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Abstract 
In this work, we apply two concepts from network theory – network entropy and mutual information – to 
characterize the agility of network-form organizations. These concepts are developed from Shannon’s 
work on information entropy. We define the notions of network entropy and mutual information pertinent 
to measuring the structural evolution of organizations. We then show the application of network entropy 
and mutual information in assessing the agility of networked organizational structures. We hypothesize 
that given the same type of topological changes (e.g., adding a link), a larger MI indicates a more agile 
organizational network.  The network structure will contain more change options and there is a greater 
likelihood of choosing one well suited to the environment. Illustrative networks are constructed for 
demonstration, we investigate scenarios of adding links to a network while holding the number of nodes 
fixed. Areas for future research are discussed. 
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1. Introduction 
The past decade has seen considerable research on networked forms of organization. Networked 
structures are often posted as alternative to traditional hierarchical forms (Powell, 1990; Thompson, 
2003).1 Interest in these organizational forms can be attributed to their facilitation of agility, 
collaboration, and information sharing, which are imperative for dealing with today’s uncertain 
environments. While research on organizational, and social, networks continues to grow at an exponential 
rate, studies on performance of network structures remain scant. Specifically, research is needed to 
examine how to measure performance of networked organizations (Desouza et al., 2008). Moreover, from 
a pure structural perspective, any forms of organization, including hierarchies, can be represented with the 
basic network analytic constructs of nodes and links (Laumann, 1991). Hence, the work conducted in this 
paper applies to any form of organizational structure.  

Various scholarly traditions have developed their own measures for evaluating network performance. 
Traditional network analytical approaches use the rich mathematical tools of graph theory to arrive at 
measures of network typology (e.g., node degree, path length, network density). The study of social 
networks models relationships of humans (Wasserman & Faust, 1994) and develops measures of roles 
and positions (e.g., centrality, structural equivalence), as well as groups (e.g., structural cohesion, 
clustering coefficient). These measures focus on the configuration of nodes and links. The interested 
reader is referred to Brass (1995) for a good overview of these measures. Telecommunication network 
theory, which deals with the transport of information between technical devices, focuses measures on the 
quality and quantity of information (e.g., error rate, throughput, channel capacity) and the transport cost 
(e.g., delay, packet loss) across networks. These measures focus more on the functionality of nodes and 
links. The interested reader can refer to Schwartz (1987) and van Mieghem (2006) for more details.  

In an uncertain environment, a favorable organizational structure should be agile: it should be adaptive to 
innovations, flexible, responsive to changes, yet also robust and resilient to damages. Currently to the best 
of our knowledge, few measures can adequately capture the structural agility of organization (Alberts and 
Hayes, 2003; Dove 1994; Kumar and Motwani, 1995; Metes et al. 1998). We treat agility as a structural 
property of the organization since our focus is on organizational structure (as opposed to an operational 
property2). Structural properties can be more easily measured since there is no need to predict the specific 
change the system will encounter (Giachetti et al., 2003), which is necessary for assessing organizations 
with unanticipated environments.  

This paper investigates the utility of two network performance measures – network entropy (NE) and 
mutual information (MI). They are developed from Shannon’s information entropy, which is a 
fundamental basis of the theory of electronic network communication, but their application to 
organizational networks and social networks has yet to be explored. We are interested in organizations 
which have networked structures (i.e. have distributed entities that are connected for the purposes of 
sharing information and collaborating on actions) and reside in dynamic contexts. We define these new 
measures based on network degree distribution and graph isomorphism (Section 2), providing strategies 
for computing these measures. We then apply them to evaluate the agility of organizations (Section 3). 
The comprehensiveness of these two measures is useful due to the complexity of contemporary 
organizational structure and the frequency of reorganization in capricious environments. 
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1 We use the term networked organizational structures and network structures interchangeably. The work presented 
here can be applied to network structures of various types. These networks can be purely technical (i.e. involving 
artificial devices), human (i.e. social networks), or a socio-technical (i.e. machine-human). 
2 Agility can be ascertained through study of operational properties. These properties cover the specific operational 
activities of an organization and its specific operating context. 

