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Abstract: 
Data fusion systems are being increasingly used to support military planning, decision 
making, and command and control functions in general. Typically, these systems are 
designed around the current capabilities of particular data collectors (e.g., sensors) and 
available processing algorithms. These algorithms incorporate an “ontology” that reflects 
the designer’s perception of key concepts in the world (e.g., types of threats, classes of 
vehicles to be tracked) and how these can be parsed by the data fusion systems. As a 
consequence, these algorithms are limited in their ability to adapt to the dynamic changes 
that inevitably arise in the operational environment (e.g., new sensors, weapons, and 
enemy tactics). This frailty is representative of a more generic problem with current 
approaches to system design that result in rigid systems that are unable to evolve to keep 
pace with changing operational conditions. In this paper, we present the results of an 
analysis, design, and development effort intended to move towards robust C2 through 
evolvable human-in-the-loop data fusion systems. We discuss an evolvable semantic 
interface we have designed that enables the creation of new concepts within the fusion 
system, and provide an overview of the prototype evolvable data fusion system 
architecture we are developing. 
(199 Words) 
 
1 INTRODUCTION 

Data fusion systems are being increasingly used to support military planning, decision 
making, and command and control functions in general. These systems combine, 
correlate, and aggregate heterogeneous and distributed sources of information with the 
goal of providing needed information (Waltz & Llinas, 1990) – for example, combining 
the inputs from multiple ground-based radar systems to track an adversary convoy.  

Data fusion systems typically consist of data structures that are commonly termed 
“ontologies” (e.g., this precipitation sensor reports one of one of the following: rain, sleet, 
hail, snow) and inference mechanisms (e.g., a rule states “if sensor X reports wet and 
sensor Y reports 10°C then report raining”). These ontologies and other 
representational formalisms are typically specified as part of the initial design of the data 
fusion system. They reflect capabilities of particular data collectors (e.g., sensors) and 
processing algorithms (e.g., correlating target locations over time) at the time the system 
was initially developed, as well as the designer’s perception of the key features of the 
world (e.g., types of threats, classes of vehicles to be tracked) and how these can be 
parsed by the data fusion systems. 

A consequence of this design approach is that it results in data fusion systems that 
structure information according to the system’s ability to perceive the world, rather than 
according to a human’s need to understand and act upon the world. Further, these data 
fusion systems are limited in their ability to adapt to dynamic changes that inevitably 
arise in the operational environment. Inevitably, there are changes in both “own” and 



“adversary” assets (e.g., sensors, weapons, equipment) and operations that cannot be 
accommodated by rigidly designed data fusion systems. 

This frailty is representative of a more generic problem with current approaches to 
system design that result in rigid systems that are unable to adapt to rapidly changing 
operational environments (Pew & Mavor, 2007; Roth et al., 2006). In this paper, we 
present the ongoing results of an analysis, design, and development effort intended to 
move away from traditional data fusion systems towards evolvable human-in-the-loop 
data fusion systems.  

Our research and development is being performed as part of an Army program 
examining data fusion methods that support rapid knowledge building and editing, 
enabling data fusions systems that will be knowledge-intensive and will respond to a 
changing battlefield environment. For example, fusion systems must cope with new 
threat doctrine, varying Tactics, Techniques, and Procedures (TTPs), and equipment or 
weapon changes. A key goal of the program is to develop practical, operational tools and 
systems.  

In support of this program, we have adopted a cognitive systems engineering 
approach targeting the design of evolvable support (Roth et al., 2006) for data fusion 
systems. In this paper, we present some relevant background material used to motivate 
our work, discuss the methods used to perform an analysis in support of an evolvable 
system design, and provide an overview of the prototype evolvable data fusion system 
architecture we are developing.  

2 BACKGROUND 

2.1 Human-In-The-Loop Data Fusion 
Fusion systems generally provide C2 with valuable information aggregated from 

multiple information sources through computation reasoning methods. More specifically, 
fusion algorithms are categorized in a stratification depending on their purpose 
(Steinberg, Bowman, & White, 1998; U.S.Department of Defense, 1991). For example, 
lower level fusion algorithms reconcile sensor reports to specific entities and aggregate 
these reports into entity tracks. In higher level fusion algorithms, relationships and 
impacts are identified and predicted based on tracks established and maintained at the 
lower levels. Popular algorithms used in various level of reasoning include Kalman 
filtering (Kohler, 1997; Kalman, 1960), joint probabilistic modeling (Ahmeda et al., 
1997), and particle filtering (Das et al., 2005; Koichiro, Kawanaka, & Okatani, 2004; 
Gordon, Simon, & Kirubarajan, 2002), all of which employ various stochastic and 
probabilistic hypothesis generation and selection methods to reason about data ingested 
from available sensors and systems.  

