
1

Mikhail Auguston

Computer Science Department
Naval Postgraduate School, Monterey, California

maugusto@nps.edu

New Directions in Software
Quality Assurance Automation

2

Black Box Testing

The main problems:
How to create test cases
How to run a test case
How to verify the results of a test
run

System
Under Test

(SUT)

Outputs = Expected Outputs?Inputs

3

Black Box testing

Environment

System
Under Test

(SUT)

Outputs = Expected Outputs?Inputs

The SUT may be a complex reactive
real-time C3I system

sensors actuators

Outputs of the SUT
may affect the inputs

4

Testing methodology

We suggest (pseudo-)random test generation
based on the environment models.

It is best suited for a very special class of
programs: reactive and real-time. These
programs are of special interest for DoD-

 related applications.

5

The model of environment
 (an approach to behavior modeling)

An event

is any detectable action that is
executed in the “black box”

environment

An event is a time interval

An event has attributes: e.g., type, timing attributes, etc.

There are two basic relations for events:
precedence

and inclusion

The behavior of environment can be represented as a set of
events (event trace)

6

The model of environment

Usually event traces have a certain structure (or
constraints) in a given environment

Examples:
1.

Shoot_a_gun

is a sequence of a Fire

event

followed by either a Hit

or a Miss event
2. Driving_a_car

is an event that may be

represented as a sequence of zero or more
events of types
go_straight, turn_left, turn_right, or stop

7

The model of environment
The structure of possible event traces for a

given environment can be specified using event
grammar

1.

Shoot_a_gun::= Fire (Hit | Miss)
Shooting::= Shoot_a_gun *

2.

Driving_a_car::=
go_straight
(go_straight | turn_left | turn_right) *
stop

go_straight::= (accelerate | decelerate | cruise)

8

Sequential and parallel events
The precedence relation defines the partial order of

events
Two events are not necessary ordered; i.e., they can

happen concurrently

Examples

Shoot_a_gun::= Fire (Hit | Miss)
Shooting::= (* Shoot_a_gun

*)

Shooting_Competition::= {* Shooting *}

This is a
sequence

Those
events
may be
parallel

9

Visual representation of event trace
 (not all events and relations are shown…)

Shooting_Competition

Shooting

Shooting

Shoot_a_gun

Shoot_a_gun

Fire Hit

Fire Miss

IN relation

PRECEDES relation

Fire Miss

10

Event attributes

Shoot_a_gun::= Fire (Hit /Shoot_a_gun. points = Rand[1..10];
ENCLOSING Shooting .points += Shoot_a_gun

.points; /

|
Miss /Shoot_a_gun. points = 0;/)

Shooting::= / Shooting .points = 0; /
(* Shoot_a_gun

/Shooting .ammo -=1;/

*) While (Shooting .ammo > 0)

Shooting_Competition

::= /num = 0;/
{*

/Shooting .id = num++;
Shooting .ammo =10;/

Shooting *} (Rand[2..100])

11

Production grammars

Attribute event grammars (AEG) are intended to be
used as a vehicle for automated random event trace
generation

It is assumed that the AEG is traversed top-down
 and left-to-right

and only once

to produce a

particular event trace
Randomized decisions about what alternative to take

and how many times to perform the iteration should
be made during the trace generation

Attribute values are evaluated during this traversal

12

Using AEG to generate event traces
and inputs to the SUT

We can provide the probability of selecting an alternative

Shoot_a_gun::= Fire
(P(0.3)

Hit
/Send_input_to_SUT(ENCLOSING Shooting .id, Hit .time);/

|
--

this simulates SUT sensor input

P(0.7)

Miss)

We can generate a large number of event traces satisfying the
constraints imposed by the event grammar

13

The grammar can be used in order to generate event
traces and SUT inputs, for example:
Shooting_Competition:

Shooting: Shoot_a_gun: Fire
Hit

/Send_SUT_input(Hit.time)/
Shooting: Shoot_a_gun: Fire

Hit
/Send_SUT_input(Hit.time)/

Shoot_a_gun: Fire
Miss

Shoot_a_gun: Fire
Miss

Shoot_a_gun: Fire
Hit

/Send_SUT_input(Hit.time)/

Production grammar

Timeline

14

Use cases

Event traces are essentially use cases

Examples of event traces can be useful
for requirements engineering,
prototyping, and

system documentation

15

Example when SUT outputs are incorporated into the
environment model

Attack::= {* Missile_launch *} (Rand[1..5])
Missile_launch::= boost middle_stage WHEN(middle_stage.completed)

Boom
middle_stage::= / middle_stage.completed

= true;/
(* CATCH

interception_launched

(hit_coordinates)

--

this external event intercepts SUT output
WHEN (hit_coordinates == middle_stage .coordinates)
[P(0.1)

hit_hard
/ middle_stage.completed= false;

send_SUT_input(middle_stage .coordinates);
--

this simulates SUT sensor input
Break; / --

breaks the iteration
]

OTHERWISE move
*)

move ::= /adjust (ENCLOSING middle_stage .coordinates) ;
send_SUT_input(ENCLOSING middle_stage .coordinates);
--

this simulates SUT sensor input
DELAY(50 msec); /

16

Prototype implementation

The test generator based on
attributed event grammars has been
implemented at NPS

It takes an AEG and generates a test
driver in Java.

17

How it works

Environment
model

represented as
an event
grammar

Generator

Test driver
(in C, Java, or assembly

language)

SUT

Run time
monitor

How to
create test

cases

How to run test
case

How to
monitor the

results

18

Software safety assessment
In the previous example, the Boom

event will occur in

certain scenarios depending on the SUT outputs
received by the test driver and random choices
determined by the given probabilities

If we run large enough number of (automatically
generated) tests, the statistics gathered gives some
approximation for the risk of getting to the hazardous
state. This becomes a very constructive process of
performing experiments

with SUT behavior within the

given environment model (“software-in-the-loop”
 simulations)

19

Qualitative Risk Analysis

Attack::= { Missile_launch } * (<=N)
Missile_launch::= boost middle_stage Boom
middle_stage::= (CATCH

interception_launched(hit_coordinates)
--

this external event intercepts SUT output
[P(p1)

hit_hard
/send_hit_input(middle_stage.coordinates);

Break; /]
OTHERWISE

move
)*

Experimenting with increasing or decreasing N

and
p1

we can conclude what impact those parameters

have on the probability of a hazardous outcome,
and find thresholds for SUT behavior in terms of
N and p1

values

20

Qualitative Risk Analysis (2)

We can change some parameters in the model and
repeat the set of tests. If the frequency of
reaching a hazardous state changes, we can find out
how the parameter values influence the probability
to reach a hazard state

We suggest to use the combinatorial testing
technique

based on orthogonal arrays, an approach

well familiar to statisticians

21

Qualitative Risk Analysis (3)
 The same conjecture that stipulates that the fault in behavior

of the SUT in most cases depends either on a single parameter
value

or on an interaction of a pair of parameter values

could
be applied to the system safety testing. This conjecture still
has to be verified by experiments

 Combinatorial approach will significantly reduce the number

of
experiments needed to establish statistically sound conclusions
about probabilities to reach hazard state for different
environment model settings

 In order to apply combinatorial testing techniques the values
of model parameters have to be split into a finite number of
equivalence classes, a technique well known in software
component testing

22

SUT safety assessment with automated
scenario generation

Environment

Model

(with parameters)

Scenario
generator

SUT
“black box”

Test

driver

Test

Results

Insert a set
of model parameters

(tool under development)

Parameter tuple
combinatorial generator

(IBM tool)
Statistical evaluation

of results
Model’s

parameter
intervals

Test
driver

23

The main advantages
The whole testing process can be automated
The AEG formalism provides powerful high-level

abstractions

for environment modeling
It is possible to run many more

test cases with better

chances to succeed in exposing an error
It addresses the regression testing

problem –

 generated test drivers can be saved and reused.
AEG is well structured, hierarchical, and scalable
The environment model itself is an asset and could be

reused

24

Why it will fly
 Environment model specified by AEG provides for high-level

domain-specific formalism

for testing automation
 The generated test driver is efficient

and could be used for real-

 time test cases
 Different environment models can be designed; e.g., for testing

extreme scenarios

by increasing probabilities of certain events, or
for load testing

 Experiments running SUT with the environment model provide a
constructive method for quantitative and even qualitative
software

safety

assessment
 Environment models can be designed on early stages of system

design, can provide environment simulation scenarios or use cases,
and can be used for tuning the requirements and for

prototyping

 efforts

25

Questions, please?

