
14TH ICCRTS

“C2 and Agility”

Paper # 157_S

1. Title: Designing and Evaluating Agile C2 Systems Based on Service Oriented Architectures

2. Topic(s): Track 9: C2 Architectures and Technologies

3. Authors: Ashraf M Abusharekh [Student*], Lee W. Wagenhals, and Alexander H. Levis

4. Point of Contact: Ashraf M Abusharekh

5. Organization: System Architectures Lab, George Mason University

6. Address: System Architectures Laboratory

Electrical and Computer Engineering Department, MSN 1G5

George Mason University

Fairfax, VA ‐ 22030

703.993.1725 (v)

703.993.1601 (f)

7. Email: aabushar@gmu.edu

*Mr. Abusharekh is a third year PhD. student in the The Volgenau School of Information Technology

and Engineering at George Mason University.

Abstract

The Department of Defense Architecture Framework (DoDAF) [1] is one of the frameworks used to
describe, document and organize an architecture, its components, their relationships and the principles
and guidelines governing their design and evolution [1]. There are two fundamental approaches for
designing architectures that are conformant to DoDAF, one based on structured analysis and one on
object orientation [2] [3] [4] [5]. Recently, a new direction was introduced in DoDAF v1.5, which
transforms DoDAF from product centricity to data centricity by using the Service Oriented Architecture
(SOA) paradigm as a key enabler for implementing net-centric objectives [6]. SOA comes with the
promise of solving enterprise interoperability, business and IT agility, and flexibility and resource reuse
problems currently inherited from stovepipe architectures, thus allowing for a net-centric system-of-
systems. A key to Command and Control (C2) agility is effective information sharing. By using SOA,
alignment between business objectives and the supporting IT infrastructure is achieved and information
sharing becomes the norm and data and information become ubiquitous thus allowing for an agile C2
system.

In this paper, we present an approach for constructing an event driven SOA compliant to DoDAF
v1.5 capable of participating in the DoD net-centric environment (NCE) by consuming NCE services
and/or serving un-anticipated NCE users. The end product of the approach is an executable model derived
from the information contained in the DoDAF v1.5 artifacts to evaluate the logical, behavior and
performance characteristics of architecture’s business processes and services. The approach will be
described using an illustrative case study.

1. Introduction

Systems architecting [7] [8] [2] is part of the system engineering process and relies on many of the
methodologies that have been developed over time. Its end product is a detailed description of the system
architecture to be instantiated. DoDAF [1] is one of the frameworks available for system architects to
describe, document and organize an architecture, its components, their relationships and the principles
and guidelines governing their design and evolution [1].

Levis & Wagenhals [2] introduced two approaches for designing architectures that are conformant to
DoDAF, one based on structured analysis and one on object orientation. The end product in both cases is
an executable model derived from the information contained in the DoDAF artifacts.

Recently, a set of concepts, objectives and strategies has been defined within the Department of
Defense community to transform the department to a new type of information intensive warfare known as
Net-Centric Warfare (NCW) capable of achieving Net-Centric Operations (NCO) in which the war-
fighting enterprise is effectively networked making essential information and capabilities available (when,
where and how they need it) for users (current and un-anticipated) to carry out their missions effectively.
The DoD views architectures as the mechanism for designing solutions for this transformation, and SOA
has been selected as a design paradigm to build such architectures capable of achieving many of the goals
of this transformation. This new direction was reflected in DoDAF v1.5, which accordingly transforms
DoDAF from product centricity to data centricity and uses the SOA paradigm as a key enabler for
implementing net-centric objectives [1].

In this paper, we present an approach for constructing an event driven SOA compliant to DoDAF
v1.5 capable of participating in the NCE by consuming NCE existing capabilities and/or populating NCE
with new ones that can be consumed by anticipated and un-anticipated users. This architecture will define
business services and business processes that are hosted by an Enterprise Service Bus (ESB)-based SOA
infrastructure. These business services and processes will accomplish the architecture’s operational
concept; and they will be published through Communities of Interest (COI) as capabilities for other NCE
users to reuse to accomplish their missions. The end product of the approach is an executable model

1

derived from the information contained in the DoDAF v1.5 artifacts to evaluate the logical, behavior and
performance characteristics of architecture’s business processes and services.

Relevant background about NCW concepts and strategies, SOA and DoDAF v1.5 is presented in
section 2. The approach is presented in section 3; section 4 includes an illustrative example and a
discussion of the performance analysis and the results of the computational experiment conducted. Finally
conclusions and future work are presented in Section 5.

2. Background

The NCE is a networked environment that includes infrastructure, systems, processes and people to
achieve improved situation awareness, better access to business information and a shortened decision
cycle in support of NCO. Data and capabilities across the NCE should be visible, accessible and usable by
anticipated and un-anticipated users. Data exchange between systems should be flexible supporting
interoperability between them in a loosely coupled way avoiding point-to-point interfaces among them.
In the NCE, users should be able to obtain information and capabilities hosted by the NCE when, where
and in the form they need to accomplish their missions and business objectives [1].

The DoD community identified a set of high-level net-centric concepts [1], strategies [6] [9], and
goals to support the transition to NCO. The NCE concepts are: (1) Populate NCE: populating NCE with
data, information and capabilities that are made visible, discoverable and accessible by authorized NCE
users. New net-centric architectures should provide/contribute to the NCE data, information and
capabilities which can be leveraged by other NCE users. (2) Utilize the NCE: users of the NCE should be
able to discover data, information and capabilities and use them to accomplish their missions. (3)
Accommodate un-anticipated users: NCE users will look for (discover) data, information, and capabilities
in the NCE rather than be constrained (hard-wired) to them. (4) Promote the use of Communities of
Interest: As defined by the DoD Net-Centric Data Strategy [6] a COI is a collaborative group of users
who exchange information in pursuit of their shared goals, interests, missions, or business processes and
who therefore must have shared vocabulary for the information they exchange. They define common
vocabularies, taxonomies, data standards, interchange agreements and specifications relevant to the
communities’ architecture [1]. COIs ensures that data, information and capabilities are developed in a
manner that supports interoperability across organizational boundaries. (5) Support Shared Infrastructure:
enterprise-level data, information and capabilities are being supported and used where appropriate and
available. Two strategies have been developed in support of the NCE concepts, the Net-Centric Data
Strategy [6] and the Net-Centric Service Strategy. The main goals of the Data Strategy are to making data
visible, accessible, understandable, and trusted. The main goals of the Service Strategy are to provide and
consume services from the NCE, govern these services and their infrastructure, and monitor and manage
then.

SOA has been selected as an approach for implementing the net-centric concepts and objectives. The
service-oriented paradigm was introduced with the promise that it will solve enterprise interoperability,
business and IT agility and flexibility, and resource reuse problems currently inherited from stovepipe
architectures. SOA can mean different things to different people [10] (even at different stages of the
architecture design process). From the system architect point of view, SOA is an architectural style that
requires a service provider, a service consumer, and a service description; the resulting architecture is
SOA, and the supporting infrastructure is SOA. For the purposes of this paper, SOA is based on coarse-
grained, loosely coupled, and reusable services [11] [12]. These services can be composed into business
processes, and they interact through the ESB which provides a highly distributed, event-driven SOA that
combines Message Oriented Middleware (MOM), orchestration and process flow, and intelligent routing
based on content and data transformation. Although SOA can exist without an ESB, using an ESB makes
it more efficient, scalable and more reliable [13]. The layered structure of the SOA environment is
presented and explained in detail in the next section.

2

DoDAF v1.5, is the first transformation of the DoD Architecture Framework to support representing
the net-centric architectural constructs that can capture the NCE concepts mentioned above. The reader is
advised to refer to [1] for detailed description of the DoDAF artifacts.

