

Integrating Operational Research and Human Sciences to analyse Network Enabled Capability

14th ICCRTS, June 2009

Duncan Feveyear Peter Barber Defence Science and Technology Laboratory

Contents

Background

- Human Decision Making
- Exploitation
- Conclusions

26 June 2009 © Dstl 2009

UNCLASSIFIED

Background

Network Enabled Capability (NEC) definition:

 "the coherent integration of sensors, effectors and decision makers in order to achieve increased effect"

NEC gives potential for new ways of operating:

- Data (e.g. shared sensor data)
- Information (e.g. shared tracks)
- People (e.g. distributed decisions)
- Teams (e.g. agile command structures)

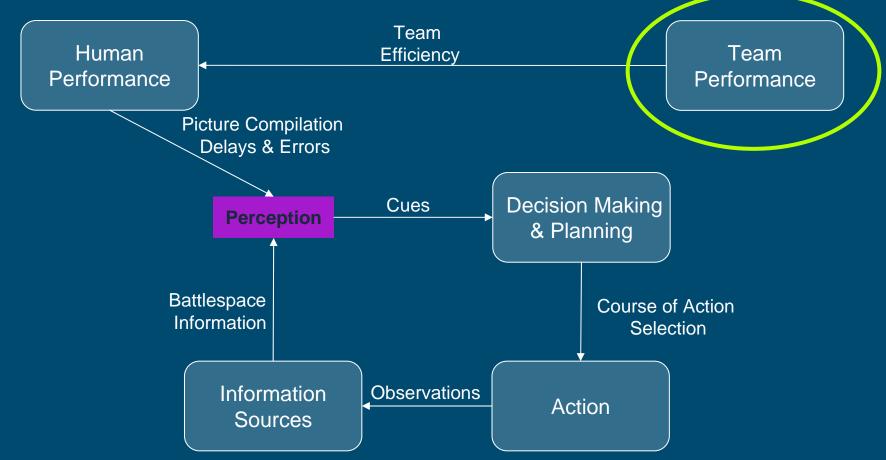
26 June 2009 © Dstl 2009

SIMMAIR

- SIMple Maritime and AIR Operational Research model
- C2-centric, sub-campaign level constructive simulation
- Required to examine NEC related issues
 - Measure the improvement (or otherwise) in operational effect expected through improved networking
 - Assess new systems, but also new concepts of use / ways of working
 - Assess the impact of differing C2 structures
 - Force agility, Reachback, HQ location etc
 - Impact of ISTAR on Operational outcome, at appropriate granularity

