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Abstract
UAVs are becoming indispensable assets for military command and control

applications such as surveillance, reconnaissance, search and rescue operations
because of their superiorities over manned vehicles. Nevertheless, humans are
still needed for high-level guidance and commanding of UAVs in those oper-
ations for their intelligence and higher level of flexibility in decision making.
Within this new position, human operators are responsible for commanding of
multiple UAVs under hard timing constraints in a dynamically changing envi-
ronment. The supervisory control of the UAVs becomes more challenging as
the number of the UAVs increases and it is sometimes intractable or infeasible
even by a set of operators. In this work, we focus on development of decision
support tools in order to improve of the agility of a C2 system for UAV fleets
and present the framework of a real-time decision support system for operators
who are responsible for high-level decision making in scenarios involving a large
number of tasks across multiple UAVs. The decision support system consists of
three stages including planning, scheduling and low-level mission specific task
planning. The overall system is integrated to a labscale multi-vehicle mission
simulator, demonstrating the ability of human operators for exploiting a fuller
set of UAV fleet capabilities.
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Introduction
The recent developments in the autonomous vehicle technology result in a remarkable
increase in usage of Unmanned Air Vehicles (UAVs) in military command and control
applications such as surveillance, intelligence or reconnaissances (SIR). Nowadays,
UAVs have the capability of performing many complex missions with strict time
constraint as well as manned vehicles, even with reduced risks to human pilot. Espe-
cially, due to improved human safety, UAVs are, also, preferred in not only military
but also civil application such as urban search and rescue operations. However,
growing involvement of UAVs in complex applications, several challenging problems
arise intrinsically in aerial systems. First of all, cost of low-level remote control of
UAVs might be very high and usually requires employment of several human opera-
tors for single UAV of limited decisional autonomy. Also, following the taxonomy as
presented in [10], the number and types of missions generally require several UAVs
operating collaboratively in order to accomplish the operational goals. Therefore,
new tools, algorithms and architectures are required to maintain coordinated control
of UAV fleets.

Despite the current trend reducing the role of human in military systems and
substantial interest focused on the development of higher level of autonomy for UAVs,
human operators are still needed for supervisory control of UAV fleets. As proposed
in [5], one way to exploit UAVs’ capabilities is employing the human operators for
higher levels of planning and decision making tasks rather than direct manual control
of UAVs. Since human operators have limited capacity of cognitive resources, there
has been a great deal of effort in development of systems that allow one operator to
manage of a large number autonomous UAVs in a high mission workload environment.
While there are some successful works that encourage the controlling of multiple
UAVs by a single operator [6], the supervisory control of the UAVs becomes more
challenging as the number of the UAVs increases and it is sometimes intractable or
infeasible even by a set of operators due to high degree of mental workload. Therefore,
new C2 systems (human operators with their supporting information systems and
decision aid tools) are needed to be developed in order to increase the agility of
the overall system including human operators in means of responsiveness [1]. There
are various factors that effect the cognition of the operators, but one of the most
important and time consuming process is deliberation of the which tasks to perform
and scheduling of these tasks regarding the temporal and resource constraints. Since
optimization of human interaction with an automated system through supervision
is very difficult, one way to mitigate saturation of operators is providing real-time
decision aid for planning and scheduling of these tasks. Such a decision support

2



system contributes too much to the human operators to command and control of
the UAV fleets effectively in a timely manner. Because in many of the proposed
systems [9, 11], the duration of the planning and scheduling of the tasks is ignored
and there are assumptions that planning and scheduling are instantaneous. However,
these processes take time in the case in real applications and cause to saturate the
cognition of human operators and therefore they have to be handled as fast as possible
with the help of realtime generated decision aids.

In this work, we are interested in development of more agile C2 system for UAV
fleets by developing decision support tools and present the framework of a realtime
decision support system for operators who are responsible for high-level decision mak-
ing in scenarios involving a large number of tasks across multiple UAVs. Then, the
overall system is integrated to a labscale multi-vehicle mission simulator, demonstrat-
ing the ability of human operators for exploiting a fuller set of UAV fleet capabilities.
The organization of this work is as follows: In Section 1, the proposed decision sup-
port architecture and its main segments are described in detail. Then, the general
design and the architecture of the multi vehicle mission simulator is briefly presented
in the next section. Finally, the integration of the decision support architecture to
the simulator and its implementation are given and some successful results of the
scheduling algorithm is also given.