3. Approach

The structure of the SOA environment is shown in Fig. 1. The environment is composed of three
layers. The Operational layer contains the business processes, defined as a composition of singleton
and/or composite business services. The Service layer contains the services and individual ESBs
participating in a SOA federation; each ESB is composed of the MOM responsible for passing messages
between services using message flow channels, the SOA Supervisor responsible for monitoring services
and business processes, the Orchestration service responsible for executing business processes, the
Registry service maintaining service definitions, service level agreements, and business process
definitions, and the Service Containers that control and monitor the services they host by managing
services’ endpoints and sending periodic messages to the SOA Supervisor. SOA federation rules and
policies will be enforced using border gateways interconnecting individual ESBs at the Service layer. The
hosting, instantiation, orchestration, management and monitoring of the business processes defined at the
Operational Layer are done at the Service Layer by the ESBs.

O
p

e
ratio

n
a

l L
a

ye
r

Service

Service

Service

Service Service

Business Process n

Business Process 2

Business Process 1

S
ervic

e L
a

yer

Service Container

Service

Service Container

Service

Service Container

Service

Service Container

Service

v

P
h

ys
ic

al L
a

yer

ESB

SupervisorMOMOrchestratorRegistry

ESB

SupervisorMOMOrchestratorRegistry

Figure 1: SOA Environment

The Physical layer contains physical nodes (workstations, servers, network nodes, etc…) and
communication networks supporting the environment.

The interoperability between SOAs participating in a federation is depicted in Fig. 1 as a link between
the ESBs. This link is a virtual link and does not indicate tight coupling of the ESBs. Its purpose is to
show that the SOAs are part of a federation. In order to enable a SOA federation, a higher level form of a
federation repository/registry is needed to expose federation rules, policies, and federation-wide services
[14]. This repository is not shown in Fig. 1 and will be further discussed in the next paragraphs.

SOA federation is an environment that brings together multiple SOAs that have established producer-
consumer relationships, such that the right rules and policies (trust, governance, security, etc…) apply

3

throughout the environment. This allows for local variances and autonomy of individual SOAs while
implementing federation-wide rules and policies to regulate and govern interoperability, thus addressing
organizational, management, political and practical issues [12] [15] [16]. A SOA participating in a SOA
federation is referred to as a federated SOA. In the context of this paper, the SOA under construction will
federate with existing SOAs to use their published capabilities, i.e., the new SOA is the consumer of
services exposed by existing SOAs, and it will produce new capabilities to be consumed by other
systems.

NCE

COI<2>

Service<2>

COI<1>

Service<1>
COI<3>

Service<4>

Service<3>

SOA<1>

Service<1>

Service<4>

SOA<2>

Service<1>

Service<3>

SOA<3>

Service<4>

Service<2>

SOA<4>

Service<3>

Service<2>

Subscribe

Subscribe

Publish: Service<3>/Subscribe

NCE Registry

SOA<5>

Service<2>

Service<3>

Service<1>

Service<4>

Figure 2: NCE, COIs and SOA Federation

The concept of COIs, will be used to enable dynamic federation with pre-defined or un-anticipated
systems. In order to simplify and speed-up discovery of services (capabilities), COIs will not only define
common vocabularies, taxonomies, data standards, interchange agreements, and specifications among
COI members, but also will define service descriptions relevant to the communities and will host a
repository of current implementations of those services. Each COI will have its federation repository. To
further clarify the picture of the SOA federation within the NCE and how the notion of COI enables and
supports such environment, an example is depicted in Fig. 2Figure 2.

In Fig. 2, SOA<1> and SOA<2> participate in COI<1> by publishing Service<1>, SOA<3> and
SOA<4> participate in COI<2> by publishing Service<2>, and SOA<1>, SOA<2>, SOA<3>, SOA<4>
and SOA<5> participate in COI<3> by publishing services Service<3> and Service<4>. SOA<5> needs
Service<1>, Service<2>, and Service<4> in its business processes, therefore it subscribes to COI<1>,
COI<2> and COI<3>. Furthermore, if SOA<5> can substitute its implementation of service<3> by
federating with members of COI<3> in case its own implementation is failing. From an industrial view
point, several problems with this approach need to be resolved, e.g., the location of a COI repository
which should be negotiated and agreed upon among participating parties. Since this study is primarily
focusing on DoD NCO, the NCE is assumed to host the COIs and, the NCE registry is the central
federation repository/registry that publishes COIs information as shown in Fig. 3. An abstract layered
structure of the information that needs to be maintained in the NCE registry about the COIs is shown in
Fig. 3.

In the layered approach shown in Fig. 3, layer 1 shows all the COIs hosted by the NCE, layer 2 shows
all services definitions published through individual COIs, and layer 3 shows the actual services
implemented by SOA instances. Although layer 3 contains different instantiations, still the providers
abide by the policies and rules agreed upon through the COI including service definitions and data
models. The NCE registry will be used by a SOA to search for relevant COI, but in order to subscribe to a
particular COI, the SOA instance needs to subscribe to the specific COI registry such that each COI will

4

maintain its own autonomy and self containment. The SOA instance will subscribe to a COI as a producer
adding new capabilities to be published within the COI, or as a consumer of a capabilities being published
by the COI or as both. In all cases, the concept of a COI is leveraged to support and enable the dynamic
formation of federations among deployed SOA instances. In Fig. 3 when service failures occurs, to locate
an alternative service implementation for a failing service e.g. COI<2>.Service<2>.Service<c>, the only
candidate services that need to be further examined for acceptable service levels are the ones under the
same COI Service Description, i.e. COI<2>.Service<2>.Service<a> and COI<2>.Service<2>.Service,
since they by default provide the same service as the original one.

NCE Registry

COIs

COI<1>COI<3> COI<2>

COI Service Description

COI<2>.Service<1> COI<2>.Service<2>

Service Implementations

SOA<1>.Service<a> SOA<2>.Service SOA<1>.Service<c>

Figure 3: NCE Registry

A framework for achieving a reliable architecture description with rigorous evaluation was first
introduced in [4]. A similar framework suitable for net-centric architectures is shown in Fig. 4. This
framework provides a high level view of the life cycle of a net-centric architecture. As mentioned in [5],
three processes need to be addressed, a process for creating the architecture description applied at the
Architecture Design Phase, a process for converting the architecture description to the executable model,
and a process for using the executable model for analysis and evaluation both applied at the Analysis &
Evaluation Phase.

Architecture
Deployment

Architecture
Design

Analysis &
Evaluation

Deploy

Static Views (OVs, SVs)

Changes/Errors

New Business Process
New Application

Static Views (OVs, SVs)

Evaluation
Results

C
O
N
O
P
S

N
C
ES

D
A
R
S

C
O
Is

Figure 4: Architecting Process

The Architecture Design phase produces the SOA architecture DoDAF v1.5 products, which are used
in the Analysis & Evaluation phase to synthesize executable model. Two approaches, one based on

5

structured analysis and one on object orientation, have been developed to support an architecture creating
process [4] [3] [17]. Additional information and information sources are need during the Architecture
Design Phase for these approaches to be able to construct a net-centric architecture. In the context of
NCE, the new architecture is not only viewed as an un-anticipated user of existing capabilities
implemented by other deployed systems, but also as a source of new capabilities. From the system
architect viewpoint, he needs to design a new architecture to accomplish its intended mission/s, by
leveraging -as needed- capabilities implemented by existing systems, and by populating the NCE with
new capabilities that will contribute to the NCO and be used by other systems. Accordingly, three
additional information sources are needed. (1) Information about existing COIs and the services they
expose: the system architect will need to be aware of existing COIs in order to be able to consume
capabilities and to publish new ones. Full understanding of the COIs policies and rules, their data formats
and services descriptions is needed to successfully federate with their members. The new architecture will
abide by the existing COI policies, rules and data and services definitions agreed upon between the COI’s
members in order for consumers to successfully use the architectures capabilities exposed through the
COI. The NCE Registry Service will be the main source of such information (Fig. 3). (2) Information
about architectures of systems implementing capabilities that might be leveraged by the new architecture:
the architect needs to fully understand the capabilities exposed by other systems in order to make a
decision whether or not they will full the functional and non-functional requirements of the new
architecture. The DoD Architecture Repository (DARS) provides an environment for registering, posting,
discovering and retrieving architecture related information [1]. In addition, the system architect has to
expose the new architecture through DARS for other NCE users to make use of it. (3) Access to existing
Net-Centric Enterprise Services (NCES) currently available through the NCE: The NCES will allow for
trustworthy enterprise-level data, information and capability sharing.

