
TIPS – A system for contextual prioritization of tactical 
messages 
 
Dr. Robert E. Marmelstein, Dr. Mary G. Devito 
Department of Computer Science 
200 Prospect Street 
East Stroudsburg University,  
East Stroudsburg, PA 18301 
 
Dr. Mark H. Linderman 
AFRL/RISE 
525 Brooks Rd 
Rome, NY 13441 
 
Dr. Norman Coleman – 
AMSRD-AAR-WSF-N 
Intelligent Systems Branch, 
Network Lethality & Int. Systems Div., 
Picatinny Arsenal, NJ 07806 



TIPS – A system for contextual prioritization of tactical 
messages 
 
Dr. Robert E. Marmelstein, Dr. Mary G. Devito – East Stroudsburg University, East 
Stroudsburg, PA 
Dr. Mark H. Linderman – Information Directorate, Air Force Research Laboratory, Rome, 
NY. 
Dr. Norman Coleman – Army Research and Development Center, Picatinny Arsenal, NJ. 
 
Abstract: 
The automatic understanding of military messages has long been a technological goal of 
Command and Control (C2).  Many past approaches utilized Natural Language 
Processing (NLP) techniques to solve this problem.  However, emerging database 
schemas for coalition C2, such as the Joint Command, Control and Consultation 
Information Exchange Data Model (JC3IEDM), make other approaches feasible.  The 
richness of the JC3IEDM makes it possible to extract context for Battlespace objects 
represented in the database.  The Tactical Information Prioritization System (TIPS) 
leverages the JC3IEDM schema in order to automatically evaluate and prioritize tactical 
reports for transmission to a given unit.  Priorities are assigned based on discovered 
linkage relationships between the report and the unit of interest in a number of different 
categories.  Once found, this evidence is injected into a specialized Bayesian network to 
generate the relative report priority.  In this paper, we describe the conceptual framework 
behind TIPS, including key queries to determine message relevance to a given unit.  We 
also present results showing scalability of the TIPS for a variety of scenarios. 
 
 
1.  Introduction 
 
The problem of getting the right information to the right person at the right time is as old 
as warfare itself.  Despite the development of elaborate C2 systems and strategies, the 
solution remains elusive.  Part of the problem is information overload; that is, C2 systems 
generate increasing volumes of information, which (in turn) needs to be evaluated, 
categorized, and given a disposition.  At the end of the day, there are just not enough C2 
personnel to make timely decisions about who should get what. 
 
Given this, it is highly desirable to have automated systems that can evaluate and 
prioritize information.  Significant effort has gone into NLP systems that can understand 
text messages.  Perhaps the most prominent of these initiatives are the series of Message 
Understanding Conferences (MUC) sponsored by Defense Advanced Projects Research 
Agency (DARPA) from 1987-1997 [6].  While significant progress was made in message 
understanding [2], this is only part of the problem.  What is also needed is a mechanism 
for assessing the context of the message relative to other Battlespace entities, such as 
military units.  In short, messages for a given unit should be prioritized based their 
content relative to the unit’s context.   
 



On first glance, this may appear an impossible task for anything other than a person to 
perform—and not just anyone. Only a small subset of C2 personnel might be able to 
perform such a task well—those with a comprehensive, up to the second, understanding 
of what is going on in the Battlespace.  Even more, to make the accurate decisions, 
personnel also need to understand the intricate relationships between different 
Battlespace entities:  who is doing what and how is it related?  Few people, other than 
perhaps top level commanders, have such knowledge—and they tend to be rather busy.  
Other factors, like stress and sleep deprivation, also serve to reduce the efficiency of C2 
personnel [3].  For these reasons, the degree of information overload in operations like 
Kosovo has challenged our ability to achieve information superiority [4].  The frequent 
result is that either too little or too much information gets to the intended recipient.   
 