 



 

2. Network Entropy 
The classic definition of thermodynamic entropy attributed to Boltzmann measures the “disorder” in a 
system (Haddad et al., 2005). Given a set of macroscopic states that are observed, the thermodynamic 
entropy measures the amount of uncertainty about the underlying system configuration that is spread over 
different possible micro-states corresponding to the same observed macro-state. This uncertainty is 
captured by a probability distribution over the possible microstates. Shannon (1949) formalized this in 
reverse order by beginning with a (discrete) set of symbols { } (the microstates) such that the 

occurrence is described by a probability mass function  
ix

)i )(( ixXPxp   (the probability of occurrence 
of the i-th symbol). The information entropy over the ensemble of symbols is given by  


i

ii xpxpxpEXH )(log)()]([log)(  (2.1)

where .  1)( 
i

ixp

Within a network context, a key determinant of structure is the variability of the degree distribution of the 
nodes. The degree of a node in a network is the number of one-hop neighbors or edges of the node. The 
degree distribution  of a network is then defined to be the fraction of nodes in the network with degree 

i. In other words, if there are  nodes in total in a network and of them have degree i, then 
ip

N iN

NNp ii /  (2.2)

is the probability that a node is degree i.  

Network entropy (NE) is developed from information entropy based on this probability distribution 
(Losee, 1990). To illustrate, consider the subnet  in Figure 1 (a) with nodes , , , , , and . 

The network entropy of  is 
1G 1v 2v 3v 4v 5v 6v

1G

NE( ) =  1G 11 loglog)(
1

ppppPH i
i

iG   323222 loglog pppp  ≈ 1.46 

The computation results are summarized in Table 1. If a link is added between  and , as shown in 

Figure 1 (b), we get a new subnet  with 
1v 6v

2G

NE( ) = 2G 323222121 logloglog)(
2

ppppppPHG   ≈ 1.58 

If the original link between  and  in is broken, as in Figure 1 (c), for the new subnet   3v 6v 1G 3G

NE( ) = 3G 222121020 logloglog)(
3

ppppppPHG  323 log pp ≈ 1.79 

We can also join two subsets, say, and together to obtain the subset  (see Figure 1 (d)) with total 
number of nodes =12 and  

1G 2G 4G
N

NE( ) = 4G 222121 loglog)(
4

ppppPHG  424323 loglog pppp  ≈1.83 
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Figure 1: Subnets 

Table 1: The calculation of network entropy 

Subnet 0P  log2 0P  1P  log2 1P  2P  log2 2P 3P  log2 3P 4P  log2 4  P 5  P log2 5P NE 

1G  0/6 - 3/6 -1 2/6 -1.58 1/6 -2.58 0/6 - 0/6 - 1.46

2G  0/6 - 2/6 -1.58 2/6 -1.58 2/6 -1.58 0/6 - 0/6 - 1.58

3G  1/6 -2.58 3/6 -1 1/6 -2.58 1/6 -2.58 0/6 - 0/6 - 1.79

4G  0/12 - 5/12 -1.26 3/12 -2 3/12 -2 1/12 -3.58 0/12 - 1.83

Like information entropy, NE attains its maximum value (log N) when Npi /1  for any node degree i, 

and its minimum value 0 when some 0jp  and some 1i

6v

p



G

G

. The former case corresponds to the most 

uncertain situation since there are many alternatives. The degree of a randomly picked node could be 0, 
1,…, or .  The latter case corresponds to the least uncertain situation since there is just one 
possibility wherein every node has the same degree. NE depends continuously on the probabilities so 

that two networks with similar degree distributions have close values of NE. In Figure 1,  is obtained 

by connecting  and  of . The degree of  changes from 2 to 3, giving rise to a new degree 

alternative (degree = 3). The increased uncertainty results in an addition to NE:  NE( ) > NE( G ).  is 

obtained by connecting  and v  of . The degree of  changes from 0 to 1. As a result, there is no 

longer an alternative of 0 degree in the network, which results in the decline of NE:  NE( ) <  NE( ). 

 is obtained by connecting and . Not only does a new alternative appear, 4 degree, but the total 
number of degree alternatives is increased from 6 to 12. Uncertainty is captured by a growing NE: 
NE( ) > NE( ), NE( )> NE( G ).  