A modified architecture creation process using the object oriented approach similar to the one
explained in [5] is depicted in Fig. 5. The modified process uses the additional information and
information sources mentioned above to build a net-centric architecture. The reader is advised to refer to
[5] for a full description of the stages of the process. The process is divided into six stages as follows:

- Stage 0: includes the articulation of the purpose and scope of the architecture and the identification of
the background documentation needed to create the architecture. Three new source of information the
architect need to have access to at this stage:

1. DARS.

2. Available COIs.

3. Available NCES.

- Stage 1: focuses on the development of the operational concept of the architecture. Initial depiction of
COIs that the architecture will participate in.

- Stage 2: includes three main activities that need the additional information to build the net-centric
architecture.

1. Defining Organizations and their relationships: this activity defines organizations and sub-
organizations within the architecture along with net-centric organizations that federate with the
architecture providing the net-centric objectives. At this stage, the architect needs to identify the
existing COIs that will provide or consume capabilities and their relationships with the internal
organizations of the architecture. DARS is needed to further examine the architecture artifacts of
potential existing organizations participating in these COIs. An initial examination of whether

6

2. Defining Operational nodes: apart from the architecture’s internal operational nodes, the choice
of COIs that the architecture will participate in will introduce external operational nodes provided
by members of the COIs. DARS is used to examine the artifacts describing such nodes.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Mission
CONOPS

Organizations &
Relationships

Systems &
Services

Descriptions

System Functions

Comm. Systems
Description

Systems
Performance
Parameters

Evolving
Technology &

Systems

DARS

NCES

Define
Operational

Concept

Select
Organizations &

Relationships

Define
Operational

Nodes

Select
Systems/Services
& Define System

Nodes

Develop OO
Structural &
Behavioral

Descriptions

Map
Activities To
Functions

UJTL

Doctrine & TTPs

Scenario Events

Information
Exchanges

OV-5 OV-6A

OV-6B OV-6C

OV-7OV-1

OV-4

SV-5

Derive &
Characterize

Operational Info.
Exchanges

Develop OO
Structural &
Behavioral

Descriptions
Based on

System/Service
Functions

SV-10CSV-10B

SV-11 SV-10ASV-4

OV-2

OV-3

Derive
System/Service
Data Exchange

Define
System/Service

Interfaces

Define Comm.
Links & Networks

Interfaces

Define
System/Service

Performance

Define Evolution
of Systems &
Technology

SV-6

SV-1 SV-3

SV-2

SV-7

SV-8

SV-9

Operational View

COIs

Systems & Services View

Figure 5: DoDAF Architecture Design

3. Selecting Systems/Services and defining System Nodes: the architect identifies specific services
that will be consumed or produced as part of existing COIs the architecture is participating in.
The architect needs to abide by data descriptions and service interfaces published by those COIs.

The information articulated in Stage 2 will affect all stages of the process. These affected DoDAF
artifacts will be presented with the help of the case study in the following section.

- Stage 3: involves:

1. Full analysis of the Operational View. It is during this stage that structural and behavioral
diagrams are developed to understand and describe the operational activities carried out by

7

2. Develop mappings from the operational activities to the systems, services and system functions.

- Stage 4: involves

1. Finalizing the Operational View analysis by deriving and characterizing the operational
information exchanges.

2. Full analysis of the Systems and Services View, focusing on services, system components and
their functions along with system data that is exchanged.

- Stage 5: involves

1. Finalizing the Systems and Services View products by extracting data and concepts from Stage 4
analysis and generating systems and services interface descriptions, the communications
infrastructure description, the systems and services performance parameters documentation, and
the system, service, and technology evolution descriptions.

The products of the Architecture Design phase will be used in the Analysis & Evaluation Phase to
construct an executable model. DoDAF artifacts are static representation of an unprecedented, complex,
and dynamic architecture. These static artifacts are capable of describing the behavior of the architecture
only in a limited way. Hence there is a strong need for architecture evaluation techniques that go beyond
static diagrams to examine behavior and performance in detail. An executable model of the architecture
enables the architect to analyze its dynamic behavior, identify logical and behavioral errors not easily
seen in the static descriptions, and demonstrate to the customer or user the capabilities that the
architecture enables.

A process for converting the architectural artifacts produced during the Architecture Design Phase to
an executable model is needed at this phase; we will use the existing process defined in [4] and [5] in
which Colored Peti-Net (CPN) executable model of the architecture is synthesized from the DoDAF
artifacts. CPNs offer more than just simulation to support the analysis and evaluation. CPNs in general
(and CPNTools [18] in particular) allow behavioral properties to be verified by analysis without resorting
to simulation. State Space Analysis is an analysis technique that provides a variety of properties about a
CPN [19]. State Space Analysis techniques have been implemented in CPNTools.

A key concept in the Analysis & Evaluation Phase is that all elements of the executable model must
be traceable to elements in the architecture description. As more is learned about the behavior and
performance of the architecture from the creation of the executable model and the detailed analysis of its
behavior and performance, any corrections or changes introduced to the executable model are reflected
back in the DoDAF products. It is during this phase that the designer makes sure that a new process
provides dependable service level within the architecture whether the architecture is new or already
deployed. The Analysis & Evaluation phase will also produce the evaluation of Measures of Performance
(MOPs) and Measures of Effectiveness (MOEs) of the architecture [20].

Finally, the architecture is instantiated and deployed in the Architecture Deployment phase, in which
the need for new processes, applications or services will trigger the design process again. Exploring the
implications of adding new business processes (implications on the instance itself and other systems
reusing the instance’s capabilities) while SOA instance is deployed through modeling and simulation is
also necessary before the actual deployment of the new business logic.

4. Case Study

8

The case study presented here is based on a hypothetical operational concept for a new Theater
Ballistic Missile Defense (TBMD) system called Airborne Theater Ballistic Missile Interceptor System
(ATIS). The case study was first introduced by [5] to illustrate the process of completing a full DoDAF
v1.5 compliant architecture. Our goal is to fully create a DoDAF v1.5 net-centric architecture capable of
intercepting and destroying Theater Ballistic Missile (TBMs) and capable of providing and consuming
information and capabilities to and from the NCE. To achieve this, we will:

1. Define business services and business processes to be hosted by the ATIS (internal capabilities),

2. Re-use business services and/or processes implemented by other NCE systems (external
capabilities).

3. Publishing relevant ATIS capabilities to be used by other NCE systems.

To re-use existing capabilities and populate NCE with new ones, ATIS must join relevant COIs. ATIS
business services and processes will be hosted by the SOA environment shown in Fig. 1.

For simplicity and brevity, only key DoDAF v1.5 artifacts will be presented. The rest of the
products will not be presented and the reader is referred to [5] for a richer set of DoDAF artifacts. In
addition, the following assumptions have been made:

1. The following COIs exist:

a. Ballistic Missile Response COI

b. Intelligence, Surveillance, and Reconnaissance (ISR) COI

2. A Ballistic Launch Warning System (BLWS) is deployed and is hosting a Global Ballistic Missile
Warning (GBMW) Service. BLWS is a member of the Ballistic Missile Response COI and has
already published the GBMW Service through the COI.