There is clear recognition in the data fusion community that the role of the human in 
the data fusion process could be exploited to a far greater degree than in current systems, 
and that there are performance improvements to be gained from including human 
knowledge in the process. For example, Blasch and Plano (2003, 2002) have argued for a 
need to adopt a human-in-the-loop approach to data fusion (i.e., the need for a “Level 5” 
in the JDL Data Fusion Model). Similarly, others have recommended improvements to 
data fusion to incorporate better mechanisms for supporting analyst understanding of the 
process and addressing issues related to the qualifiers of information, or meta-



information, i.e., quality control, pedigree, reliability, and consistency (Pfautz et al., 
2007; Llinas et al., 2004).  

Too often, however, system designers and developers solely focus on internal 
concepts that support primary interoperability among systems and computational function 
(e.g., fusion algorithms) and do not focus on representational formalisms that support 
human reasoning. The ability to exploit human capabilities as part of military fusion 
systems requires an approach that can translate significant algorithmic complexity into a 
human-accessible concept representation, and one that can translate human input in that 
representation back into specific impacts on the underlying algorithms. Ontologies can 
provide the foundation of such an approach. 

2.2 Defining Fusion System Concepts 
Ontologies explicitly define a conceptual structure in a particular domain (Gruber, 

1993). The study of ontologies has moved in recent years from an issue of mainly 
philosophical concern (Quine, 1969) to a research area with wide applications in 
knowledge-based intelligent systems. Ontologies are critical in formalizing statements in 
an application domain and in operating with the associated semantics of the concepts 
(i.e., to provide domain-relevant structures upon which computational methods can act). 
For this very reason, ontologies can offer strong support not only for building knowledge 
bases for computational data fusion systems, but also for describing the contexts in which 
the knowledge is needed by the system. 

However, there is an inherent limitation in ontologies defined at the time of data 
fusion system design in that they can only be used to comprehend terms and concepts that 
have been pre-identified. This places severe restrictions on their application within 
dynamic, emerging environments found in military operations, where the core set of 
concepts and lexicon is constantly changing (e.g., constantly changing information 
sources, technology, tactics, and organizational structures of both own and adversary 
forces).  

While there have been developments to ease the authoring of ontologies (Tablan et 
al., 2006; Farquhar, Fikes, & Rice, 1997), we identified a need to design software 
structures and user interfaces that would allow for the creation and adaptation of 
ontologies as part of the operational system. This capability would allow the system to 
evolve to accommodate changes in the operational environment. The nature and form of 
the evolution should necessarily be driven by an analysis of the work domain that 
identifies potential weak points in a representation (e.g., we know that weather data can 
be reasonably well-defined in a static way, but that adversary use of communications 
technologies varies dramatically from month to month). 

2.3 A Need for Evolvable Systems 
There is growing recognition that the activities that people engage in and the physical, 

social, and organizational environment in which these activities take place are constantly 
evolving (Roth et al., 2006; Woods & Dekker, 2000). Operational military intelligence 
personnel face consistent revisions to the goals, scale, scope, structure, and information 
sources entailed by their job function (Roth et al., 2006). However, the technological 
systems that they interact with are built with predefined static structures that cannot be 
easily modified to keep pace with the changing conditions (Truex, Baskerville, & Klein, 



1999). As the work domain inevitably evolves, users are often forced to devise 
workaround solutions which combine internal system elements and external technology. 

There is a growing call to develop efficient techniques that can dynamically capture 
changes in both work context and requirements and to also create “evolvable” systems 
that can be readily adapted to meet changing conditions of work (e.g., (Pew et al., 2007; 
Roth et al., 2006; Hoffman & Elm, 2006)). The goal is to ease additional workload and 
collaborative discontinuity that workarounds may cause by anticipating particularly 
vulnerable aspects of a system to operational changes (Roth et al., 2006). We adopted this 
approach towards development of an evolvable human-in-the-loop data fusion system to 
address concerns with overly static (and hence “brittle”) data fusion systems, but also to 
understand the practical system engineering challenges inherent in such an approach. 