1N

ip

1 G

G

2G

1G

1v

1G

6v

v

1G

4

1v

2G 1

3

3

G

6

1G

3G

2G

2

4

4

3. Improving structural agility: maximizing mutual information 
In a dynamic setting, NE alone cannot measure the uncertainty in a network structure, because network 
topological changes contribute to variances in uncertainty. To illustrate, consider adding a link to our 
original network. Depending on which nodes we connect, we will arrive at different degree distributions 
(2.2). For example, by connecting the nodes  and  in  (Figure 1 (a)), we get  (Figure 1 (b)) 1v 6v 1G 2G
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whose degree distribution is: =  =  = 0,   =  =  = 1/3. However, if connecting another pair 

of nodes, say  and , we will get a degree distribution: =  =  = 0,    =  = 1/6,  = 2/3. A 
new measure is needed to capture this uncertainty. In information theory, mutual information (MI) is 
defined as the change in the amount of uncertainty of the desired variable (X) by observing a related 
variable (Y). We use MI as a measure of the uncertainty caused by network topological change. The 
inclusion of the correlation between the two graphs helps to overcome the common yet unrealistic 
assumption that the growth phases of networks are independent of one another. 

0P

H

4P

| YX

5P

H

1P

I

H

2P

;YX

| XY

3P

0P

H

5v

;(X

6v

H

4P

(X

5P

(H

1P

(H

3P

),Y

2P

Assume any node in graph G whose degree changes from X to Y.  Network-based MI is developed from 

the more general definition of mutual information  given below, by replacing general entropy 

(H) with network entropy (NE): 

( )

) ))()()()() XYYXYI   (2.3)

The Venn diagram in Figure 2 shows the logic relations between entropy and mutual information. 

 
Figure 2: The logic relations between entropy and mutual information 

),( YXH  is the joint entropy of X and Y, formalizing their correlation: 



5 


i j

y, j )ix ,jy )ixp( p(Y ),

)

XH (

;(X

log  (2.4)

So we can also calculate  as below: YMI



)
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)

(
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xp
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(

)( ix
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y

(
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(p

(p

MI
)

(  log)

)ix

(2.5)

where  is the value of the joint probability of variables X and Y, ) ,when  and 

.  is the product of , which is the probability of X, and , which is the 

conditional probability of Y given X. Specifically, 

)j

),Y

,( i yxp

j (Xp

,Y

|(Y

(Xp

p

X 

yY  X

ix

X )

|)x p  (2.6)

where is exactly the  in (2.2). )( ixp ip

 



 

We propose to apply MI in improving the agility of organizational networks. Our hypothesis is: given the 
same type of topological changes (e.g., adding a link), a larger MI indicates a more agile organizational 
network, which has more change options. Thus, we are more likely to choose the one that best fits the 
environment. From the perspective of information theory, it means there are more possibilities (i.e., 
uncertainty) related to a certain type of topological changes, and more information is needed to determine 
which one is the case. Alberts and Hayes (2003) insightfully describes this relationship in their statement, 
“the road to agility is paved with information”.  

Let’s investigate a scenario of randomly adding links to an N-node graph which has no links at the 
beginning. We will add one link a time until all nodes are fully connected. In other words, if m links exist 

at the former growth phase, there are m + 1 links at the following phase ( 12)1(0  NNm ). To 

compute MI, three data structures are maintained for each possible state during network evolution. The 
first is an N-dimension vector indicating current degree distribution:  =  ]1[],...,1[],0[ N = 

, where is the probability of the occurrence of a k–degree node. Different states have 

different degree distribution vectors. The second is the adjacency matrix A, an N × N matrix in which a 
non-diagonal entry  is the number of edges from node u to node v (the nodes are sequentially 

labeled as 0, 1…N – 1). Each diagonal entry has a value of 0. 