3. Net-Centric Enterprise Services (NCES) and capabilities are available and accessible.

The purpose of the architecture is to develop an understanding of the arrangement and
interoperation of organizations and systems that support the concept of operations for ATIS, and to be
able to assess the ability of the proposed system to destroy incoming TBMs based on the capabilities
of the adversary to launch them. The architecture is designed to (1) determine if the operational
concept can be made to work, (2) assess the impact of evolving this system into the NCE by creating
business services of its own and (3) determine how to make its business services or their composition
(business processes) accessible by anticipated and un-anticipated users of the NCE. The operational
concept graphic of the architecture (OV-1) is shown in Fig. 6.

9

NCE Ballistic Missile
Response COI

1. ATI Service
2. GBMW Service

ISR COI
1. Track Blue Service
2. Track Red Service

NCES
Topics

•ATIS Tactical Picture
•GBMW System Tactical Picture

Figure 6: Operational Concept (OV-1)

OV-1 shows that ATIS will participate in two COIs:

1. ISR COI by contributing to two services, TrackBlue Service and TrackRed Service. Due to the
critical mission of the ATIS it was decided that the ATIS will have its own ISR capabilities
instead of leveraging ISR capabilities of other NCE systems, but in the case of failures or
degradation of service levels, ATIS can re-use existing ISR capabilities through the ISR COI.
Also other systems can leverage the ATIS ISR capabilities if ATIS is not engaged.

2. Ballistic Missile Response COI by contributing the ATIS Service as a composite service that
exposes the ATIS main business process. The ATIS Service can be triggered by authorized users
to react to a launched TBM; in this case the user is pre-defined as the BLWS GBMW Service
which detects the TBM launch and triggers ATIS Service to destroy it. The interoperability
between BLWS and the ATIS is facilitated through the Ballistic Missile Response COI.

The NCE will govern, manage, and monitor the COIs (and their services), and furthermore ATIS will
utilize the NCES to publish its Tactical Picture as a Topic (ATIS-TPT). Figure 6 also shows that an
external system, Higher Headquarters (HHQ) subscribes to get the ATIS-TPT. Propagation of the ATIS-
TPT is done outside the ATIS boundary, i.e. ATIS will only post its Tactical Picture and the NCES will
take it from there. Users interested in the ATIS-TPT are considered by ATIS as un-anticipated.

10

Command Control ISRBLWSTBM

Launched DetectLaunch SurveillanceDirective TrackRed

TacticalPictureReport

TaskInterceptor

TrackBlue

EngageOrder

SurveillanceDirective

TacticalPictureReportEngageOrder

ControlInterceptor

SurveillanceDirective AssessKill

TacticalPictureReport

KillThreat

EngageThrea

DetectThre

Figure 7: ATIS Operational Activity Model (OV-5)

 Figure 7 shows the ATIS Operational Activity Model (OV-5). We identified three operational
capabilities:

1. Initial threat detection (DetectThreat): involves triggering the ATIS to start tracking an incoming
threat and propagating its new tactical picture. Initial threat detection is triggered by the external
GBMW service.

2. Threat interception (EngageThreat): involves steps necessary for the allocation of an interceptor
and engaging the threat. Threat interception is triggered by the initial threat detection.

3. Threat destruction (KillThreat): involves steps necessary to destroy the threat and its kill
assessment. Threat destruction is triggered by the threat interception capability.

Accordingly we defined four business processes to expose these operational capabilities. Figure 8
shows ATIS business process triggered by the Launch Warning Node. The ATIS business process is a
composition of three sub-business processes, DetectThreat, EngageThreat and KillThreat each of which
is exposed by a composite service. Although the business processes involve activities in all operational
nodes, all four business processes are owned (triggered) by the Command node and are shown to reside in
the Command Node in Fig. 8.

11

Operational Nodes

Launch Warning Node Command Node

DetectLaunch
DetectThreat

EngageThreat

KillThreat

Figure 8: ATIS Business Process

 The initial threat detection and tracking is done by the DetectThreat business process shown in Fig. 9
which involves the generation of an incoming threat surveillance directive, tracking the incoming threat,
and generating a new tactical picture.

Operational Nodes

Command Node ISR Node

Surveillance Directive TrackRed

TacticalPictureReport

Figure 9: DetectThreat

The new tactical picture is passed to the EngageThreat business process depicted in Fig. 10. The
EngageThreat business process is responsible for allocating an interceptor to destroy the TBM and
tracking it (interceptor). The new tactical picture sent from the DetectThreat business process is passed to
the EngageOrder activity which sends an intercept order to the TaskInterceptor activity in the Control
Node.

Operational Nodes

Command Node ISR NodeControl Node

EngageOrder

SurveillanceDirective

TrackBlue

TacticalPictureReport

TaskInterceptor

Figure 10: EngageThreat

The TaskInterceptor activity tasks a free interceptor and requests a track interceptor surveillance
directive. The track interceptor surveillance directive is sent to the ISR node TrackBlue activity. As soon
as the TrackBlue activity detects that the interceptor is in firing range, an in firing range tactical picture is
generated and sent to the KillThreat business process. The KillThreat business process shown in Fig. 11 is
responsible for destroying the TBM and assessing its kill status. First a fire order is generated by the

12

EngageOrder activity, which is sent to the Control node ControlInterceptor activity to task the
interceptor, a kill assessment is generated by the AssessKill activity, and finally a tactical picture
reflecting the kill status of the engaged threat is generated.

Operational Nodes

Command Node ISR NodeControl Node

EngageOrder ControlInterceptor

SurveillanceDirective

TacticalPictureReport

AssessKill

Figure 11: OV-5 KillThreat

The Systems and Services Interface Description (SV-1) is shown in Fig. 12. The ATIS business
services are shown in SV-1 and detailed in Tab. 1. SV-1 also shows the ESB services located at the
Command Center System Node. For simplicity, it was assumed that the TPReport Service is responsible
for maintaining a tactical picture database and posting the changing Tactical Picture to the NCES.
Systems and Services Communication description (SV-2) and Operational Activity to Services
Traceability Matrix (SV-5c) are shown in Appendix A, Fig. A 4 and Tab. A 1 respectively.

Airborne TBM Interceptor System

ATIS Command Center
<<SystemNode>>

Launch Warning Center
<<SystemNode>>

NCE

NCES

HHQ

ATIS Radar Site
<<SystemNode>>

ATIS Controller
<<SystemNode>>

Interceptor
<<SystemNode>>

Orchestrator
<<ESBServices>>

Registry
<<ESBServices>>

Supervisor
<<ESBServices>>

MOM
<<ESBServices>>

DetectThreat
<<CompositeService>>

EngageThreat
<<CompositeService>>

KillThreat
<<CompositeService>>

ATIS
<<CompositeService>>

SD
<<Service>>

EngageOrder
<<Service>>

TaskInterceptor
<<Service>>

ControlInterceptor
<<Service>>

AN/MTS

TPReport
<<Service>>

TrackRed
<<Service>>

TrackBlue
<<Service>>

AssessKill
<<Service>>

Content Delivery
<<NCEService>>

Ballistic Missile Response
<<COI>>

ISR
<<COI>>

GBMW
<<Service>>

Figure 12: Systems & Services Interface Description SV-1

13

Table 1: ATIS Services

Services System Node Composite
Business Process

Name
NCE

Availability
COI

Anticipated
User

Un-anticipated
User

ATIS Yes ATIS Yes
Ballistic
Missile

Response

Launch
Warning Center

(Global
Ballistic Missile

Warning
Service)

Members of
Ballistic
Missile

Response COI

DetectThreat Yes DetectThreat No N/A N/A N/A

EngageThreat Yes EngageThreat No N/A N/A N/A

KillThreat Yes KillThreat No N/A N/A N/A

SD No N/A No N/A N/A N/A

EngageOrder

ATIS
Command

No N/A No N/A N/A N/A

TrackRed No N/A Yes ISR
N/A Members of

ISR COI

TrackBlue No N/A Yes ISR
N/A Members of

ISR COI
AssessKill No N/A No N/A N/A N/A

TPReport

ATIS Radar

No N/A No N/A N/A N/A

ControlInterceptor No N/A No N/A N/A N/A

TaskInterceptor
ATIS Control

No N/A No N/A N/A N/A

Table 1 shows all business services hosted by the ATIS and their description. Figure 13 shows Services
Event Trace Description (SV-10c) for the ATIS business process. For simplicity the execution of
DetectThreat, EngageThreat and KillThreat business processes and the interaction between the MOM and
the rest of the services was hidden. SV-10c describing the DetectThreat business process is shown in
Appendix A, Fig. A 5.