1 Design of a Decision Support Architecture
The problem of planning and scheduling of tasks can be solved by human operator
easily in the recent supervisory control architectures that based on simultaneous
control of four or five UAVs by a single operator. However, as the number of the tasks
and UAVs increases like order of hundreds, this problem becomes very challenging
and time-consuming and it is required to design a higher level layer which is solely
responsible for deciding which actions to perform and temporal allocations of them.

The decision support architecture that is envisioned to provide real-time decision
aid to the manned vehicle or ground operators is embedded over the UAV architec-
tures given in [7, 13] and it consists of four main segments,namely, planner, scheduler,
resource and task manager as it is shown in Figure 1. With including of this new
highest layer, there is an operator which is mainly responsible for deliberation of tasks
and temporal and resource allocation for them. Also, the set of human operators who
are responsible for supervisory control in the underlying UAV control architecture
defines a new type of resources in this extended architecture. After defining resource
and time consistent tasks with the aid of the decision support system, this operator
delegate or assign them to the available supervisory operator and allocated UAVs
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via human machine interfaces.

1.1 Planner

The planning is the problem of deciding which action sets to perform during the
scenario. Planner is triggered by an external monitored event such as bombing, threat
detection or a task request from mission control center. Following the taxonomy as
presented in [10], the planning step proceeds by selecting suitable action from a
predefined action sets by an expert system. The planner continues its execution
collaboratively with resource and task manager until there exists consistent resource
allocation and set of tasks.

Events/Requests The set of phenomenon in the mission environment corresponds
to the events and the set of commands from mission control center or other
peers also correspond to the requests. Basically, each event and request have a
different level of priority and importance and require different type of actions
to be selected by the planner.

Action sets The actions are the basic components of missions like loitering at a
specific point or returning to the base. Each missions can be performed by
different types of UAVs in the inventory. Each mission has different goals and
functional/information requirements and requires different number of UAVs to
be performed.

1.2 Integration of Planner and Scheduler

Resource manager Since each task requires different type and number of UAVs, it
is required to allocate enough number of UAVs for each required type. There-
fore, resource manager is responsible for resource allocation satisfying time and
environment constraints in the asset inventory. However, these tasks are not
necessarily mutually exclusive and one type of UAV may have the capability
of performing multiple tasks and there may be several different types of alloca-
tions for the same problem. Therefore, resource allocation must be done wisely
and the solution must be selected from the set of allocation by considering
further requests.

Task manager This manager is responsible for defining specification of each task
by examining the action sets found by planner.
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Figure 1: Event-Driven Decision Support Architecture5



1.3 Scheduler

The scheduling is the problem of temporal allocation of resources to the tasks. Be-
fore the scheduling process, a set of resources must be allocated regarding operation
constraints (time, environment) and a group of tasks must be defined regarding to
the selected actions and resources. Then, the scheduler finds a candidate sched-
ule for these tasks under resource constraints by satisfying specified time windows
constraints. The human operator has the right of the modifying the candidate so-
lution or rescheduling the problem with new precedence and temporal constraints.
This scheduling process is executed until the operator confirms and submits the can-
didate solution as a mission commands to the allocated UAVs and corresponding
supervisor operator.

Operation Constraints Due to complex nature of the missions and resources, a
scenario intrinsically contains different types of constraints such as time, prece-
dence. Structural dependencies between missions, physical and logistic con-
straints define a set of temporal constraints. For example, a target must be
destroyed (attack) within some periods of time immediately after its designa-
tion (reconnaissance), the total completion time of set of missions assigned to
a UAV cannot exceed its endurance and it must return to base for maintenance
before a certain amount of time from endurance.

As classified in [10], each activities (UAV missions) has different characteristics
based on its goals, functional/information requirements. For instance, the target
acquisition mission requires path planning (areas to search and waypoints to the area
of interest), threat area and forbidden zone information or cargo mission requires
path planning (route from origin to destination), forbidden zone information and
scheduling mechanism. This kind of planning problems are solved in the underlying
mission planning layer of UAV architecture.