26

Backup slides

27

Example –

simple calculator environment model

Use_calculator: (* Perform_calculation

*);
Perform_calculation:

Enter_number

Enter_operator

Enter_number
WHEN (Enter_operator.operation

== ‘+’)
/ Perform_calculation.result

=
Enter_number[1].value + Enter_number[2].value; /

ELSE
/ Perform_calculation.result

=
Enter_number[1].value -

Enter_number[2].value; /
[P(0.7)

Show_result

];

28

Example –

simple calculator environment model

Enter_number: / Enter_number.value= 0; /
(* Press_digit_button

/ Enter_number.digit

= RAND[0..9];
Enter_number.value

=
Enter_number.value

* 10 + Enter_number.digit;
enter_digit(Enter_number.digit); /

*) Rand[1..6];
Enter_operator:

(P(0.5)

/ enter_operation(‘+’);
Enter_operator

.operation= ’+’; /

|
P(0.5)

/ enter_operation(‘-’);
Enter_operator

.operation= ’-’; /

) ;

Show_result: /show_result();/

;

29

Example 2 –Infusion Pump model

CARA_environment: { Patient, LSTAT, Pump

};

Patient:

/ Patient.bleeding_rate= BR; /
(* / Patient.volume

+=
ENCLOSING CARA_environment

->
Pump.Flow

–

Patient.bleeding_rate;
Patient.blood_pressure

=
Patient.volume/50 –

10;
Patient.bleeding_rate

+= RAND[-9..9]; /
WHEN

(Patient.blood_pressure

> MINBP)
Normal_condition

ELSE
Critical_condition

*) [EVERY 1 sec] ;

30

Example 2 –Infusion Pump model

LSTAT: Power_on

/ send_power_on(); /
(* / send_arterial_blood_pressure(

ENCLOSING CARA_environment->
Patient.blood_pressure); /

*) [EVERY 1 sec]

;

Pump: Plugged_in
/ send_plugged_in();

Pump.rotation_rate

= RR;
Pump.voltage

= V; /
{ Voltage_monitoring, Pumping };

31

Example 2 –Infusion Pump model
Voltage_monitoring: (* / ENCLOSING Pump.EMF_voltage

=
ENCLOSING Pump.rotation_rate

* REMF;
send_pump_EMF_voltage(

ENCLOSING Pump.EMF_voltage); /
*) [EVERY 5 sec]

;
Pumping:

(* / ENCLOSING Pump. rotation_rate

=
ENCLOSING Pump. voltage * VRR;

ENCLOSING Pump. flow =
ENCLOSING Pump. rotation_rate

* RRF; /
CATCH

set_pump_voltage(ENCLOSING Pump.voltage)
Voltage_changed
[P(p1)

Occlusion
/ ENCLOSING Pump.occlusion_on

= True;
send_occlusion_on(); /

]
WHEN (ENCLOSING Pump.occlusion_on)
[P(p2)

/ ENCLOSING Pump.occlusion_on

=False;
send_occlusion_off(); /

]
*) [EVERY 1 sec]

;

32

Backup slides
Program monitoring and

test oracles
(How to verify the results of a test run)

33

Objective:

to develop unifying principles for program
monitoring activities

Suggested solution:

to define a precise model of
program behavior as a set of events –

event trace

Monitoring activities in software design can be
implemented as computations over program
execution traces.

