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Abstract 

An extension to the formalism of Timed Influence Networks, including time-varying and cyclic 
influences is presented. The proposed time-varying influence functions allow modeling of influences 
whose strengths vary with time. A cyclic influence, on the other hand, provides a provision for a self-
promoting set of influences. The two extensions will provide TIN models with the capability to depict 
PMESII (i.e., political, military, economic, social, infrastructure, and information) aspects of informal and 
uncertain domains, in the quest for the evaluation of  various courses of action.  An earlier mapping from 
a TIN model to a Time Sliced Bayesian Network is revisited and redefined for the new temporal 
extension. The temporal approach is illustrated with the help of a TIN model, used earlier for an effects 
based operations application.  
 

1.  Introduction 

Complex decision problems, arising in areas ranging from financial markets to regional and global 
politics, often require modeling of informal, uncertain, and unstructured domains in order for a decision 
maker to evaluate alternatives and available courses of actions. The modeling of an uncertain domain 
using Probabilistic Belief Networks, or more commonly known as Bayesian Networks (BNs), is 
considered to be the most used and popular formalism. Influence Networks [6] are a variant of BNs that 
provide an intuitive and approximate language to elicit the large number of design parameters required for 
an underlying BN. The Influence Nets are especially useful for modeling situations in which it is difficult 
to fully specify all parameter values required for a BN and/or where their estimates are subjective e.g., 
when modeling potential human reactions and beliefs. Both Bayesian Networks and Influence Nets are 
designed to capture static interdependencies among variables in a system. A situation where the impact of 
a variable takes some time to reach the affected variable(s) cannot be modeled by either of the two 
approaches. In the last several years, efforts have been made to integrate the notion of time and 
uncertainty. Wagenhals et al. [14, 15, 17] have added a special set of temporal constructs to the basic 
formalism of Influence Nets. The Influence Nets with these additional temporal constructs are called 
Timed Influence Nets (TINs). TINs have been experimentally used in the area of Effects Based 
Operations (EBOs) for evaluating alternative courses of actions and their effectiveness to mission 
objectives in a variety of domains, e.g., war games [7, 8, 9, 16], and coalition peace operations [18], to 
name a few. The provision of time allows for the construction of alternate courses of action as timed 
sequences of actions or actionable events represented by nodes in a TIN [9, 15, 16]. A number of analysis 
tools have been developed over the years for TIN models to help an analyst update beliefs [3, 4, 5, 10, 
11], represented as nodes in a TIN, to map a TIN model to a Time Sliced Bayesian Network for 
incorporating feedback evidence [4], to determine best course of actions for both timed and un-timed 
versions of Influence Nets [12], and to assess temporal aspects of the influences on objective nodes [20, 
21].  
 
In this paper, we present a further extension to the formalism of Timed Influence Networks with time-



varying and cyclic influences. The proposed time-varying influence functions allow modeling of 
influences whose strengths vary with time. A cyclic influence, on the other hand, provides a provision for 
self-promoting set of influences. These two extensions will allow design of more realistic situations in the 
TIN models. The paper provides the theoretical description of the new temporal features within the TIN 
formalism. The temporal considerations are further explored and explained with the help of an 
experimental set up and its illustration with the help of example TIN models.  The new temporal 
extension is applied to an earlier TIN model, used in the cited EBO applications above, and the results of 
the analyses are presented.   
 

The rest of the paper is organized as follows: Section 2 provides a technical background of Timed 
Influence Nets. A detailed discussion on modeling temporal aspects of influence relationships is also 
provided in this section which includes the proposed time-varying influences and cyclic influences. In 
Section 3, an experimental set up is laid out for the analysis of a TIN model and some numerical results 
are presented with the help of examples. In Section 4 conclusions are drawn. 
 

2.  Timed Influence Networks 

In a Timed Influence Network (TIN) setup, we are concerned with the evaluation of cause-effect 
relationships between interconnected events which may also have temporal delays associated with the 
cause-effect relationships. In particular, if the status of some event B is affected by the status of a set of 
events, A1 to An, we are interested in a qualification, quantification, and timing of this effect.  We first 
graph the relationships between events B and A1 to An, also represented as niiA 1}{ . In a network 
format, as in Fig. 1 below, with each event being a node, with arcs indicating relationships and with 
arrows representing the cause-effect directions.  The figure can be extended to a multi-layer graph to 
include evolutionary chains of inter-affecting events, where an affected event becomes an affecting event 
for some other event in the sequel. This graphical representation is identical to that used in BNs.  
      