All business services involved in the ATIS are registered in the ESB Registry and Orchestrator
Services. In Fig. 13, the GBMW Service detects a TBM, it sends RequestService message to the ATIS
composite Service. The ATIS composite service requests an ATIS business process instance by sending a
RequestBusinessProcess message to the ESB Orchestrator. The RequestBusinessProcess message
contains the name of the business process to be executed and its parameters. The ESB Orchestrator looks
up the requested business process in its repository. The business process definition stored in the
Orchestrator’s repository contains the names of the services participating in the business process rather
than specific service nodes, thus after reading the business process definition, the Orchestrator constructs
a RequestServices message and sends it to the Registry requesting service nodes that can participate in the
business process instance. The Registry looks up the service nodes to satisfy the request in its registry and
responds back to the Orchestrator with a list of service nodes that can participate in the business process
instance. After receiving the service nodes, the Orchestrator requests message flow between itself and the
service nodes from the MOM by sending a RequestMessageFlows message to the MOM. The MOM
configures the requested message flows and responds back to the Orchestrator with a
MessagesFlowsResponse message containing a list of message flow handlers. The last step in the
instantiation of a business process instance is to request that the SOA Supervisor monitor the business
process instance by sending a MonitorBusinessProcess message to the SOA Supervisor containing the
newly created business process instance handler. As soon as the Orchestrator sends the
MonitorBusinessProcess message it starts executing the business process. The execution of an ATIS
business process involves the instantiation of three business processes instances not detailed in the figure.

14

GBMW
<<Service>>

Orchestrator
<<ESBService>>

Registry
<<ESBService>>

ATIS
<<Composite Service>>

DetectThreat
<<Composite Service>>

EngageThreat
<<Composite Service>>

KillThreat
<<Composite Service>>

MOM
<<ESBService>>

Supervisor
<<ESBService>>

RequestService
RequestBusinessProcess

RequestServices

ResponseServicesNodes

RequestMessageFlows

MessagesFlowsResponse

MonitorBusinessProcess

RequestService

RequestBusinessProcess
RequestServices

ResponseServicesNodes
RequestMessageFlows

MessagesFlowsResponse
MonitorBusinessProcess

ExecuteBusinessProcess(DetectThreat)

BusinessProcessResponse

ServiceResponse
RequestService

RequestBusinessProcessRequestServices

ResponseServicesNodes
RequestMessageFlows

MessagesFlowsResponse
MonitorBusinessProcess

ExecuteBusinessProcess(EngageThreat)

BusinessProcessResponse

ServiceResponse
RequestService

RequestBusinessProcessRequestServices

ResponseServicesNodes
RequestMessageFlows

MessagesFlowsResponse
MonitorBusinessProcess

ExecuteBusinessProcess(KillThreat)

BusinessProcessResponse

ServiceResponse
BusinessProcessResponse

Figure 13: SV-10c ATIS Business Process

A CPN executable model using CPNTools was created to evaluate the Operational View of the
architecture. This model included the business processes and business services of the ATIS, but no ESB
interaction is included. The top page of the CPN model is shown in Fig. 14. Additional pages of the
model are shown in Appendix B.

Once created the executable model was used to check the logic and behavior of the architecture
business services and their composition into business processes. As errors were detected, fixes were made
to the CPN model and reflected back to the architecture artifacts. After the logic and behavior of the
architecture was verified, the performance of the ATIS capabilities was tested by converting the CPN
model into a timed CPN.

15

Command

Command

TP_DATA

SD_DIRECTIVE

ORDER

SD_REQUEST

ORDER

TP_REPORT

SD_REQUEST

TP_REPORT

TP_REPORT

TP_REPORT

TP_REPORT

TP_REPORT

TP_REPORT

ORDER

TP_DATA

RequestAccessKill

SD_DIRECTIVE TP_REPORT

RequestTPReport

TP_DATA

TP_DATA

RequestTrackRed

SD_DIRECTIVE

Command

ResponseTPReport

ResponseTrackBlue

RequestSD

Sense

SenseSense

RequestATIS
InIn

ResponseDetectThreat

SD_REQUESTDB

Control

ControlControl

ResponseTrackRed RequestTrackBlue RequestOrder

SD_REQUEST

ResponseSD ResponseOrder

SD_DIRECTIVE

ResponseATIS

OutOut
RequestDetectThreat

RequestEngageThreat

ResponseEngageThreat

RequestKillThreart

ResponseAssesskill

ResponseKillThreat

ResponseTaskInterceptor

RequestControlInterceptor

RequestTaskInterceptor

SD_REQUEST

ResponseControlInterceptor

Figure 14: AITS Page

The following scenario was used for performance analysis: the ATIS and the GBMW service are
deployed, and an adversary capable of launching multiple TBM exists. The ATIS must be able to launch
its interceptors at the TBM within 400 seconds of initially detecting it with the ATIS Radar site. If it takes
more than 400 seconds to launch an interceptor, the TBM is considered a leaker. The main questions to be
addressed are:

1. Is the ATIS capable of shooting down TBMs when launched?

2. How many interceptors are required to handle various adversary capabilities with the response
time requirement of 400 seconds?

The input and output parameters of the simulation and their description is listed in Tab. 2.

Table 2: Scenario Input and Output variables

Input Variables
Name Values Description

Number of TBMs 10 Total number of TBMs launched by adversary (fixed).

TBM Inter-arrival
0, 25,50,75,100

(seconds)
Time interval between TBM arrivals (continuous variable).

Number of Interceptors 3, 4, 5 Total number of ATIS Interceptors (discrete variable).
Output Variables (Measures Of Performance – MOPs)

Name Description Requirement

Average Response Time
ATIS average response time in seconds defined as the average time between the

ATIS detecting the TBM until the TBM is destroyed.
<= 400
seconds

Throughput Rate Number of killed TBMs per second

Number of Kills Total number of destroyed TBMs within 400 seconds of being detected by ATIS

Number of Leakers Total number of destroyed TBMs after 400 seconds of being detected by ATIS. <=2

16

Processing delays were estimated for each service and applied as delays for each transition
representing an operational activity. Estimates were based on the notion that the systems, system
functions, and services supporting the operational activities would be able to accomplish each task in
a given amount of time. These processing delays are shown in Tab. 3.

Table 3: Processing Delays

Services
Processing Delay

Description
Processing Delay

(seconds)
Business Process Request Delay 2 ATIS

Business Process Response Delay 2
Business Process Request Delay 2 DetectThreat

Business Process Response Delay 2
Business Process Request Delay 2 EngageThreat

Business Process Response Delay 2
Business Process Request Delay 2 KillThreat

Business Process Response Delay 2
SD Surveillance Directive Generation Delay 4

EngageOrder Order Generation Delay 10
TrackRed Processing Delay 5
TrackBlue Processing Delay 5
AssessKill Processing Delay 5
TPReport Processing Delay 5

ControlInterceptor Delay for an interceptor to shoot a TBM 5
Delay for a free interceptor to fly to a given TBM location 120 TaskInterceptor

Delay for an Interceptor to find and lock on a TBM 20

The summary of the results of the simulations are presented in Tab. 4, the CPN model used for the
simulations is shown in Appendix B.