Contents

- Background
- Human Decision Making
- Exploitation
- Conclusions

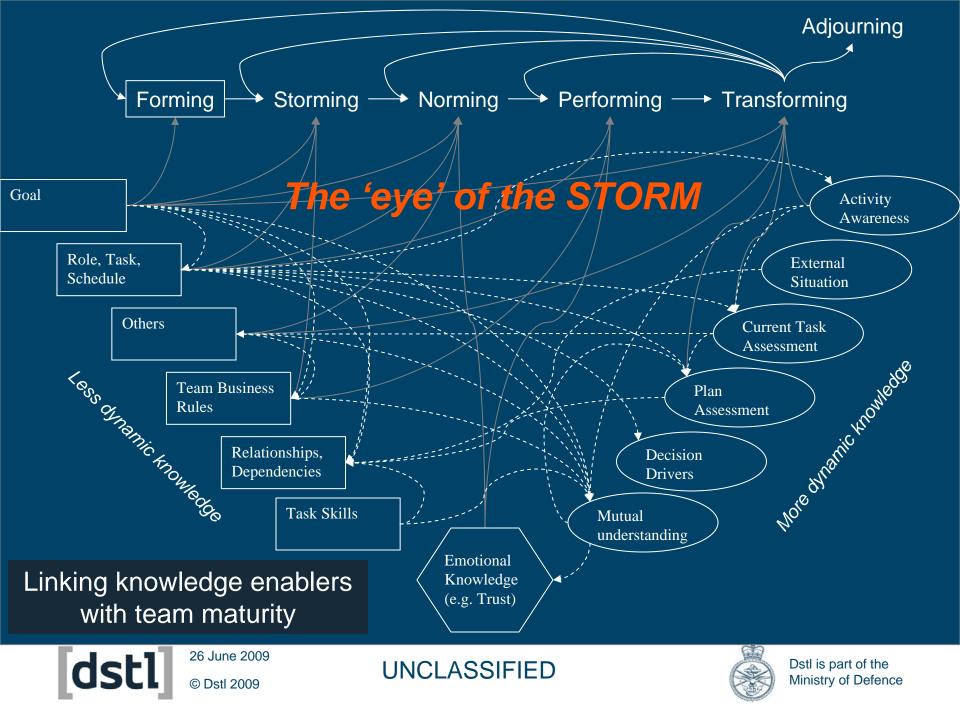


26 June 2009 © Dstl 2009

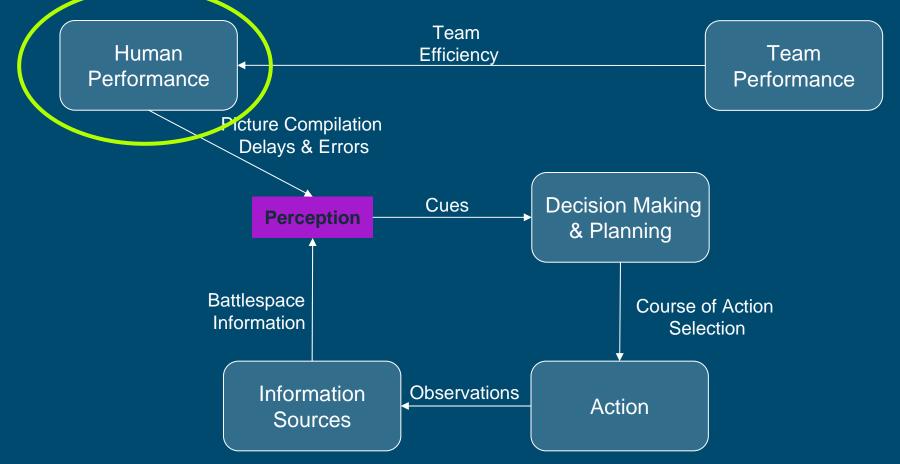
UNCLASSIFIED

C4ISTAR in SIMMAIR - overview

Teamworking


 STORM (Socio-cultural Teamworking for OR Models) will provide a realistic representation of the following:

- Dynamic Collaborative Interworking
- Performance of Agile Mission Groups
- Coalition/ Interagency working
- The impact of location of team members



26 June 2009 © Dstl 2009

C4ISTAR in SIMMAIR - overview

UNCLASSIFIED

Human Performance

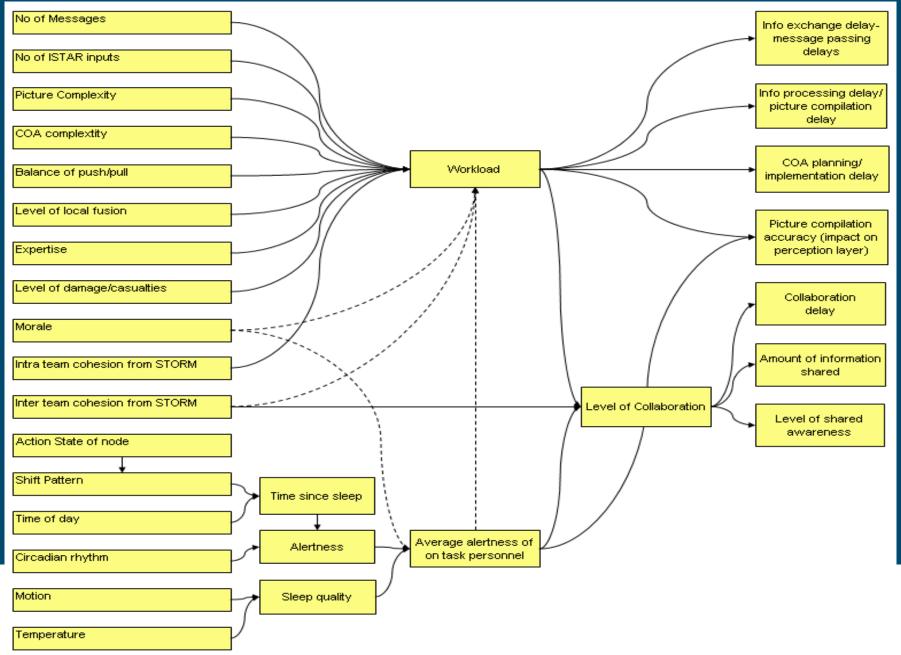
Alertness State

Alertness model incorporates the effects of circadian cycle and work/rest patterns