Beyond message transmission, prioritization is also important for presentation of 
information—making sure critical information is brought to the user’s attention.   This is 
especially important when the amount of presentation space is limited.  An example of 
this limitation is the squad leader who relies on a mobile, hand-held device for Situational 
Awareness (SA).  Only so much information can fit on the display—as a result, the most 
important information must stay visible. 
 
 
2.   Approach 
 
In this paper, we introduce the Tactical Information Prioritization System as a mechanism 
for prioritizing messages for transmission to military units within a Battlespace.  TIPS 
accomplishes this task by mining linkages from a sufficiently structured database schema.  
Modern C2 database schemas, such as the JC3IEDM1, provide a ready source for this 
purpose.  By extracting context from a JC3IEDM instance, we avoid much of the 
complexity involved with NLP-type approaches.  TIPS is made up of three essential 
components:  a C2 database schema, a set of queries to discover contextual relationships 
(linkages) between the Reported Data Item (RDI) and the Unit of Interest (UOI), and a 
Bayesian Network (BN) to compute a priority based on the number and type of 
discovered linkages.  We now look at each of these components in turn. 
 
JC3IEDM  
 
Perhaps the most difficult and fundamental part of the message prioritization problem is 
how to capture Battlespace context.  While there are many C2 database schemas that 
capture aspects of context, until recently none did so in a comprehensive way.    That 
changed with the introduction of the JC3IEDM.  The JC3IEDM is an emerging standard 
data model for military command and control developed the under auspices of the 
Multilateral Interoperability Programme (MIP).  The mission of the MIP is to enable 
interoperability and advance digitization within NATO to support multinational, 
combined and joint operations [5].  The purpose of the JC3IEDM is to model the 
information that commanders need to exchange for land-based combat operations.   
 
                                                 
1 Including its predecessor, the C2IEDM 



The overall JC3IEDM is composed of three data models:  Conceptual, Logical, and 
Physical.  The Conceptual Data Model supports general concepts such as actions, 
organizations, materiel, personnel, features, facilities, locations, etc.  The Logical Data 
Model decomposes (via entity-relationship diagrams) the high level concepts into specific 
information that is regularly used at the staff level.  The Physical Data Model provides 
the specifications that define the corresponding database schema.   
 
In short, the JC3IEDM schema can describe virtually any land battlefield entity (object-
item), condition, task, or relationship.  As an example, a unit (which is a type of 
organization) can have links to action tasks, other organizations (through associations), 
locations, capabilities, resources, and objectives—to name a few.  Likewise, an RDI 
within a JC3IEDM database can have links to other tables that based on the information 
contained within the report.  These linkages may be to action task event details, status of 
ongoing tasks, object item capabilities, holding transfer, and associations.  This 
characteristic makes the JC3IEDM a treasure trove of contextual information relating an 
RDI to a UOI.   
 
 
TIPS Queries 
 
The JC3IEDM is central to the TIPS concept, because the system prioritizes messages not 
by analyzing their content directly, but by evaluating the database linkages generated as a 
result of the message’s content.  In order to prioritize tactical messages for units, TIPS 
performs a series of in-depth queries against a JC3IEDM database.  The purpose of these 
queries is to characterize the nature of the RDI, as well as how it may be related to the 
UOI.  These queries fall into three categories that are relevant for the prioritization of the 
message; these are: 
 

1. The quality of the reported data item.   
2. The subject of the reported data item. 
3. The relationship between the RDI and the UOI. 

 
The determination of the Reported Data Item’s quality is based on factors such as its 
freshness (time since initial report), its accuracy, the type of data, the collection means, 
the source, and its perceived credibility.  Most of these items are actually part of the table 
entry for each RDI in the JC3IEDM database.   While some of these factors are objective 
(such as the message source and time of receipt), others are more subjective.  For 
example, the credibility rating of the message assumes some input from a human analyst.  
Further complicating the problem is that much this information may not exist when the 
message is first reported.  Even when the fields are filled in, there is a possibility that 
they will change over time, as the tactical situation unfolds.   
 