 110 ,...,, Nppp kp

]v][[uA

]][[ uuA 1]][[ vuA  if and only if nodes u 

and v are linked. We avoid linking two already linked nodes by checking the corresponding entry in the 
adjacency matrix. The third data structure is another N-dimension vector   which records the degree of 

each node:   =   ]1[N ],...,1[],0[   =  )1(),...,1( Nd),0( dd . After picking and linking a certain 

pair of nodes, the three data structures are updated accordingly. 

We keep linking two nodes until any of the following requirements cannot be met: (1) the degree of either 
node is less than the maximally possible value (by checking the vector ); (2) the nodes have not yet been 
linked (by checking the adjacency matrix A); (3) the produced graphs are non-isomorphic. Two graphs X 
and Y are isomorphic to each other if a relabeling of the vertices of X (i.e., a permutation of the labels) 
yields Y and vice-versa. Non-isomorphic graphs thus have different degree distribution (by checking the 
vector  ). We do not differentiate individual nodes because NE and MI are organizational-level measures; 

they are computed based on the entire network. In other words, our unit of analysis is organizations. The 
links connecting the nodes and the overall network structure generated are of more interest. Consider 

three-node graphs (N = 3). There can be  































2
(

2
(

NN

NN

)1

)1

2
)1(

2
)1(

10

NNNN

  22
)1( 


NN

= 8 different 

labeled graphs (Figure 3). 3
2

)1(


NN
is the maximal number of links that a graph with N = 3 nodes can 

have and in this case the graph is fully-connected. 






 

m

NN
2

)1(

 is the number of different graphs each of 

which has N nodes and m links. However, only four out of the eight graphs are non-isomorphic to one 
another, as shown in Figure 4. 
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Figure 3: All eight graphs on three nodes 

 

Figure 4: All four non-isomorphic graphs on three nodes 

Now let’s show the principle of maximizing MI using the evolution of 4-node networks as an example. In 
these networks, the number of links , and each node has a degree]5,0[m ]3,0[d . The degree 

distribution satisfies .  [ ] corresponds to  ( ), the occurrences of an –degree 

( –degree) node. The whole process (adding one more link at a time) is displayed in Table 2 and 

summarized in Figure 5. In Table 2, the labels in the first column index different graphs. The second 
column illustrates different non-isomorphic graphs and the third column is the number of links in each 
type of them. The fourth column shows the cardinality of corresponding isomorphic graph families

1
3

0


k
kp )i )( jyp(xp ip jp i

j

3. The 
fifth to the eighth column shows the degree distribution of certain graphs, and the final column shows 
their respective NE. The values of MI are shown in Figure 5, a flowchart of network evolution that moves 
from a fully unconnected graph (without any link) to a fully connected graph (with all possible links). 
Each circled number represents a possible state (a network structure with certain degree distribution) in 
the evolution. The number next to each state is the corresponding NE. Subsequent states are linked with 
arrows pointing from the predecessors to the successor. The number next to each arrow is the 
corresponding MI. We discuss the calculation details below. 

Table 2: Link addition procedure on a 4-node graph 

# ill. m C )0(p )1(p )2(p )3(p NE4 

00 
 

0 1 4/4 0 0 0 0 

10 
 

1 6 2/4 2/4 0 0 1 

 

                                                            
3 It is the number of isomorphic graphs. For example, the cardinality of 3-node, 2-link isomorphic graphs is 3, as 
shown in Figure 2. 
4 It is calculated using log base 2. 
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Table 2: Link addition procedure on a 4-node graph (continue) 

20 
 

2 3 0 4/4 0 0 0 

21 
 

2 12 1/4 2/4 1/4 0 1.5 

30 3 12 0 2/4 2/4 0 1 

31 
 

3 4 0 3/4 0 1/4 0.81

32 3 4 1/4 0 3/4 0 0.81

40 
 

4 1 0 0 4/4 0 0 

41 4 14 0 1/4 2/4 1/4 1.5 

50 5 6 0 0 2/4 2/4 1 

60 
 

6 1 0 0 0 4/4 0 

 

 
Figure 5: Link addition procedure on a 4-node graph (branch-growing pattern) 

Suppose we are adding a link to the graph “10” in Table 2, which results in either “20” or “21.” We first 
need to calculate the value of and . We then label the nodes clockwise from 0 to 3. 