2 General Design and Architecture of the Simulator
The general design of the mission simulator is structured around two layers: the
visualization and mission layer. These two layers represent two different data bus
structures and data flows. As seen in Figure 3, simulation elements such as piloted
vehicle simulator, unmanned vehicles, real unmanned vehicles (ground vehicles and
micro-UAVs), ground stations and the simulation control computers carry distinct
wired and wireless connections to these two data layers.
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Figure 2: Multiple monitor visualization as seen by the pilot during a joint mission
with unmanned helicopters

Visualization Layer entails the passage of the visualization and simulation related
data packets (i.e. packets which result in a coherent visual picture of the whole sce-
nario to the operators and the simulator pilot) across the wired ethernet network
using UDP packets. The visualization layer uses open-source FlightGear flight simu-
lator packet structure to allow direct integration to the flight simulator visualization
elements. These visualization elements include the three panel environment display
for the pilot of the manned simulator (as shown in Figure 2) and the pilot/operator
panel for tactical/simulation displays.

The Mission Layer is accomplished via wireless communications (serial and Eth-
ernet) across each unique entity existing within the simulation using predefined data
packet numbers and structures. Mission critical data such as target assignments,
payload readings, commands and requests are delivered through this wireless mis-
sion layer link.

The hardware structure within the network simulator is tailored to mimic the
distributed nature of each of the vehicle’s processors and communication modules.
Open-source flight simulation software, FlightGear, is modified for networked opera-
tions and it is used as the 3D visualization element for the pilot and the mission con-
trols. The UAV dynamics and low-level control algorithms are embedded within the
xPC target computers. Equipped with 3D fight simulation displays and touch-screen
C2 interface at the desktop pilot level, the platform also allows us to rapidly pro-
totype and test pilot-unmanned fleet supervisory control and pursuit-evasion game
designs. In addition, the unique design enables seamless integration of real unmanned
air vehicles within a simulated scenario. Hardware-in-the-loop testing of network bus
compatible mission computers and avionics systems provides us with validation of
the C2 architectures and the hardware designs on a realistic lab-scale platform before
the actual flight experiments. A more detailed explanation of the components of the
multi-vehicle mission simulator is given in [2].
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Figure 3: General Architecture of the Multi-vehicle Mission Simulator

8



3 Integration of the Decision Support System to the
Mission Simulator

3.1 Development of the Algorithms

3.1.1 Planner

The planner of the decision support system is written by using C++ language and
it is currently under development. A GUI based frontend will be designed for the
human operators after the integration of overall subparts of the system.

3.1.2 Scheduler

In the scheduling problem, we assume that the set of tasks requiring resources are
specified in advance and focus on temporal allocation of a set of activities satisfy-
ing resource and strict time constraints as fast as possible. We use the Resource-
Constrained Project Scheduling Problem with Minimum and Maximum time lags
(RCPSP/max) as a reference [4]. Specifically, to handle executional uncertainty in
the dynamic mission environment, Solve & Robustify approach is used as a base
algorithm. The algorithm used in the Solve step, Earliest Start Time Algorithm
(ESTA) [12], is modified with temporal space partitioning to provide real-time so-
lutions to the operator. Benchmark problem comparisons with the classical ESTA
formulation for two hundred tasks indicates that the proposed temporal space parti-
tioning approach improves the computation time forty-fold while only incurring five
percent increase in the total completion of the tasks. After successful temporal allo-
cation of the actions, the low level task planning problem is solved by the algorithm
given in [8] and the complete algorithmic structure of the ESTAP can be found
in [3].

Both algorithms, ESTAP and ESTA are implemented in C++ using Eclipse IDE
and the CPU times given in the table are measured on a PC with Intel Pentium(R)
D CPU 3.40 Ghz processor under Fedora Core 9. The maximal horizon hmax is
set to 5000 in order to find a solution quickly by searching within a sufficiently large
horizon. The following performance measures are calculated for comparative analysis
of both algorithms on different problem sets:

Nfeas% the percentage of problems feasibly solved for each benchmark set

tmks average makespan of the solutions

tcpu average CPU-time in seconds spent to solve instances of the problem set
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Npc the number of leveling precedence constraints posted to solve a problem

∆LB% the average of percentage relative deviation from known lower bound

Table 1: Performance of the algorithms (UBO50)

UBO50 tmks ∆LB% tcpu Nfeas% Npc

ESTAP11 217.671 28.757 0.360 77.778 54.471

ESTAP15 217.099 28.247 0.383 78.889 55.141

ESTAP16 217.306 27.531 0.400 80.000 56.694

ESTAP17 218.973 27.459 0.373 81.111 56.904

ESTAP20 218.466 27.462 0.452 81.111 60.480

ESTAP21 218.699 27.595 0.462 81.111 59.384

ESTA 213.603 24.455 4.004 81.111 74.890

Table 2: Performance of the algorithms (UBO100)

