed function within an overall process thread Cost of Resources Static (Price tag), Dynamic (Operating Cost) Marginal Utility of Additional Resource Benefit gained by adding additional resource
	Health of the Operation
	 Impact of single point of failure qualitative assessments Mission Failure, Loss of Life, Task Failure, Minimal Impact
Reliability	 Availability of alternate/back-up resources when needed Recoverability Time to recover from a failure
Č.	 Adaptability to changes in environment Time, Quality, Mission Success, Losses
	 Graceful degradation Mission tasks completed prior to shutdown

© 2009 The MITRE Corporation. All rights reserved.

Three Solutions to Performance Issues


"Manage" 30 minutes

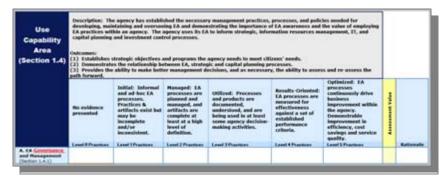
- Decrease time of activity (<u>lower rate of service</u>)
 - Found way to automate some part of a process so as to reduce it's execution time
 - Person responsible for execution, with better training/ education can perform more efficiently thereby reducing execution time
 - Non-material DOTMLPF solution


Increase number (more capacity) of resources available

- Decrease number of incoming jobs (less demand on resource)
 - Improve upstream operation (fewer jobs passed to the resource)
 - Decreased rate of arrival (less per time period)
 - Change Organization (divert some jobs to an idle resource)
 - Change <u>Doctrine/tactics</u> (process split or redefined with fewer inputs)

Extend to Combat + Communication M&S Models

Extend single executable architecture to link with ...


- [1] Combat simulation model as a mission scenario generator to provide different mission "stimuli (triggers)"
- [2] Communication simulation model to incorporate system and network delays into overall processing time (and network fault analysis)

Two Governance Measurement Instruments Measures Contribute to Architecture Value

28

- OMB Enterprise Architecture Assessment Framework (EAAF), v3.0, Dec 2008
 - Assesses capability of EA programs
 - Helps OMB and agencies assess capability of their EA programs to guide and inform strategic IT investments
- GAO Enterprise Architecture Management Maturity Framework (EAMMF), v1.1
 - Assesses EA program capacity
 - Assesses maturity of an agency's EA program and its management

Increasing Assessment

=		IF Versior		<u></u>	Accountability = Integrity = Reli
ť	Stage 11	Stage 2: Duilding the EA management foundation	Stage 3: Developing EA products	Stage 4: Completing IA products	Stage 5: Leveraging the E manage change
Attribute 1: Demonstrates commitment		Adequate resources exist. Committee or group representing the enterprise is responsible for deacting, overseeing, or approving GA.	policy exists for EA development.	Written and approved organization policy exists for BA maintenance.	Written and approved organization policy exists for IT investment compliance wit EA.
Attribute 2: Provides capability to meet commitment		Program office responsible for EA development and mantenance critity. Chief architect, exists. EA-being-developed using a framework, methodologi, and automated loci.	EA products are under configuration management.	6A products and management processes undergo independent verification and validation.	Process exists to formally manage BA change. BA is integral component of 1 membranet management process.
Attribute 3 Demonstrates satisfaction of commitment		15-56. 14 pians call for deprobing both the lass of and the to-by environments in terms of business, performance, information/class, application/wrise, and to pians call for business, performance, information/class, service, and technology descriptions to address security.	enterprise, at well as a security of pain for transforma from the "ae- or" to the "bodo" Both the "area" and the "bodo" environments are described or will be described in terms of business, performance, information/data, application/eterms, and technology. Publication, performance, information/data, performance, and technology.	anvironments are described in terms of business, performance, information/data.	Uncentered.
Attribute 4: Verifies satisfaction of commitment		EA plans call for developing metric for measuring EA progress, quality, complexities, and return on investment.	Progress against EA plans is measured and reported.	Quality of EA products is measured and reported.	Return on EA investment is measured and reported. Compliance with EA is measured and reported.

- When you use an architecture for value, it becomes actionable
- Agencies need to start with integrated architectures and then continuously apply static and dynamic analytics to gain increasing value
- Static and dynamic analytics are complementary in helping achieve the architecture value proposition – that actionable architectures enable business and mission success
- EAAF and EAMMF contribute to architecture value
 - Should be more prevalent within DoD to assess how well agencies and organizations are planning, developing, and using their architectures

Ultimately, EA success will be measured by how well they help an agency meets its business and warfighter goals and objectives in accomplishing a mission