Since ”10” has two 0-degree nodes and two 1-degree nodes, =  = 1/2. The graph does not 

have any nodes with higher degree. 

)20;10(MI )21;10(MI

)( 0xp )( 1xp

 0,42,42 0,)10( ,  0,1,1 0,)10( ,  . 

According to the above requirements and


















0000
0000
0001
0010

)10(A

)10( , we can link two 0-degree nodes, which produce the 

graph “20”, or link a 0-degree node and a 1-degree node, which produces the graph “21”. Each node in 
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graph “20” has a degree of 1,  0,0,44,0)20( . = 1, = = ) = 0. Any node in 

“10”, regardless of its original degree, becomes a 1-degree node in “20,” i.e., = = 1. 

=  = 1/2, =  = 1/2.  = 

)( 1yp

)| 1x (xp

)( 0yp ) ( 3yp

)| 01 xy

)

( 2yp

(p

20;10(MI

)|( 11 xyp

),( 10 yxp )|( 01 xyp )( 0xp ),( 11 yxp ( 1yp )1

)

)

1()(

,(
log

0

10

ypxp

yxp
),( 10 yxp  + 

)()

),

1

11

yp

y

(

(
log)

1
1 xp

xp
,( 1 yxp  = 0. There are one 0-degree node, two 1-degree 

node, and one 2-degree nodes in “21”,  42,41 0,41,)21( . = ) = 1/4, = 2/4, 

= 0. A 0-degree node in “10” is about to have a degree of 0 or 1 in “21,” i.e., 

= =1/2. A 1-degree node in “10” is about to have a degree of 1 or 2 in “21,” i.e., 

= ) =1/2. Therefore, = )  = 1/4, =  

= 1/4, = )  = 1/4, = )  = 1/4. 

=

) ( 2yp

(xp

( 0yp

)( 0x

)( 1xp

)( 1yp

|( 01 xyp p

)( 3yp

)|( 00 xyp

)|( 11 xyp

(xp

)21;10(MI

)|( 01 xyp

|( 12 xyp

), 2y (yp

)0 ( 0yp

), 11 y (p

,( 0 yxp

(xp

| 0x p

| 11 xy

), 10 y ) )( 0x

1 | 12 x )( 1xp

)

)

0y()

,

0

00

p

yx

(

(
log

xp

p
),( 00 yxp +

)1()

),(

0

10

ypx

yx

(
log

p

p
)1y,( 0xp +

)

)

1

1

y()(

,(

1

1

pxp

yxp
log), 1y( 1xp +

)

)

2()(

,(
log

1

21

ypxp

yxp
),( 21 yxp  = 0.5.  

According to our hypothesis, > ) means a change from the graph “10” to “21” is 

greater than that to “20”. This is intuitively verified by seeing the topological transformation (Table 2). In 
comparison with “10”, “20” can be interpreted as increasing the number of unconnected pairs, whereas 
“21” introduces a hierarchy. Based on the principle of MI maximization, we can find the best path of 
network evolution with the largest sum of MI. In other words, it is the “longest” path in terms of MI in the 
network evolution graph (e.g., Figure 4 for 4-node networks).  In this example it is “00102131(32) 
415060” and the sum of MI is 0 + 0.5 + 0.81 + 0.81 + 0.5 + 0 = 2.62. This is a dynamic 
programming (Bellman, 1966) problem in which optimal solutions to sub-problems are used to find the 
optimal solutions to the overall problem. For a network with certain number of nodes, we can first 
construct its evolution graph and track the opposite number of every MI and then use the classic Bellman–
Ford algorithm (Bellman, 1958; Ford & Fulkerson, 1956) to find the shortest path in terms of the opposite 
number of MI, which is the longest path in terms of MI. It remains to be explained how to construct the 
evolution graph for any N-node network.  

)21; (MI10(MI 20;10

We propose to solve this problem using the tentative algorithm shown below, based on the three data 
structures mentioned above: degree distribution vector

9 

 , node degree vector , the adjacency matrix . 