3 ANALYSIS AND DESIGN OF AN EVOLVABLE DATA FUSION SYSTEM 

We are developing a prototype human-in-the-loop data fusion system as part of an 
Army research program. Our focus is targeting a data fusion system that supports the 
assessment of different operational strategies or Courses of Action (COAs). The user of 
the system can enter one or more alternative COAs and have the system provide an 
assessment of the likelihood of success of that COA. Our prototype system guides data 
fusion processes by allowing the user to describe both their current operational goals and 
the background operational environment or situation. This description then informs 
underlying data fusion processes to guide the collection, correlation, and aggregation of 
information that is better tailored to the implicit and explicit needs of the user.  

In the sections below, we describe the cognitive engineering processes we employed 
in designing and developing the system. After an initial domain analysis, we began by 
developing an initial prototype that relied on a predefined ontology. We quickly came to 
realize that we needed to include mechanisms to enable the users of the system to extend 
the ontology so as to be able to cope with an ever changing operational environment; this 
led to a second cycle of design that focused on incorporating evolvable features in the 
prototype. We describe the core data fusion system we developed and the features we 
incorporated into the system to allow the ontology to be extendable by the user 
community.  

3.1 Cognitive Analysis 
We performed an initial cognitive task analysis intended to provide a broad 

characterization of the Military Intelligence (MI) domain and the sources of cognitive 
demands and performance challenges. Analysis was based on a series of knowledge 
elicitation sessions conducted with three Subject Matter Experts (SMEs), all of whom are 
former Army Military Intelligence officers with extensive intelligence analysis 
experience. This focused analysis was then validated and extended based on subsequent 
interviews with current military intelligence personnel and prototype feedback evaluation 
sessions. These efforts represent over 600 hours of interviews and evaluations with over 
45 different subject matter experts.  Additionally, these efforts included discussion of 
historic, current, and planned data fusion systems used in Army intelligence analysis 
(e.g., ASAS, ASAS-Lite, DCGS-A).  

A more focused analysis was then conducted to define the ontologies and associated 
representational formalisms that would support human-in-the-loop data fusion. Our 



prototype system guides data fusion processes by allowing users to describe both their 
current operational goals and the operational environment. This description then informs 
underlying data fusion processes to guide the collection, correlation, and aggregation of 
information that is better tailored to the implicit and explicit needs of the user. For 
example, we identified that a key, often un-articulated aspect of an operational situation 
is the degree to which air-based assets will be used. This aspect, often assumed by the 
user to be readily apparent, is not typically used in guiding data fusion, but has a clear 
impact on the degree of processing required (i.e., it modifies the number of potential 
threats identified and tracked to include any ground-to-air or air-to-air threats). As a 
consequence, we determined that it was important for our data fusion system to capture 
not only the user’s operational goals but also the general operational situation that 
constitutes the background context. 

The initial challenge was to develop a process that allows the system users to express 
their understanding of operational goals and operational situations. An initial set of 
operational goals and operational situation descriptions was collected via structured 
interviews with a core set of two SMEs. The interviews focused on description of actual 
past cases as well as analysis of responses to simulated cases exercises. From these 
interviews, we derived an initial set of questions that could be used by the data fusion 
system to characterize operational goals and situation descriptions. 

The next step in our analysis was to work from these potential questions to the space 
of possible responses. While some cases were simple (e.g., in the above example, a 
“yes/no” response was expected), others were more complicated, and a set of branching 
query statements were identified (e.g., “if you know it is a wheeled vehicle, then you 
need to ask if its speed and heading are indicative of this type of threat”). The set of 
possible responses captured in an ontology needed to be developed at a level of 
abstraction that supported relatively rapid response to the queries, while also containing 
enough detail to provide a significant impact on the data fusion process. This presented a 
particular challenge in our analysis, and we found that multiple iterations of interviews 
and prototype evaluations where needed to identify an effective level of abstraction of 
key operational concepts and operational goals. 