Table 4: Simulation Results

Number of Interceptors TBM Inter-arrival
Average Response

Time
Throughput Rate

Number of
Leakers

0 347.1 0.0178571 4
25 270.1 0.018 1
50 180.6 0.018 0
75 159 0.0133333 0

3

100 159 0.0100446 0
0 283.9 0.0261628 2
25 212.9 0.0252101 0
50 159 0.0201794 0
75 159 0.0133333 0

4

100 159 0.0100446 0
0 245.5 0.0436893 0
25 180 0.0340909 0
50 159 0.0201794 0
75 159 0.0133333 0

5

100 159 0.0100446 0

Table 4 shows the results of the 15 simulation runs. The values of three key Measures of Performance
(MOPs) were calculated from the data in the simulation runs: average response time, throughput rate and
number of leakers. Requirements were established for these MOPs (no more than two leakers and
maximum allowed average response time of 400 seconds).

17

The results of the analysis are summarized as follows:

1. 3 interceptors can handle the 10 threats (with a max of four leakers) if they arrive at a rate slower
than 1 in 25 seconds

2. 4 interceptors can handle the 10 threats (with a max of two leakers) if they arrive at a rate slower
than 1 in 25 seconds

3. 5 interceptors can handle the 10 threat with no leakers.

The results presented in Tab. 4 are based on an executable model of the Operational View, with
estimates of the operational activities processing times shown in Tab. 3. We assumed that
communications delays would be negligible compared to the processing and human decision making
delays and therefore zero time delay for the communications network was assumed. Indeed the
communications network was not modeled explicitly. Furthermore, processing delays and overhead of
the SOA infrastructure services was not captured in this executable model. Constructing an executable
model based on the Systems and Services View should give a better understanding of the system’s
performance by capturing the communications systems involved and the SOA infrastructure and how they
interact to enable the composition of business services in business processes (capabilities) to successfully
execute the mission/s of the architecture. The results of the OV-based executable model can be used as an
upper bound for the performance of the SV-based executable model.

5. Conclusion and Future Work

A key to Command and Control (C2) agility is effective information sharing that allows for better
decision making and effective use of resources. SOA provides alignment between business objectives and
the supporting IT infrastructure resulting in an agile information system in which information sharing
becomes the norm and data and information become ubiquitous. The importance of SOA and its role in
achieving agile C2 systems has been recognized by the DoD, and was reflected in DoDAF v1.5 which
uses SOA as the key enabler of NCOs. We have presented an approach for constructing an event driven
SOA compliant to DoDAF v1.5. The architecture defines business services and processes necessary to
accomplish its operational concept, and is capable of participating in the NCE. The participation in NCE
was achieved by allowing the SOA instance to dynamically federate with NCE systems through COI
registries and by utilizing the NCES to share enterprise-level information. The architecture uses an ESB-
based SOA infrastructure to govern, manage, and monitor its services and processes. The end product of
the approach is an executable model representing the Operational View of the architecture. The
executable model is derived from the information contained in the DoDAF v1.5 artifacts and is used to
evaluate the logic, behavior, and performance characteristics of the architecture’s business processes
services.

Since SOA behavior and performance do not only depend on its business services, but also on the
infrastructure that enables loose coupling, services implemented by other systems, and the underlying
technological network supporting the SOA environment, there is a need for a more elaborate executable
model that captures the Systems and Services View of the architecture and the protocols involved in
executing the business processes. Traditional executable models such as the one presented in this paper
are not sufficient to capture the complexity of a SOA. They can only serve as upper bounds for the actual
performance of the system. If the Operational View executable model satisfies the functional and non-
functional requirements of the architecture, we can proceed in constructing the Systems and Services
executable model; otherwise the architecture should be revised or even dropped completely since the
Operational View performance does not satisfy the requirements.

18

19

The executable model of the Systems and Services View that captures SOA is expected to be
complex. Layered approaches that connect CPN models with communication network specific simulators
such as the approach presented in [21] has proven to enhance the evaluation process. Additional work is
required to: (1) extend such approach to capture SOA complexity, (2) define a process for constructing
such an executable model from the architecture’s artifacts, (3) define a process for using the executable
model for analysis and evaluation.

References

[1] "DoD Architecture Framework (DoDAF), V1.5, Vols I, II, III," April 23, 2007.

[2] Alexander H Levis and Lee W Wagenhals, "C4ISR Architectures: I. Developing a Process for
C4ISR Architecture Desgin," Systems Engineering, vol. 3, pp. 225-246, 2000.

[3] Lee W. Wagenhals, Insub Shin, Daesik Kim, and H. Alexander Levis, "C4ISR Architectures: II. A
Structured Analysis Approach for Architecture Design," vol. 3, no. 4, p. 248–287, 2000.

[4] Lee W Wagenhals, Sajjad Haider, and Alexander H Levis, "Synthesizing Executable Models of
Object Oriented Architectures," Systems Engineering, vol. 6, p. 266–300, 2003.

[5] W Lee Wagenhals and Alexander H Levis, "Service Oriented Architectures, The DoD Architecture
Framework v. 1.5, and Executable Architectures," Systems Engineering, vol. 12, 2009.

[6] DoD CIO, "Department of Defence Net-Centric Data Strategy," DoD, May 9, 2003.

[7] Alexander H Levis, "Systems Architectures," in Systems Engineering and Management Handbook,
Andrew P Sage and William P Rouse, Eds. New York: Wiley, 1999, pp. 427-453.

[8] Mark W Maier and Eberhardt Rechtin, The Art of Systems Architecting, 2nd ed. Boca Raton: CRC
Press, 2000.

[9] DoD CIO, "Department of Defense Net-Centric Services Strategy," DoD, March 2007.

[10] Andrew P Sage. DoD Use of SOA:The Role of Service Oriented Architectures in Enterprise
Architecting. IBM 'DoD Use of SOA' Workshop, January 9th 2008.

[11] Thomas Erl, Service Oriented Architecture: Concepts, Technology, and Desgin.: Prentice Hall PTR,
2005.

[12] Judith Hurwitz, Robin Bloor, Carol Baroudi, and Marcia Kaufman, Service Oriented Architecture
FOR Dummies.: WILEY, 2007.

[13] David A. Chappell, Enterprise Service Bus.: O'REILLY, 2004.

[14] Lawrence Gloss, "Service Oriented Architecture Federation Framework: An Approach For Service-
based Domain Integration," Fairfax, VA, 2007.

[15] Thomas Erl, Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services.:
Prentice Hall, 2004.

[16] Marc Goodner and Anthony Nadalin, "Web Services Federation Language (WS-Federation) Version
1.2," September 26, 2007.

[17] Michael P Bienvenu, Insub Shin, and Alexander H Levis, "C4ISR architectures: III. An object-
oriented approach for architecture design," Systems Engineering, vol. 3, no. 4, pp. 288-312, 2000.

[18] CPN Tools. [Online]. "http://wiki.daimi.au.dk/cpntools/cpntools.wiki"
http://wiki.daimi.au.dk/cpntools/cpntools.wiki

[19] Lars M Kristensen, Soren Christensen, and Kurt Jensen, "The practitioner's guide to colouredPetri
nets," International Journal on Software Tools for Technology Transfer, vol. 2, pp. 98-132, 1998.

[20] Alexander H. Levis, "Measureing The Effectiveness of C4I Architectures," in 1997 International
Symposium on Defense Information, Seoul, Republic of Korea, 1997.

[21] Insub Shin and Alexander Levis, "Performance prediction of networked information systems via
Petri nets and queuing nets," vol. 6, no. 1, pp. 1 - 18, 2003.