Every message has at least one subject theme.  In order to determine what these might be, 
queries are performed to find the links between the RDI and selected JC3IEDM tables.  
Each of these links provides a distinct clue into the themes embedded in each message.  
For example, a linkage from the RDI entry to an entry in Action Task Status table 



indicates that the RDI communicates a theme about an ongoing action, as well as, its 
status.  Likewise a link to the Object-Item-Capability table implies a theme about an 
operational capability which, in turn, may support a related theme (operations 
requirement).  A mapping of RDI linkages to subject themes is given in Table 1.  Once 
again, TIPS only mines existing database linkages.  The assumption is that these linkages 
are inserted into the JC3IEDM instance either by human operators or by automated C2 
applications. 
 
 
 

Table 1 – Mapping of RDI Linkages to Message Themes 
JC3IEDM Table Entry Subject Themes 

Action-Event Action 
Action-Event-Detail Action 
Action-Event-Status Action, Status 
Action-Location Action, Location 
Action-Task-Status Action, Status 
Object-Item-Affiliation** Affiliation  Status 
Object-Item-Association-Status Association  Status 
Object-Item-Capability Capability  Ops-Requirement 
Object-Item-Hostility-Status Affiliation  Status 
Object-Item-Location Location 
Object-Item-Status Status 
Organisation-Structure Association  Status 
Holding Resource  Ops-Requirement 
Target-Personnel-Protection Resource  Ops-Requirement, Action 
 
 
As the embedded themes are identified, the related object-item subjects of the message 
are retained.  An object-item is considered a subject of the message if it is part of a 
subject theme linkage.  For example, if the RDI refers to an action task, that action task is 
considered a message subject.  If the RDI refers to the capability of a hostile unit, that 
unit is likewise considered a subject.  Note that the unit which generated the message is 
considered a subject by default. 
 
Once the RDI subjects have been identified, the next step is to determine which types of 
relationships exist between each subject and the UOI.  Again, this is accomplished by 
executing the following queries: 
 

 Shared Action – Is the subject currently engaged in the same action task or event 
as the UOI?  If so, are they direct role (participants) or indirect one (support or 
observer role)? 

 Shared Action Task with Associated Unit – If an Action-Task is shared through 
an [active] association only, this is an indirect linkage.  The bigger the association 
“chain”, the weaker the linkage.   



 Shared Targets – Does the subject and the UOI have shared targets?  If so, how 
many?  While shared targets usually imply shared action tasks, this may not 
always be the case.  It is also possible that the subject is a hostile object-item that 
is a target of the UOI.  Shared targets are considered to be direct linkages. 

 Shared Context – Within the JC3IEDM, the Context is equivalent to a bulletin 
board, where assessments of any Battlespace topic can be posted.  Object-items 
may be associated with a Context.  This linkage is characterized in terms of true 
or false only.  A shared Context, by itself, indicates an indirect linkage. 

 Shared Location – The strength of linkage is proportional to the closeness of the 
two units.  Units may also be associated with common locations (e.g., military 
base or town), even if they are not currently at those locations. 

 Response to Request – Was the RDI generated in response to a request from the 
UOI?  This obviously implies a direct and strong linkage. 

 
For many queries, we are not just interested in a binary yes or no answer.  Rather, if a 
relationship is identified, we try to characterize the strength of the relationship.  This is 
often driven by the number of linkages we find (in many categories, multiple may be 
found) and if those linkages are direct (subject and UOI directly related) or indirect 
(related thru a third-party object).   
 