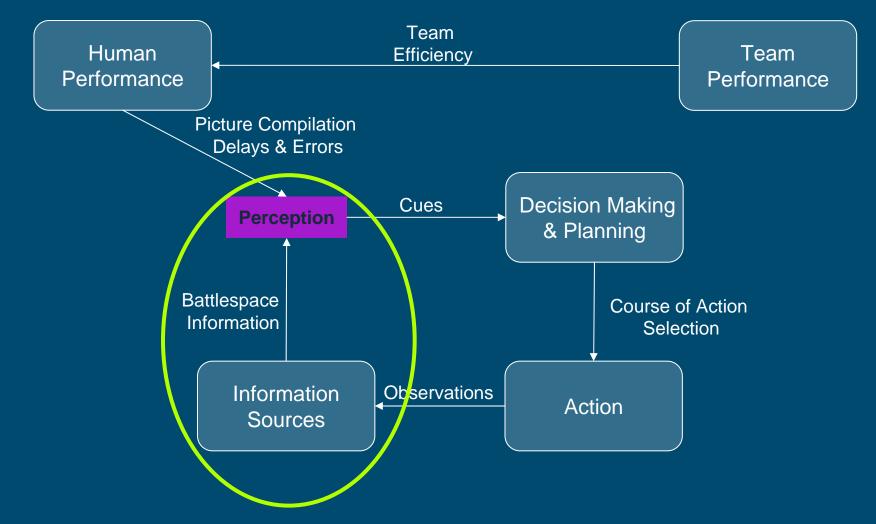
 Environmental effects on sleep quality will be captured

Workload

 The workload of a node will be derived from the number of information inputs, task complexity, staff size, expertise, teamwork efficiency, morale and alertness state