The initial conceptual framework was exercised and refined using a corpus of 
representative operational goals and operational situation descriptions collected from a 
broader range of operational users. In total, we collected over 100 representative 
operational goal descriptions via interviews and exercises using an initial system 
prototype. This corpus of representative goals and situation descriptions was used to 
iteratively develop and test the set of questions to be used by the system to elicit and 
characterize the user’s operational goal and background operational situation. 

3.2 System Overview 
Figure 1 depicts the functional flow of our prototype. To perform a given COA 

impact assessment, the system elicits current operational goals and operational situations 
from the user through an iterative questioning process. The prototype then calculates the 
potential performance of a user-selected COA against dimensions of performance derived 
from the operational goals and operational situation as defined by the user. To facilitate 
this calculation, we developed a SME populated database of course of action elements 
and their characterization across the “universe” of defined dimensions of performance. 



For example, our prototype will help assess how effective one can expect a selected COA 
to proceed when the enemy employs asymmetric tactics (e.g., covert munitions, non-
military communications) vs. symmetric tactics (e.g., overt munitions, military 
communications). Our prototype can then contrast expected impact if the enemy chooses 
to operate in an urban environment rather than a rural one.  

 
Figure 1: Overview of prototype impact assessment human-in-the-loop fusion process  

 

3.3 Preliminary Approaches 
Our prototype has undergone a series of design and test cycles that have involved user 

evaluations of functioning software prototypes. These evaluations used military personnel 
with current operational experience as test participants. They exercised the prototype 
using operational scenarios (both ones we developed and ones they provided). These 
evaluations provided an opportunity to obtain user feedback as well as to expand our 
corpus of cases to use in system development and test.  

Our preliminary attempts to define the user-facing system formalisms resulted in a 
fixed ontology supporting user interactions with the system. This fixed ontology 
represented answers to the questioning process shown in Figure 1. For example, to 
describe enemy assets, we provided the user a list of weapon categories similar to that of 
the Military Scenario Definition Language (MSDL; http://www.sisostds.org), such as 
large crew-served weapon or covert hand-held weapon. Figure 2 
shows a simplified representation our initial approach.  

 



 
Figure 2: Fixed Ontology approach to HITL Fusion 

 
In this prototype iteration, the users selected an answer from the ontology which 

evokes a numerical activation within the reasoning algorithm. These activations are 
stored within the ontology as attributes of the concepts. We evaluated the prototype with 
Army SMEs who were able to quickly develop operational contexts that they had 
experienced but were not expressible with our fixed ontology. We subsequently made 
addendums to the ontology accounting for a move to Stability and Support Operations 
(SASO) from High Intensity Conflict (HIC).  Again, the operational environment had 
shifted predominantly to a Counter Insurgency (COIN) Campaign, and our ontology 
failed to capture a majority of the operational situations invented by the SMEs.  

These ontological failures were not just the result of missing concepts. In some cases, 
there are mismatches in the terminology that represent the concepts. In other cases, the 
semantics of the operational concepts drift as an operation unfolds, which would result in 
updated activations within the fusion reasoning algorithm (e.g., “What did an IED entail 
in 2004 versus today?”). After a few iterations of design, implementation, and testing by 
Army SMEs that recently returned from OIF, it became clear that the evolving 
operational contexts could never be confined to a fixed ontology.  

3.4 Incorporating Evolvable Design Features 
Feedback from the preliminary evaluations made it clear that capabilities are needed 

to allow users to expand the pre-defined corpus of terminology by which a user 
communicates the operational goals and situation. We found great variability in the terms 
used by participants from different operational environments. We also found that the 
terms and concepts used to define an operational goal and operational situation could 
change over time. In particular, new doctrine for targeting emerging adversary tactics was 
released at multiple points through our study. In addition, our analysis and evaluations 
revealed a consistent desire on the part of our evaluation participants to use either the 
most comfortable or most up-to-date terminology to describe operational goals and 
operational situations. We concluded that we needed to develop evolvable components to 
our system to reflect these ever-changing system requirements. 

To accomplish this goal, we needed to define not only the goal-based and situational 
impacts on our data fusion process, but also the dimensions of these impacts that would 
allow a user to extend or refine the underlying model while still maintaining system 
function. This user-centered meta-structure was developed through the same iterative 
interview and evaluation process. Figure 3 shows an updated abstraction of our current 
system. 