 
Bayesian Network 
 
Once the queries have been executed, the results still need to be rolled up into a single 
priority.  We accomplish this by using a Bayesian Network (BN) to compute the 
probability that the RDI should be forwarded to the UOI based on the linkages uncovered. 
BNs are directed acyclic graphs composed of nodes and arcs which model a generalized 
Probability Distribution Function (PDF) over some domain.  The set of nodes within the 
BN are equivalent to random variables that define the domain.  Each variable may be 
discrete (having a finite number of countable states) or continuous.  The arrows represent 
dependencies between random variables and are sometimes interpreted as causal 
relationships.  Within each node, a local PDF is defined; this encodes the conditional 
probabilities for that nodes based on the state of parent nodes.  For each node, its PDF 
defines how its state is conditionally affected by the state of the parent nodes; the source 
of this belief can be either expert knowledge or probabilities learned from data.  If a node 
has no incoming arcs, its PDF defines the apriori likelihood of each state.  When 
evidence is inserted into its nodes, the BN computes the conditional probabilities for the 
remaining nodes (for which no direct evidence exists).  As such, the BN is an extremely 
useful tool for reaching a decision given what we expect and know to be true within some 
domain.  A more detailed tutorial on BNs can be found in [6].   
 
The findings generated by the linkage test provide the raw data for the BN to interpret.  
The results of each query are injected as evidence into the nodes of a specially designed 
BN shown in Figure 1.  The figure shows that the BN is segmented into sections which 
roughly correspond to the three query categories described above.  The quality nodes 
characterize the overall quality of the message.  The subject themes located by the 



queries indicate the overall criticality of the message.  The relatedness nodes denote the 
degree to which the RDI is related to the UOI.   Each distinct section of the BN 
culminates in a “voter” node which provides input to a decision node at the bottom of the 
network.  This decision node (labeled “Forward to Unit”) outputs the probability that the 
message should be forwarded to the UOI; this probability serves as a priority.   
 
 
TIPS Architecture 
 
The component-level TIPS architecture is displayed in Figure 2.  The TIPS GUI enables 
users to set up TIPS to process a given JC3IEDM database over a period of time.  During 
an engagement, the database will constantly update to reflect the current tactical situation.  
This means linkages will change and new reports will continually be added.  Because the 
database changes over time, new messages are initially prioritized and the priority of 
older messages must be periodically revisited.  This is an important point as you would 
expect the number of linkages associated with an RDI to increase and change over time.  
Eventually, the priority of the message will stabilize, but this may take a number of hours.   
Within the architecture, the TIPS Engine regulates the processing of messages within the 
database.  
 

 
Figure 1 (left) – TIPS Bayesian Network Model 

Figure 2 (right) – TIPS Architecture 
 
The current version of TIPS processes three types of messages: Intelligence messages and 
Situational Reports (SITREPs), and Obstacle/Weather reports.  Each message type has a 
slightly different set of queries and BN structure (though both are very similar in 
structure to what is shown in Figure 1).  The proper BN must be applied to the right 
message type.  Lastly, we have instrumented TIPS to output metrics in order to gauge its 
performance and scalability as it processes the JC3IEDM database over time.  The results 
from some of these experiments are presented in the next section. 
 
 



3.  Experimentation  
 
Last year, we were tasked by Air Force Research Laboratory (AFRL) to evaluate the 
scalability of TIPS.  This section summarizes our methodology for this task and the 
results generated to date. 
 
Previous Experimentation 
 
Previously, we had evaluated the relevance of the recommendations output by TIPS [7].  
This evaluation was performed by recording the priorities assigned by TIPS to messages 
for a fictional operational scenario with those assigned by human analysts.  Overall, the 
results showed that TIPS was able to closely approximate the priorities assigned by 
human analysts.  We found that the difference in assigned priorities between TIPS and 
human analysts had a mean of 11.8% and a standard deviation of 8.05%.  When we 
placed the priorities in discrete bins, the mean difference dropped to 2.91%.   It is 
important to note that we did separate the analysts into categories, and the priority 
assignment differences between TIPS and the more experienced analysts was more 
pronounced.  One interesting thing we found was that there was a significant variation in 
how analysts prioritized various messages.  When there was a high degree of consensus 
among analysts, the different with the TIPS assigned priorities was the smallest.   
 