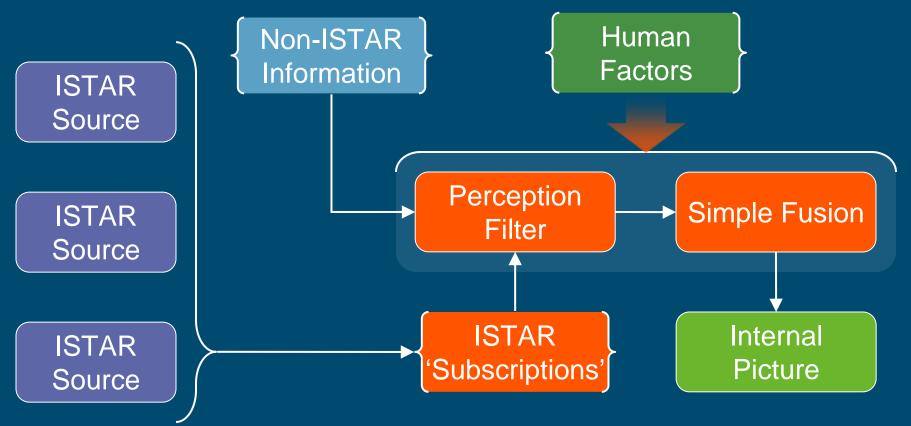

dstl

26 June 2009 © Dstl 2009


UNCLASSIFIED

Human Performance Factors

C4ISTAR in SIMMAIR - overview



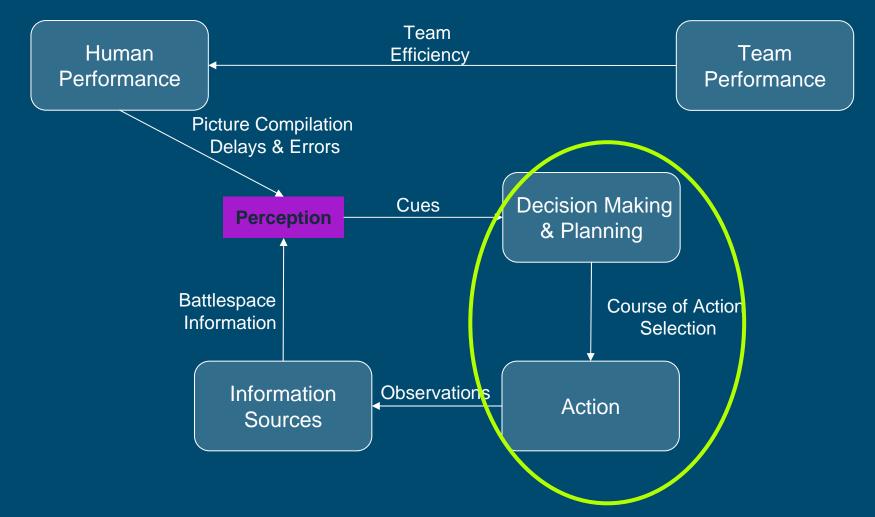
UNCLASSIFIED

Building the Internal Picture/ Perception Layer

26 June 2009 © Dstl 2009

UNCLASSIFIED

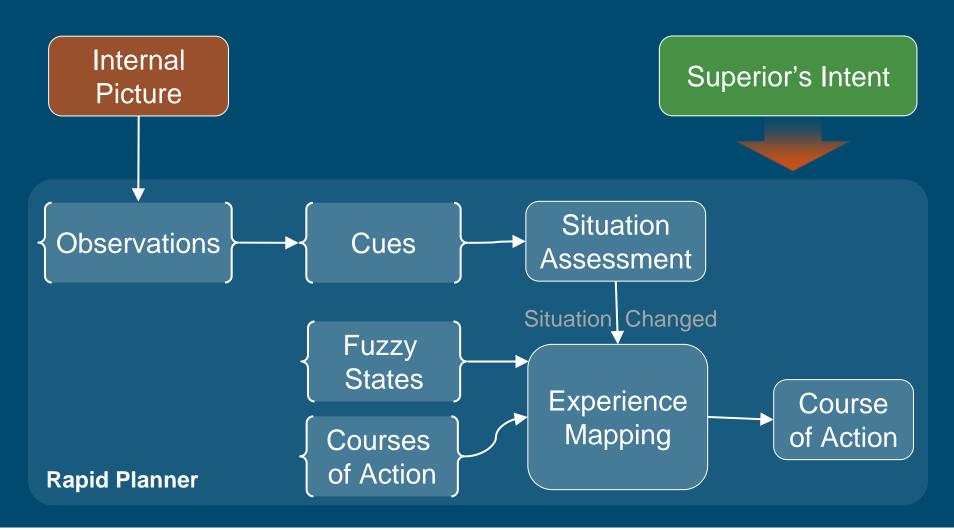
Modelling Effects


• No two decision-makers' internal pictures are the same

- Representation of available information to make decision
- Can model effects of perception bias / confirmation bias
- The impact of trust in information source can be modelled
- Ability to degrade pictures as workload increases

C4ISTAR in SIMMAIR - overview

Human decision-making


SIMMAIR represents two types of decision-making

- Deliberate planning
 - Represents traditional decision making
 - User scripting of missions
- Rapid planning
 - Represents naturalistic decision making
 - Recognition Primed Decision Making
 - Course of action based on decision makers perception of the battlespace

26 June 2009 © Dstl 2009

Rapid Planning Model

26 June 2009 © Dstl 2009

UNCLASSIFIED

Contents

Background

- Human Decision Making
- Exploitation
- Conclusions

26 June 2009 © Dstl 2009

UNCLASSIFIED

Exploitation of SIMMAIR

SIMMAIR shadowed three studies to:

- Smooth transition from a concept to a useful model
- Confirm the requirement for SIMMAIR
- Guide model development for SIMMAIR v1
- Present opportunities for validation of the model
- Facilitate access to input data sources and streams
- Increase visibility of the model within the UK Defence Community

26 June 2009 © Dstl 2009

UNCLASSIFIED

Method

Concepts of Analysis:

Initial work addressed how SIMMAIR would be applied to each of the studies

Vignette based modelling approach chosen to:

- Allow scenario development to be based around a set of vignette "building blocks"
- Allow the complexity of modelling to be steadily increased
- Inform on the functionality required
- Provide convenient testing "stepping stones"
- Vignette workshops were held to obtain extra detail required for SIMMAIR

26 June 2009 © Dstl 2009

Method

Results from a number of replications of SIMMAIR were reviewed by the study teams to:

- Ensure results were representative of input scenarios
- Identify issues and discuss ways to overcome them
- Compare results against agreed MoE
- Determine impact of NEC and Human Factors
- Determine and discuss contribution of SIMMAIR to the studies

Results – C4ISTAR study

- The study investigated situational awareness and its effect on the campaign measure of effectiveness
- Various Requests For Information (RFIs) were made by the Blue CO prior to carrying out a mission.
- A RFI is a request made by a user for specific pieces of information, for example:
 - A CO of a Frigate may want to know if a minefield exists in a particular region before transiting through it
- By varying the length of time it took to satisfy the various information requirements the impact on the campaign was determined


UNCLASSIFIED

Results – C4ISTAR study

Variation (hrs delay to RFIs)	% threats Neutralised	
Baseline	58	
Baseline +24	42	
Baseline +48	33	
Baseline +72	29	

- There is a clear link between the timeliness with which RFIs are satisfied and mission outcome
- The sooner the RFI are satisfied the sooner actions were taken to neutralise the threats

UNCLASSIFIED

Results – Air Domain Study

- The study investigated the impact NEC had on the ability to provide an accurate and timely air picture to the relevant decision makers
- The Blue decision makers required various feeds in order to compile an air picture of sufficient confidence to allow the missions to proceed
- By varying which information was shared and with whom the impact on the campaign was altered

UNCLASSIFIED

Results – Air Domain Study

- Baseline case required picture compilation at a central location
- Effectiveness increased when an accurate picture was fed directly to the relevant decision makers
- Effectiveness increased to a point where enemy missions were prevented from starting

Variation (Minutes delay to picture compilation)	% threats Neutralised	Successful enemy missions
Baseline	38	10
Baseline + 60	75	9
Baseline + 20	38	7

26 June 2009 © Dstl 2009

UNCLASSIFIED

Results – Maritime study

- The study investigated the impact of different tanker vulnerability and flight capabilities on the ability of a task group to perform Maritime Interdiction Operations
- The Blue CO was required to patrol a set area and neutralise a number of threats
- By varying the capabilities of the tanker the resulting impact on the campaign was determined

26 June 2009 © Dstl 2009

UNCLASSIFIED

Results – Maritime study

Variation	% missions tanker neutralised	% threats neutralised
Tanker 1 + 2 helos	0	100
Tanker 2 + 2 helos	80	75
Tanker 3 + 1 helos	100	50

 As the tankers capabilities were diminished the overall capability of the task group (when in the Maritime Interdiction role) was reduced

26 June 2009 © Dstl 2009

UNCLASSIFIED

Discussion

- The chosen method, the use of shadow studies, worked well
- Resulting in:
 - a greater understanding of the domains investigated
 - a more accurate representation of those domains in SIMMAIR
 - correct assumptions used throughout including during coding
- Model was validated as we progressed:
 - Used current knowledge from each of the domains
 - Made use of those SME available as part of the real studies
- Allowed progressive testing of the model

Discussion

Some issues were encountered

 timing the study progress to match the release of new versions of the program from third party contractors

Not all the studies had a mature concept

- Led to difficulties in deciding what to model
- The shadow studies needed to drive the real studies forward

Real study teams more engaged with the model development

- The studies had a significant say in what should be developed
- Real benefit to future work was obvious

UNCLASSIFIED

Contents

Background

- Human Decision Making
- Exploitation
- Conclusions

26 June 2009 © Dstl 2009

UNCLASSIFIED

SIMMAIR Conclusions

• The use of SIMMAIR provided the real studies with:

- A single model environment with dynamic decision making linking the core functional areas
- Supplemental and unique analysis not available through current models
- Dynamic decision making based on available intelligence and Human Factors
- The exploitation work helped SIMMAIR development by:
 - Successfully guiding the development of the model
 - Providing initial verification of the model
 - Access to various data sources and expertise
 - Increased visibility of model within the UK defence community

26 June 2009 © Dstl 2009