By repeatedly running this algorithm at every growth stage, we can obtain the whole evolving graph of 
the network and find the path that best supports agile network evolution.  

A

BEGIN 

1. Set up 000 ,, A for the precedent graph X; set a counter c = 0 

2. Set  r = 0 
3. If 1 Nr , go on; otherwise, go to the end 
4. If 0][ r , do 1r  and go to Step 3; otherwise, go on  
5. Set  t = r 
6. If 1 Nt , go on; otherwise, do 1r and go to Step 3. 

 



 

7. If 0][ t , do 1t  and go to Step 6; otherwise, go on.  

8. If Nr /2][  (when tr  ) or NtNr /1][/1][   (when tr  ), go on; otherwise, do 1t  and 
go to Step 6.  

9. Sequentially traverse the dimensions of vector from ]0[ until finding a pair of indices u and v 

which satisfy: (i) ru ][ and tv ][ ; (ii) 0]][[ vu (i.e., there is no link between them).  A

10. If such a pair of indices does not exist, do 1t  and go to Step 6; otherwise, go on 
11. Construct new ccc A,, for one of the possible following graph cY : first copy the A,, of X 

(get 0 c , 0 c , 0AAc  ); then do Nrc /1][  , Nt][c /1 , N1]1rc[  / , 

Nt /1]1[ c , 1]][[ vu , 1][Ac uc , and 1][ vc .  

12. Compute )( cYNE and );( cYX  based on 0MI  and c and the preceding formulas. 

13. Do 1]][[ , 1]][[ , 10 vuA 0 uvA r , 1c  and go back to Step 3. 
END 

Admittedly, the correctness of this algorithm needs to be examined against the results of some well-
established mathematical solution, e.g., the exact number of all different graphs (in terms of degree 
distribution) computed using Pólya’s enumeration theorem. Moreover, the complexity of this algorithm 
can be refined. An organizational network in real life usually has huge number of nodes which keep 
changing all the time. It is impossible to calculate the probability of its appearance like above since N is 
infinite and the vectors and matrixes will have too many dimensions to work on.  

Regardless, this algorithm is a start, which we tried on some small-scale simulated and real datasets. 
Figure 6 shows the entire link addition procedure and the longest path starting with a 6-node, 9-link 
random network, whose topology is shown as the first one in Figure 7. Figure 8 shows the procedure and 
the longest path starting with a 6-node, 9 link scale-free network, whose topology is shown as the first 
one in Figure 9. Figure 7 and 9 show the respective topological evolution of these two networks5. The end 
point of either procedure is a fully connected 6-node network, the last one in Figure 7 or Figure 9. 

                                                            
5 They are all generated using Pajek, a program for Windows used for analysis and visualization of large networks. 
It is freely available, for noncommercial use, at its download page. (http://vlado.fmf.uni-lj.si/pub/networks/pajek/) 
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Figure 6: Adding 6 links to a 6-node, 9-link random network (flowchart)6 

 

Figure 7: Adding 6 links to a 6-node, 9-link random network (topology evolution)7 

 

                                                            
6 The numbers in the parentheses are the network entropy of corresponding graphs (calculated using natural 
logarithm). 
7 The numbers on the arrows are the mutual information (calculated using natural logarithm). 
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Figure 8: Adding 6 links to a 6-node, 9-link scale-free network (flowchart) 

 

Figure 9: Adding 6 links to a 6-node, 9-link scale-free network (topology evolution) 

Figure 10 shows the procedure and the longest path starting with an 11-node, 32-link real network. Four 
links are added to the original topology. This network is adapted from the data used in a previous study 
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by Hlebec (1993). The analyzed network consisted of communication interactions among twelve 
members and advisors of the Student Government at the University in Ljubljana. Data were collected with 
face to face interviews which lasted from 20 to 30 minutes and were conducted in May 1992. 