Appendix A: ATIS DoDAF products

ATIS
<<Organization>>

Sense
<<Organization>>

Control
<<Organization>>

Command
<<Organization>>

1..*

1

1
Interceptor

<<Resource>>
*

HHQ
<<Organization>>

NCE
<<Organization>>

NCES
ISR

<<COI>>
Ballistic Missile Response

<<COI>>
BLWS

<<Organization>>member

member

+producer

member

+producer, consumer

OPCON

TACON

TACON

supports

+producer

+consumer

support

Adversary
<<Organization>>

TBM
<<Resource>>

*

Figure A 1: Organizational Relationships Chart (OV-4)

 : Command
<<<OperationalNode>>

 : ISR
<<OperationalNode>>

 : Control
<<OperationalNode>>

 : Interceptor
<<Resource>>

 : BLWS
<<OperationalNode>>

 : TBM
<<Resource>>

 : NCES

 : HHQ

Launched

SD_REQUEST

BLWSTacticalPicture

BLWSTacticalPicture

SD_DIRECTIVE

TP_REPORT

TP_REPORT

ORDER SD_REQUEST

TP_REPORT

ActionAttack

Figure A 2: Operational Node Connectivity Description (OV-2)

 : Command
<<<OperationalNode>>

 : ISR
<<OperationalNode>>

 : Control
<<OperationalNode>>

 : Interceptor
<<Resource>>

 : BLWS
<<OperationalNode>>

 : TBM
<<Resource>> : NCES : HHQ

1 : Launched

2 : DetectLaunch()
3 : SD_REQUEST

4 : BLWSTacticalPicture

5 : DetectThreat()6 : PublishBLWSTacticalPicture()

7 : SurvellanceDirective()
8 : BLWSTacticalPicture

9 : SD_DIRECTIVE
10 : TrackRed()

11 : TacticalPictureReport()

12 : TP_REPORT
13 : TP_REPORT

14 : EngageThreat()
15 : PublishATISTacticalPicture()

16 : EngageOrder()17 : TP_REPORT
18 : ORDER

19 : TaskInterceptor()
20 : Action

21 : SD_REQUEST 22 : SurvellanceDirective()

23 : SD_DIRECTIVE24 : TrackBlue()

25 : TacticalPictureReport()

26 : TP_REPORT

27 : KillThreat()

28 : EngageOrder()

29 : ORDER

30 : ControlInterceptor()
31 : Action

32 : SD_REQUEST 33 : SurvellianceDirective()
34 : Attack

35 : SD_DIRECTIVE
36 : AssessKill()

37 : TacticcalPicture()
38 : TP_REPORT

Figure A 3: Operational Event-Trace Description (OV-6c)

Airborne TBM Interceptor System

ATIS Command Center
<<SystemNode>>

Launch Warning Center
<<SystemNode>>

NCE

NCES

HHQ

ATIS Radar Site
<<SystemNode>>

ATIS Controller
<<SystemNode>>

Interceptor
<<SystemNode>>

Orchestrator
<<ESBServices>>

Registry
<<ESBServices>>

Supervisor
<<ESBServices>>

MOM
<<ESBServices>>

DetectThreat
<<CompositeService>>

EngageThreat
<<CompositeService>>

KillThreat
<<CompositeService>>

ATIS
<<CompositeService>>

SD
<<Service>>

EngageOrder
<<Service>>

TaskInterceptor
<<Service>>

ControlInterceptor
<<Service>>

CMDEthernet 10MBPS

CMDSATCOM
CMDRadio

CNTRLEthernet 10MBPS

CNTRLRadioCNTRLSATCOM

IntRadio
Radio Net

C2ISR Net

SATCOM System
<<SystemNode>>

SATCOM System

RadarSATCOM RadarRadio

RadarEthernet 10MBPS

AN/MTS

TPReport
<<Service>>

TrackRed
<<Service>>

TrackBlue
<<Service>>

AssessKill
<<Service>>

Content Delivery
<<NCEService>> NCESATCOM

HHQSATCOM

Ballistic Missile Response
<<COI>>

ISR
<<COI>>

GBMW
<<Service>> LWCSATCOM

Figure A 4: Systems and Services Communication Description (SV-2)

Table A 1: Operational Activity to Services Traceability Matrix (SV-5c)

Services Operational Activities Operational Capabilities

Surveillance

Directive
Engage
Order

TrackRed
Track
Blue

Assess
Kill

TacticalPicture
Report

Control
Interceptor

Task
Interceptor

Detect
Threat

Engage
Threat

Kill
Threat

ATIS

DetectThreat X
EngageThreat X

KillThreat X
SD X X X X

EngageOrder X X X
TrackRed X X
TrackBlue X X
AssessKill X X
TPReport X X X X

ControlInterceptor X X
TaskInterceptor X X

Orchestrator
<<ESBService>>

Registry
<<ESBService>>

DetectThreat
<<Composite Service>>

MOM
<<ESBService>>

Supervisor
<<ESBService>>

SD
<<Services>>

TPReport
<<Services>>

TrackRed
<<Services>>

Content Delivery
<<NCEService>>

RequestService

RequestBusinessProcess
RequestServices

RequestServicesNodes

RequestMessageFlows

MessagesFlowsResponse
MonitorBusinessProcess

RequestService

ServiceResponse
RequestService

ServiceResponse

RequestService
PublishATISTacticalPicture

ServiceResponse

Figure A 5: DetectThreat Business Process (SV-10c)

Appendix B: ATIS CPN Model

GBMWS

GBMWS

ATIS_OV

ATIS_OV

InterArrivalTime

0

INT

NumThreats

10

INT

ResponseATIS

TP_REPORT

RequestATIS

1`[]

SD_REQUESTDB
ATIS_OVGBMWS

Figure B 1: Scenario Generator

TrackBlue

TrackBlue1

AssessKill

AssessKill

TPReport

TPReport

TrackRed

TrackRed

ResponseTrackBlue

Out
TP_DATA

RequestTrackBlue

In
SD_DIRECTIVE

ResponseTPReport

Out
TP_REPORT

ResponseAssesskill

Out
TP_DATA

RequestTPReport

In
TP_DATA

ResponseTrackRed

Out
TP_DATA

RequestAccessKill

In
SD_DIRECTIVE

RequestTrackRed

In
SD_DIRECTIVE

In

In

Out

In

Out

Out

In Out

TrackRed

TPReport

AssessKill

TrackBlue1

Figure B 2: ISR Node

ControlInterceptor

ControlInterceptor

TaskInterceptor

TaskInterceptor

ControlDB

CONTROLRECORD

Interceptors

1`{INTID=1,INTSTATUS="IFREE"}++
1`{INTID=2,INTSTATUS="IFREE"}++
1`{INTID=3,INTSTATUS="IFREE"}

RequestTaskInterceptor ResponseTaskInterceptor
Out

SD_REQUEST
OutIn

ORDER
In

TaskInterceptor

Flying

INTERCEPTORRECORD INTERCEPTORDB

RequestControlInterceptor ResponseControlInterceptor
Out

SD_REQUEST
In

ORDER
In Out

ControlInterceptor

Figure B 3: Control Node for 3 Interceptors

tp_data

1`{
FRM="ETS",
TO="TBS",
REQID=(#REQID sd_directive),
OBJID=(#OBJID sd_directive),
OBJTYPE=(#OBJTYPE sd_directive),
SDCONTENT=(#SDCONTENT sd_directive)}

sd_request

tp_report

tp_data

1`{
FRM="KTS",
TO="TPS",
REQID=(#REQID tp_data),
OBJID=(#OBJID tp_data),
OBJTYPE=(#OBJTYPE tp_data),
SDCONTENT=(#SDCONTENT tp_data),
TPUPDATE=(#TPUPDATE tp_data)}

tp_report

sd_directive

order

tp_report

tp_report

tp_report

tp_report

1`{
FRM="ETS",
TO="TPS",
REQID=(#REQID tp_data),
OBJID=(#OBJID tp_data),
OBJTYPE=(#OBJTYPE tp_data),
SDCONTENT=(#SDCONTENT tp_data),
TPUPDATE=(#TPUPDATE tp_data)}