Examples:

Assertion checking (test oracles)

Debugging queries

Profiles

Performance measurements

Behavior visualization

34

Program Behavior Models

Program monitoring activities can be specified in a
uniform way using program behavior models

based on

the event notion
An event

corresponds to any detectable action; e.g.,

subroutine call, expression evaluation, message
passing, etc. An event corresponds to a time interval

Two partial order binary relations are defined for
events: precedence

and inclusion

An event has attributes:

type, duration, program
state at beginning or end of the event, value,…

35

Program Behavior Models
Event grammar

specifies the constraints on

configurations of events generated at the
run time (in the form of axioms, or
“lightweight semantics”

of the target

language)

Some axioms are generic; e.g., transitivity
and distributivity

A PRECEDES B and B PRECEDES C A PRECEDES C

A IN B and B PRECEDES C A PRECEDES C

36

Example of an Event Grammar
ex_prog:: ex_stmt *
ex_stmt:: ex_assignmt | ex_read_stmt | …
ex_assignmt:: eval_expr destination

ex_prog

ex_assignmt

eval_expr destination

PRECEDES

IN

Example of an event trace

37

Program Monitoring

Monitoring activities: assertion checking,
profiles, performance measurements,
dynamic QoS metrics, visualization,
debugging queries, intrusion detection
Program monitoring can be specified in terms
of computations over event traces
We introduce a specific language FORMAN
to describe computations over event traces
(based on event patterns and aggregate
operations over events)

38

FORMAN language

Event patterns
x: func_call & x.name == “A”

eval_expr :: (variable)

List of events
[exec_assignmt FROM ex_prog]

List of values
[x: exec_assignmt FROM ex_prog APPLY x.value]

39

FORMAN language

 Aggregate Operations

MAX/[x: exec_assignmt FROM ex_prog APPLY x.value]

AND/[x: exec_assignmt FROM ex_prog APPLY x.value > 17]

Or

FOREACH x: exec_assignmt FROM ex_prog x.value > 17

40

Examples
1)

Profile

SAY("Number of function A calls is "
CARD[x: func_call & x.name == "A"

FROM ex_prog]

2) Generic debugging rule (typical error description)

FOREACH e: eval_expr :: (v: variable)
FROM ex_prog

EXISTS d: destination FROM e.PREV_PATH
v.source_code = d.source_code

ONFAIL SAY("Uninitialized variable "
v.source_code "is used in expression " e)

Event pattern

Aggregate
operation

Event
attribute

41

Examples

3) Debugging query
SAY("The history of variable x "
[d: destination & d.source_code == "x" FROM ex_prog

APPLY d.value])

4) Traditional debugging print statements
FOREACH f: func_call & f.name == "A"

FROM ex_prog
f.value_at_begin(

printf("variable x is %d\n", x))

Expression
Evaluated at the run time

Event attribute

42

Example of event trace representing a synchronization event
(send/receive a message)

par --launches two parallel processes
seq -- first parallel thread

stmt1
channel1 ! Out-expr -- sends a message
…

seq -- another parallel thread
stmt2
channel1 ? Var -- receives a message
…

Ex -program

Ex -PAR

Ex -par -process

Ex -par -process

Ex -stmt1
send

receiveEx -stmt2 Ex -stmt3

Eval -out -expr

wait

Rendez -vous

Ex -assignmentParallel
thread

Parallel
thread

43

Program visualization (UFO project)
Visualization prototype for Unicon/ALAMO (Jointly with

C.Jeffery, NMSU)

Point plot example for a binary search program

44

The novelty claims of our approach
Uniform framework

for program monitoring based on

precise behavior models and event trace computations
Computations on the event traces can be implemented in
a nondestructive

way via automatic instrumentation of

the source code or even of the executables (Dyninst
 approach)

Can specify generic trace computations: typical bug
detection, dynamic QoS metrics, profiles, visualization, …
Both

functional

and

non-functional

requirements can be

monitored
Yet another approach to the aspect-oriented

paradigm

45

Accomplished projects and work in progress
Assertion checker for a Pascal subset (via interpreter)

Assertion checker for the C language (via source code instrumentation)