TIPS Simulation Harness 
 
One impediment to our experiment was we lacked JC3IEDM databases of sufficient size 
and complexity to evaluate the scalability of TIPS.  To overcome this obstacle, we 
developed a TIPS Simulation Harness (TSH).  The purpose of the TSH is to 
automatically generate and execute an operational scenario of variable size.  The size of 
the scenario is determined by a number of input parameters, such as scenario duration 
and number of [friendly] brigades.  Once these nominal parameters have been entered, 
the TSH automatically creates the scenario framework (organizational structures, 
locations, roads, object-types, etc.) based upon the parameters supplied.  TSH then 
instantiates a JC3IEDM database which is populated with the initialization data. 
 
The next step is to run the simulation in order to generate the message traffic content and 
associated linkages for TIPS to process.  During the simulation run, Action-Tasks 
automatically planned and tasking messages are issue to participating units.  When the 
Action-Tasks are taking place, participating units generate messages related to their task, 
unit-type, and location.  Generated messages affect the outcome of future messages (i.e., 
if a unit makes a request for information, another unit must respond within the desired 
timeframe).  Once a report has been generated, it is inserted as a distributed set of table 
entries in the JC3IEDM database.  The specific tables affected are determined by the 
report types.  Ultimately, information associated with a given report has links to entries in 
the RDI data table.  A large part of the effort here is to make the generated scenario as 
coherent and realistic as possible. 
 
 



TIPS Performance Metrics 
 
The TSH incrementally executes the scenario in discrete slices of time (nominally one 
hour); these intervals are called revisit periods.  During the revisit period, the message 
traffic will be generated for that scenario period.  After all messages are generated for the 
revisit period, the TSH will notify TIPS, which can begin processing the current 
JC3IEDM database.  When TIPS runs, it processes the new messages, as well as older 
messages whose priority has yet to stabilize.  A fuller description of the TIPS execution 
parameters can be found in Table 2.  After TIPS is finished, the TSH is synchronized to 
start on the next Scenario interval. 
 

Table 2 – TIPS Executive Parameters 
Parameter Definition 

Revisit Period 
The amount of time between that must pass before TIPS 
will process RDIs in the JC3IEDM database.  The default 
revisit period is one sixty (60) minutes. 

Stabilization Period 

The number of revisit periods that must pass without a 
change in TIPS priority score before an RDI has stabilized.  
The default value is five (5).  Once an RDI has stabilized, it 
is no longer considered for transmission to a given unit.  
Stabilization status is determined for each RDI/Unit pair. 

 
 
As TIPS executes, we have instrumented the code to output a variety of metrics 
summarized in Table 3.  These metrics are written out to a spreadsheet file every revisit 
period.  These metrics enable analysis of the performance and scalability of TIPS in 
relation to the complexity of the scenario and the growth of the JC3IEDM database. 
 

Table 3 – TIPS Performance Metrics 
Metric Definition 

Num RDIs 
Number of Reported Data Items (RDIs) inserted into the 
JC3IEDM database instance by the TSH since the start of 
the scenario 

Num Linkages 
Number of first-order linkages (references to RDI as a 
foreign key) inserted into the JC3IEDM database.   

RDI/Unit Pairs 

The total number of TIPS queries performed per RDI.  We 
track two items in this category: 

 Active – still being evaluated 
 Stabilized – evaluation has ceased 

Elapsed TIPS CPU time  
(per revisit period) 

The amount of elapsed CPU time to execute all TIPS 
queries during a given revisit period.   

RDI score change 

The difference in the TIPS priority for a given RDI.  The 
difference in computed using the average score for the first 
revisit period (when the RDI becomes active) and the last 
(when it becomes inactive).  The MEAN and STDEV 
statistics are computed for this metric. 



RDI time active 
The average number of revisit periods that an RDI is active.  
This is computed over all RDIs each revisit period.  The 
MEAN and STDEV statistics are computed for this metric. 

 
 
Run-time Experiment Results 
 
One of our design objectives was for the run-time performance of TIPS to scale linearly 
as the number of units increased.  To test this, we ran TIPS on a number of different sized 
scenarios; in terms of units, the scenario sizes were:  74, 133, 185, 295, and 583.  Figures 
3 and 4 show the intra-scenario scalability for two scenarios:  185 units and 295 units, 
respectively.  During the course of the 72 hours scenario, the size of the database grew as 
more messages are generated.  In both cases, the results show that the elapsed CPU time 
per revisit interval holds stable despite the steady increase in database size.   One of the 
most common measures of run-time performance is CPU reserve.  In terms of this metric, 
TIPS utilized only 22% of the available 3600 seconds in the revisit period for the larger 
scenario.    
 