 



 
Figure 3: Evolvable HITL Fusion Prototype 

 
When users encounter a situation where they are unable to express operational 

concepts with existing vocabulary, they can define a new term (e.g., “the adversary is 
using a new type of vehicle I’m going to call an armored scout vehicle that has 
the following properties…”). This requires the user to either map the new term to 
concepts in the existing vocabulary (e.g., “an armored scout vehicle is going to 
be the same as a pickup truck in terms of a COA”), or add additional concepts and 
characterize their impact across the various dimensions of performance (e.g., “an 
armored scout vehicle is going to have a particular effect that is unique and will 
alter the predicted performance of the COA”). 

In this way, our underlying system ontology can grow to accommodate dynamic 
operational changes. For example, if the system initially recognized the concept 
armored tracked vehicles, and then adversary tactics changed to using faster, 
lightly armored vehicles, the user should be able to create a new class of operational 
targets, specifying that one (among many) differentiator in identifying such targets would 
be the difference in the speed of the target object. This flexibility allows the user the 
freedom to define terminology that may be local to the unit, and define in terms that are 
semantically valid to the fusion algorithm. Further, the process of mapping each term to 
concepts captured within the ontology can solidify the user’s understanding of which 
aspects of a given entity can influence the fusion algorithm. A screen shot of our Term 
Editor interface is shown in Figure 4.  

 



 
Figure 4: Term Editor Interface 

 
In this screen shot, the user has entered a term, enemy tanks, which the prototype 
does not currently recognize. The user can then categorize the term within the existing 
vocabulary hierarchy, or declare it synonymous with an existing term. In either case, the 
system populates the properties of the associated term that the user can then alter. These 
properties link the term with the ontology that influences the fusion algorithm.  

If the concepts defined within the system ontology do not accurately capture the 
essence of an undefined term, a separate process is available for adding new concepts and 
defining influences within the COA algorithm. This process is lengthy in comparison to 
the addition to new terminology, and is expected to be necessary less frequently. Newly 
added concepts are then available for mapping to existing and newly defined terms. By 
developing these interfaces that enable the user to expand or alter the concepts within the 



ontology, we ensure that the system can continue to function without engineering 
intervention.  

Finally, the underlying fusion algorithm must incorporate several properties to enable 
these evolvable capabilities. First, the algorithm must accept new elements feeding the 
computation. Second, there must be a means for enumerating the influences of these 
sources. This can be as simple as accepting new states and probabilities, or as complex as 
defining entire causal influence models (Pfautz et al., 2009; Cox & Pfautz, 2007). Third, 
the algorithm must accept and validly handle a means for defining uncertainty. In other 
words, the user needs the ability to say “I don’t know” in the face of an unanticipated 
case not well supported by abstraction.  

4 IMPLICATIONS AND FUTURE WORK 

Our work is intended to be a practical application of the principles of evolvable work 
centered design. We identified the need for users to expand the set of terms the data 
fusion prototype is able to understand and reason about and developed facilities to enable 
this need to be fulfilled. In this way, the prototype enables the underlying ontology to 
grow and evolve to keep pace with dynamic changes in the operational environment. This 
approach will be valuable as standard concept models, such as the Joint Command, 
Control and Consultation Information Exchange Data Model (JC3IEDM) further 
facilitate intra- and inter-system reasoning. We are currently undertaking additional 
efforts to assess the interoperability impacts of evolving user-facing ontologies. We plan 
to conduct further evaluations over the next year to assess whether the software truly 
provides the flexibility that is intended. Clearly, the expectation is that the system 
vocabulary will be more volatile than evolving ontology. As part of our evaluations, we 
will capture statistics regarding user to user differences in vocabulary and ontology 
updates. 

In our current implementation, each user’s model remains local, as it is a personalized 
representation of the work domain. We plan to develop methods for aggregating and 
analyzing individual ontologies (manually, semi-automatically, or automatically) to 
establish updated universal baselines which can be used in multiple work domains. A 
resulting benefit of this approach is that it may lead to the identification of 
inconsistencies in results between users for the same work domain and therefore aid in 
empirically locating cognitive inconsistencies between team members and identifying 
misconceptions about the work domain. That is, an evolvable system has the potential to 
provide feedback not only to improve itself, but to aid the designers of the system in 
providing revisions. 
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