UBO100 tmks ∆LB% tcpu Nfeas% Npc

ESTAP12 423.167 30.970 3.075 86.667 120.077

ESTAP15 419.705 29.833 3.121 86.667 123.538

ESTAP20 418.436 29.697 3.166 86.667 128.910

ESTAP25 419.141 30.100 3.345 86.667 132.974

ESTA 407.286 25.645 79.214 86.667 195.753
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Table 3: Performance of the algorithms (UBO200)

UBO200 tmks ∆LB% tcpu Nfeas% Npc

ESTAP18 770.974 29.970 26.761 85.556 254.961

ESTAP20 765.481 28.987 33.866 85.556 261.091

ESTAP25 763.474 28.603 31.782 86.667 275.897

ESTAP30 759.766 27.987 33.159 85.556 281.169

ESTA 751.962 26.946 1462.83 86.667 461.436

3.2 C2 Implementation: Hardware-in-the-loop Testing of a
Large-scale Autonomous Target-Task Assignment Prob-
lem for a UAV Network

As a first step coordination algorithm implementation within the mission simulator,
we considered one of the basic problems. The problem consists of n targets to be
visited by m UAVs and the vehicles should autonomously find the waypoint selections
that results in the minimum total path traveled by the UAV fleet. In addition, all
the mission coordination and the communication between the units had to be done
autonomously without any human intervention. To address the first step of this
problem, we have developed a large-scale distributed task/target assignment method
that allows autonomous and coordinated task-assignment in real-time for a UAV fleet.
By using delayed column generation approach on the most primitive non-convex
supply-demand formulation, a computationally tractable distributed coordination
structure (i.e. a market created by the UAV fleet for tasks/targets) is exploited.
This particular structure is solved via a fleet-optimal dual simplex ascent in which
each UAV updates its respective flight plan costs with a linear update of way-point
task values as evaluated by the market. The complete theoretical treatment and
algorithmic structure of this problem can be found in [8].
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Figure 4: The waypoint routes for a random pop-up task-target assignment for four
vehicles. The algorithm is implemented further in the receeding horizon mode for
five hundred waypoints.

3.3 C2 Application: Expansion of the Human-Machine-Interface
(HMI) to decision-support system for manned and un-
manned fleets

The development of agile C2 system for UAV fleets is very hard task, since the
agility characteristics of a such system itself includes several key dimensions which
should be examined in very different domains and context: robustness, resilience,
responsiveness, flexibility, innovation, adaptation [1] . In this application, we focus
on development of decision-support tools in order to improve the agility of C2 system
in the sense of responsiveness, since the problem of high level UAV fleet coordination
and the underlying low-level missions are performed in a very high tempo.

A key part of such an event-driven process interaction hinges on the UAVs to
autonomously coordinate the target/task assignments and distributions. The exper-
imental illustration of this within the mission simulator is illustrated in [2]. However,
it is important to note that supervisory control and interruption is desired in all
mission critical phases. Towards this goal, we have developed a Human-Machine-
Interface display systems which allow this supervisory control capability over un-
manned vehicle networks over the manned simulation platform. Basically, this HMI
display systems enhanced with decision support capability generate candidate sched-
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Figure 5: Command ana Control Interface GUI

ule which has temporal flexibility as much as possible and is robust to executional
uncertainty in mission environment in a very brief time intervals. Then, the human
operator examines the proposed schedule and makes modifications or posts additional
precedence constraints between activities if required. Generation of robust schedules
are very crucial, since the mission environment is inherently very challenging and
includes too many misfortune like asset breakdowns or delays in activity duration.
The developed algorithm has the capability of adapting the current solution into the
new situation very fast, hence it contributes the human operator to handle with the
perturbation in the mission environment. In addition to showing manned vehicle
flight information data, this HMI display system also tracks and monitors the action
of unmanned vehicle fleet within the joint mission.

4 Conclusions
In this work, we have focussed on the problem of the planning and scheduling of
tasks in UAV fleet C2 applications and decision support architecture is presented for
real-time decision generation for operators who are responsible for high-level decision
making in scenarios involving a large number of tasks across multiple UAVs. The
main segments of the proposed decision support architecture and its integration to
a labscale mission simulator is explained in detail. Finally, the developed Human
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Machine Interfaces and the performance of the implemented algorithms for scheduling
and C2 applications is given.
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