Assertion checker and visualization tool for the Unicon language (via
Virtual Machine monitors)

Dynamic QoS metrics, UniFrame project (via glue and wrapper
instrumentation), funded by ONR

Intrusion detection and countermeasures (via Linux kernel library
instrumentation using NAI GSWTK), funded by the Department of
Justice Homeland Security Program

Automated test driver generator for reactive real time systems based on
AEG environment models, funded by Missile Defense Agency

46

Some publications
M. Auguston, Program Behavior Model Based on Event Grammar and its Application for
Debugging Automation, 2nd Int’l Workshop on Automated and Algorithmic Debugging,
AADEBUG'95, Saint-Malo, May 1995, pp. 277-291.

M. Auguston, A. Gates, M. Lujan, Defining a Program Behavior Model for Dynamic
Analyzers, 9th International Conference on Software Engineering and Knowledge
Engineering, SEKE'97, Madrid, June 1997, pp. 257-262.

M.Auguston, Assertion Checker for the C Programming Language based on computations
over event traces, in Proceedings of the Fourth International Workshop on Algorithmic and
Automatic Debugging, AADEBUG'2000, Munich, August 28-30, 2000, pp.90-99 on-line
proceedings at http://www.irisa.fr/lande/ducasse/aadebug2000/proceedings.html

M. Auguston, C. Jeffery and S. Underwood. A Framework for Automatic Debugging.
Proceedings of the IEEE 17th International Conference on Automated Software
Engineering, ASE'02, Edinburgh, September 2002, IEEE Computer Society Press, pp.217-
222.

Mikhail Auguston, James Bret Michael, Man-Tak Shing, Environment Behavior Models for
Scenario Generation and Testing Automation, in Proceedings of the First International
Workshop on Advances in Model-Based Software Testing (A-MOST'05), the 27th
International Conference on Software Engineering ICSE’05, May 15-16, 2005, St. Louis,
USA, http://a-most.argreenhouse.com, also in the ACM Digital Library

http://a-most.argreenhouse.com/

47

Summary of the event grammar
approach

Behavior models based on event grammars provide a
uniform framework for software testing and debugging
automation

Can be implemented in a nondestructive

way via
automatic instrumentation

Automated tools can be built to support all phases

of the
testing process

Provides a good potential for reuse: environment models,
generic debugging rules, test drivers for regression
testing

Provides high-level abstractions for testing and
debugging tasks, hence is easy to learn and use

Well suited for reactive real-time

system testing

48

Why bother?
Testing and debugging consume more

than 50%

of total software
development cost.

If the proposed research is transferred
into practice and reduces costs by 1%

 of the 50% of the $400 billion
software industry, the potential
economic impact would be around
$2 billion

per year.

	New Directions in Software Quality Assurance Automation
	Black Box Testing
	Black Box testing
	Testing methodology
	The model of environment�(an approach to behavior modeling)
	The model of environment
	The model of environment
	Sequential and parallel events
	Visual representation of event trace�(not all events and relations are shown…)
	Event attributes
	Production grammars
	Using AEG to generate event traces and inputs to the SUT
	Production grammar
	Use cases
	Example when SUT outputs are incorporated into the environment model
	Prototype implementation
	How it works
	Software safety assessment
	Qualitative Risk Analysis
	Qualitative Risk Analysis (2)
	Qualitative Risk Analysis (3)
	SUT safety assessment with automated scenario generation
	The main advantages
	Why it will fly
	Questions, please?
	Backup slides
	Example – simple calculator environment model
	Example – simple calculator environment model
	Example 2 –Infusion Pump model
	Example 2 –Infusion Pump model
	Example 2 –Infusion Pump model
	Slide Number 32
	Slide Number 33
	Program Behavior Models
	Program Behavior Models
	Example of an Event Grammar
	Program Monitoring
	FORMAN language
	FORMAN language
	Examples
	Examples
	Slide Number 42
	Program visualization (UFO project)
	The novelty claims of our approach
	Accomplished projects and work in progress
	Some publications
	Summary of the event grammar approach
	Why bother?