The principal reason why the CPU utilization holds steady is that RDIs are no longer 
processed by TIPS once their priority has stabilized.  Figure 5 illustrates this point:  as the 
total number of RDIs in the database increase, those under active consideration level off 
early in the scenario.  Of course, some fluctuation in this regard is to be expected.  Figure 
6 shows the mean and standard deviation of RDI lifetimes as the scenario progresses.    
For the scenarios shown, the average RDI lifetime is 8.39 hours, with a peak life of 11.1 
hours; the 295 unit scenario had comparable results, with the 583-unit scenario showing a 
slight decrease.  While the mean RDI lifetime grows incrementally, this gradual increase 
is not large enough to significantly affect the run-time performance. 
 
 

 
Figure 3 (left) – Run-time performance for 185 unit scenario  
Figure 4 (right) – Run-time performance or 295 unit scenario 
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Figure 5 (left) – RDI stabilization rate for 185 unit scenario 

Figure 6 (right) – RDI lifetime for 185 unit scenario 
 
Of course, the above figures only portray the intra-scenario run-time performance for 
TIPS.  We characterize inter-scenario performance by evaluating a range of scenario 
sizes.  Figure 7 shows the percentage of CPU utilization on a per revisit period basis as 
we increase the scenario size.  Both peak and average CPU utilization are shown.  In both 
cases, the growth is roughly linear.  Likewise, Figure 8 shows a linear growth in 
processing time (on a per linkage basis) as the number of units increases. 
 
The results of these experiments is significant, because it shows the TIPS approach is 
linearly scalable for the type of databases that would be generated by a large coalition 
operation.  The size of the scenario and its duration also serve to stress-test the system.  
Each scenario simulates a 72 hour period—the mean and peak performance 
measurements were collected over this duration. 
 

 
Figure 7 (left) – Scalability based on revisit interval utilization 

Figure 8 (right) – Scalability based on per link processing 
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4.  Summary 
 
TIPS extracts context from JC3IEDM databases to perform automated prioritization of 
military messages.  Though it is automated, we do not recommend TIPS as a replacement 
for military analysts; instead, we see it as an electronic assistant to cue them to potentially 
important information.  The primary motivation for the TIPS approach is the potential to 
help combat information overload within C2 centers.  Consider the effort required for a 
human C2 analyst to quickly prioritize the importance of every report for each unit.  The 
difficulty of this task is compounded by the dynamic nature of warfare—facts are 
continually being added or changed.  This means that a report that seemed innocuous 
might in fact be important due to subtle (second or third order) relationships not readily 
apparent to an overworked analyst.  Further, consider that a less-than-fresh report might 
become more important to a unit over time, as additional facts become known.   
Overcoming information overload to maintain situational awareness is critical.  Losing 
SA can result in friendly fire tragedies, such as the accidental downing of two Black 
Hawk helicopters during Operation Provide Comfort in 1994.   
 
This paper provided a conceptual explanation of TIPS and tested the scalability of TIPS 
with a variety of scenario-generated JC3IEDM databases.  Within a scenario, the TIPS 
CPU utilization (per revisit period) tends to level off early in the scenario.  This is a 
favorable result and is largely dependent on the phenomenon that most messages will 
stabilize in terms of their priority within about 8 hours.   As a result, even though the 
number of raw messages increases, the TIPS processing load levels off. The inter-
scenario results show that TIPS scales linearly as the size of the database increases.  This 
trend is likewise encouraging as it indicates that TIPS processing overhead is manageable 
in an operational setting.  As a result, the required computing resources can be sized 
apriori to avoid delays in the processing of critical messages. 
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