sd_directive

1`{
FRM="ETS",
TO="SDS",
REQID=(#REQID sd_request),
OBJID=(#OBJID sd_request),
OBJTYPE=(#OBJTYPE sd_request),
SDREQUEST=(#SDREQUEST sd_request)
}

sd_request

1`{FRM="ETS", TO="TIS",REQID=(#REQID order),OBJID=(#OBJID order),
OBJTYPE=(#OBJTYPE order),SDCONTENT=(#SDCONTENT order)
,TPUPDATE=(#TPUPDATE order),ORDERCONTENT=(#ORDERCONTENT order)}

ordertp_report

tp_report

tp_report

tp_report

1`{
FRM="DTS",
TO="TPS",
REQID=(#REQID tp_data),
OBJID=(#OBJID tp_data),
OBJTYPE=(#OBJTYPE tp_data),
SDCONTENT=(#SDCONTENT tp_data),
TPUPDATE=(#TPUPDATE tp_data)}

tp_data

1`{
FRM="DTS",
TO="TRS",
REQID=(#REQID sd_directive),
OBJID=(#OBJID sd_directive),
OBJTYPE=(#OBJTYPE sd_directive),
SDCONTENT=(#SDCONTENT sd_directive)}

sd_directive

sd_request

sd_request

tp_report

tp_report

tp_report

tp_report

sd_request

sd_request

sd_request

ResponseATISRequestATIS
Out

TP_RE
OutIn

SD_REQUESTDB
In PORT

KTBPRequestTPRS

[(#TO tp_data)="KTS"]

KTBPRespon

#TO tp_report)="K

se

[(TS"]

KTBPRequestAKS

[(#TO sd_directive)="KTS"]

KTBPRequestSDS

[(#TO sd_request)="KTS"]

KTBPRequestCS

[(#TO order)="KTS"]

KTBPRequestEOS

ETBPResponse

[(#TO tp_report)="ETS"]

ETBPRequestTPRS

[(#TO tp_data)="ETS"]

ETBPRequestTOS

[(#TO sd_directive)="ETS"]

ETBPRequestSDS

[(#TO sd_request)="ETS"]

ETBPRequestCS

[(#TO order)="ETS"]

ETBPRequestEOS

ITBPResponse

[(#TO tp_report)="DTS"]

ITBPRequestTPRS

[(#TO tp_data)="DTS"]

ITBPRequestTOS

[(#TO sd_directive)="DTS"]

ITBPRequestSDS

ATIBPResponse

ATIBPRequestKTS

ATIBPRequestETS

ATIBPRequestDTSBPResponseATI

TP_REPORT

ATIS BPRequestATI

SD_REQUESTATISATIS

KillThreat

KillThreat

EngageThreat

EngageThreat

DetectThreat

DetectThreat

EngageOrder

EngageOrder

SurveillanceDirective

SurveillanceDirective

ResponseTrackBlue

In
TP_DATA

RequestTrackBlue
Out

SD_DIRECTIVE

ResponseControlInterceptor
In

SD_REQUEST

RequestControlInterceptor
Out ORDER

ResponseAssesskill
In

TP_DATA

RequestAccessKill
Out

SD_DIRECTIVE

ResponseTaskInterceptor

In
SD_REQUEST

RequestTaskInterceptor
Out

ORDER

ResponseTPReport

In
TP_REPORT

RequestTPReport
Out

TP_DATA

ResponseTrackRed

In
TP_DATA

RequestTrackRed
Out

SD_DIRECTIVE

BPResponseKT

TP_REPORT

BPRequestKT

TP_REPORT

BPResponseET

TP_REPORT

BPRequestET

TP_REPORT

BPResponseIT

TP_REPORT

BPRequestIT

SD_REQUEST

RequestOrder
In

TP_REPORT

RequestSD

In
SD_REQUEST

RequestKillThreart
In

TP_REPORT

ResponseDetectThreat

Out
TP_REPORT

ResponseEngageThreat

Out
TP_REPORT

ResponseKillThreat
Out TP_REPORT

RequestEngageThreat

In
TP_REPORT

ResponseSD
Out

SD_DIRECTIVE

ResponseOrder
Out

ORDER

RequestDetectThreat

In
SD_REQUEST

In

Out

Out

In

Out

Out

Out

In

In

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

SurveillanceDirective

EngageOrder

DetectThreat

EngageThreat

KillThreat

1`{FRM="ATIS", TO="KTS", REQID=(#REQID tp_report)
,OBJID=(#OBJID tp_report),OBJTYPE=(#OBJTYPE tp_report),
SDCONTENT=(#SDCONTENT tp_report),
TPUPDATE=(#TPUPDATE tp_report)}

1`{
FRM="KTS",
TO="SDS",
REQID=(#REQID sd_request),
OBJID=(#OBJID sd_request),
OBJTYPE=(#OBJTYPE sd_request),
SDREQUEST=(#SDREQUEST sd_request)
}

1`{
FRM="KTS",
TO="AKS",
REQID=(#REQID sd_directive),
OBJID=(#OBJID sd_directive),
OBJTYPE=(#OBJTYPE sd_directive),
SDCONTENT=(#SDCONTENT sd_directive)}

1`{FRM=" TS", REQID)
,OBJID=(#O eport),OBJT eport),
SDCONTE CONTENT tp_r
TPUPDA ATE tp_rep

ATIS", TO="E =(#REQID tp_report
BJID tp_r YPE=(#OBJTYPE tp_r

NT=(#SD eport),
TE=(#TPUPD ort)}

Figure B 4: Command Node

1`{FRM=frm,TO=to,
REQID=reqid,OBJID=objid,
OBJTYPE=objtype
,SDREQUEST=sdrequest}

sd_requestLst1

sd_requestLst1

{FRM=frm,TO=to,
REQID=reqid,OBJID=objid,
OBJTYPE=objtype
,SDREQUEST=sdrequest}::sd_requestLst1

sd_requestLst1^^[{FRM=frm,TO=to,
REQID=reqid,OBJID=objid,
OBJTYPE=objtype
,SDREQUEST=sdrequest}]

sd_requestLst

{FRM=frm,TO=to,
REQID=reqid,OBJID=objid,
OBJTYPE=objtype
,SDREQUEST=sdrequest}::sd_requestLst

r

r

1`{FRM=me, TO=service, REQID=(reqid),OBJID=(objid),
OBJTYPE=(objtype),SDCONTENT=sdcontent,TPUPDATE=tpupdate}

1`{FRM=service,REQID=reqid}

1`{FRM=frm,REQID=reqid}

me

1`{FRM=me, TO=service, REQID=(reqid),OBJID=(objid),
OBJTYPE=(objtype),SDCONTENT=sdcontent,TPUPDATE=tpupdate}

1`{FRM=frm, TO=to, REQID=(reqid),OBJID=(objid),
OBJTYPE=(objtype),SDCONTENT=sdcontent,TPUPDATE=tpupdate}

1`{FRM=me,TO="DTS",REQID=reqid
,OBJID=objid,OBJTYPE=objtype,
SDREQUEST=sdrequest}

me

PrepareRequest

[List.null sd_requestLst1]

SendATISResponse

@+ATIS_BPRESPONSE

RequestATIBP

@+ATIS_BPREQUEST

Request

1`[]

SD_REQUESTDB

res

1`1

INTT

QueueResponses

TP_REPORT

QueueRequests

SD_REQUEST

RequesterServiceID

SERVICEREQUESTS

BPResponseATI

In
TP_REPORT

BPRequestATI

Out
SD_REQUEST

MyServiceID

1`"ATIS"

STRING

RequestATIS

In
SD_REQUESTDB

ResponseATIS

Out
TP_REPORT

Out

In

Out

In

Figure B 5: ATIS Service

	References