 

Figure 10: Adding 4 links to an 11-node, 32-link real-data network (flowchart) 

Figure 11 shows the procedure and the longest path starting with a 10-node, 33-link real network. Six 
links are added to the original topology. This network is adapted from the data used in a previous study 
by Knoke and Kuklinski (1982). They selected a subset of 10 organizations and two relationships, of 
which we modeled the information exchange relationship. 

 

Figure 11: Adding 6 links to a 10-node, 33-link real-data network (flowchart) 
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This algorithm is also adaptable to other scenarios of topological changes. The first is the multiple-link 
case, i.e., more than one link (l ≥ 1) is added to the network at the same time; we can then simply repeat 
our approach in Section 2.2 for l times. Second, the deletion of links is achievable by reversing the 
process, i.e., replacing addition with subtraction. The three rules need to be modified in this case. For 
example, the degree of each node should not be negative. Third, there are times the links are not added (or 
deleted) randomly. For instance, in a “rich-get-richer” scale-free network, the nodes with higher degree 
(i.e., hubs) are more likely to have nodes link to them. This can be implemented by introducing a weight 
function. A graph yielded by linking an -degree node and a ‐degree node in the original graph appears 

with a probability of , where 

a b
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),( ji is the degree of any pair of nodes in the original graph which, if connected, produce one of the non-

isomorphic graphs. is an instance. A value of “0.1” (or other small values) is added in the case that 

both and b are equal to 0. Take the evolution of the four-node network in Table 2 again. There are two 
non-isomorphic graphs “40” and “41” that occur from adding a link to “30”. Graph 40 is formed by 
linking a 2-degree node and a 1-degree node, whereas “41” is obtained by linking two 1-degree nodes. 

The weight on “40” is given by 
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5. Conclusion and future work 
This paper proposes two new measures –NE and MI – to evaluate the agility of organizational networks in 
a contemporary changeable environment. We argue that a more agile organizational network should 
exhibit a larger MI given the same kind of topological changes. We investigate scenarios of adding links 
to a network while holding the number of nodes fixed. We used small-scale simulated and real networks 
for demonstration. This exploratory study shows the potential of applying simple structural elements, 
such as degree distribution, to the investigation of a dynamic organizational network. 

This work contributes to our understanding of organizational agility (see Figure 12). Specifically, assume 
Point S represents the current state of an organization, which is trying to reorganize in face of certain 
environmental shock. It has two choices: to centralize or decentralize. Then it has to decide the extent of 
centralization (or decentralization) by considering its goal and the cost. 
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Figure 12: Making reorganization decisions using NE and MI 

The value of NE indicates the equality of most nodes in a network. Low NE means most nodes have the 
same status in terms of degree. However, it could be that: (1) most nodes connect to a few hubs and are 
thus separated from each other, in which case there are relatively fewer links in the graph (the left arrow 
in Figure 12); (2) most nodes connect to each other, in which case there are relatively more links in the 
graph (the right arrow).   

No matter which side the organization chooses, it is possible that there are more than one states which are 
equal in NE, e.g., States A and B on the left side of S, or States C and D on the right side of S. To choose 
from them, the organization may want to examine how many changes it needs to make and the 
accompanying cost. At this point, MI becomes an important index, which we argue should be a 
representation of the change cost.  Then we find out the shortest paths in terms of MI between, say, (1) S 
and A (2) S and B. If the aggregate MI of path SA is bigger than that of path SB, the organization probably 
wants to change to State B instead of A. 

This work can be extended and refined through further research. A social network in the real world 
typically has huge number of human nodes which keep changing all the time. Our current computation 
strategy is infeasible when network dimensionality grows significantly. We note that in the literature, 
there already exist models for the degree distribution of large scale networks, e.g., that of scale-free 
networks8 whose degree distribution follows well-known power laws such as the Zipf distribution. Since 
NE and MI are defined based on degree distribution, a possible solution is approximation by use of these 
models. However, future work will also call for demonstrating validity and utility of the measures through 

                                                            
8 Networks that typically consist of a few nodes (hubs) with large degrees and many others with smaller degrees 
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computer simulations. Networked organizational structures of different types and size will need to be 
studied, as do various scenarios of network evolution (e.g., adding or deleting links, combining or 
separating networks). 
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