In this section, we provide a formal definition of Timed Influence Networks (INs), as presented in Zaidi 
et al [22]. This definition is adapted from the earlier definition of Influence Networks by Rosen and Smith 
[6]. In particular, we are interested in the effect the presence or absence of any of the events in the set

niiA 1}{  may have on the occurrence of event B, where the presence and absence of these events are 
also time-tagged.  

 
Fig. 1. Cause-Effect Relationships 

 
      Let us first define the terminology to be used, in the following description: 
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nX1 : An n-dimensional binary random vector whose thj component is denoted

jX , where
jX = 1; if the 

event 
jA is present, and 

jX = 0; if the event 
jA is absent. We will denote by nx1 realizations of the 

random vectorc. A given realization nx1  of the binary vector nX1  describes precisely the status of the 

set niiA 1}{  of events, regarding which events in the set are present. We name the vector nX1 , the 
status vector of the affecting events.  
      To quantify the effects of the status vector nX1  on the event B, we define the influence function 

)( 1
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n xh  via the following qualitative properties: 
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The definition in (1) is equivalent to (2) below, where  nxBP 1|  denotes the probability of occurrence of 

event B, given the status vector nx1 .  
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The definition of conditional probability in (2) is further extended in Zaidi et al [22] for all values in 

]1,1[   of the influence function, via linear interpolation from (2) and the use of the unconditional 
probability  BP . The definition is given in (3) below: 
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(3)    (3) 

 
We note that there exist n2 distinct values of the status vector nx1 ; thus, there exist n2 distinct values of the 
influence function )( 1

n

n xh as well as of the conditional probabilities in (4). In the case where there is only 

one affecting event, the influence function )( 11 xh has only two values, one for when 11 x and the other 

for when 01 x . Note that the definition of this influence function only provides another way of looking 
at the aggregate influences otherwise captured as conditional probability values in a BN. The exponential 
number of values required to fully capture the influence on event B of all possible combinations of 
affecting events niiA 1}{   poses the same ‗knowledge elicitation problem‘ of Bayesian Networks (BNs).  
In BNs, such knowledge is obtained via large data samples from stationary and ergodic environments.  
The Influence Networks defined below, eliminate the large data samples requirement of BNs, by first 
considering the influences of individual events in niiA 1}{  on B in isolation, thus requiring only two 
values for a single-dimension influence function per each affecting event, i.e., )( 11 xh . The formalism then 



utilizes several alternative methods to combine these single- dimension influence functions to construct 
higher dimension (i.e., n > 1) such functions. The higher dimension functions can then be used to elicit 
the conditional probabilities, as in (3). 
 

Definition 1 Tined Influence Network 

A Timed Influence Network (TIN) is a Bayesian Network mapping conditional probabilities  nxBP 1|  
via the utilization of influence constants as in (3). Formally, TIN is a tuple (V, E, C, D, AT, B) with G = 
(V, E) representing a directed-acyclic graph satisfying the Markov condition (as in BN), where 

V: set of nodes representing binary random variables, 
E: set of edges representing causal influences between nodes,  
C: set of causal strengths:         1,1 s'such that  0,1 1

)(
1

)(
1  hxhxhE i

i

i

i , 

B: Probability distribution of the status vector nX1 corresponding to the external affecting events 
niiA 1}{ . 

D: set of temporal delays on edges: E  N, 
AT: a subset of V representing external affecting events niiA 1}{  and a status of the corresponding 

vector nX1 . The status of each external affecting event is time tagged representing the time of 
realization of its status. In the TIN literature [9, 14, 15, 16, 18, 13, 19], AT is also referred to as a 
Course of Action (COA). A COA is, therefore, a time-sequenced collection of external affecting 
events and their status.  

 

We now proceed with a definition which will lead to a mathematically correct relationship between 
influence functions and unconditional probabilities. 
 
A TIN is called consistent if it observes the Bayes‘ Rule, as presented in Lemma 1. 

Lemma 1 Consistency Condition [22] 
Let the influence function )( 1

n

n xh be accepted as reflecting accurately the causal relationship between the 

affecting events niiA 1}{  and event B.  Then the TIN model is consistent iff: 
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2.1 Influence Functions 

In this section, we list some specific influence functions, )( 1
n

n xh , first presented in Zaidi et al [22]. They 

are specific analytic functions of the one-dimensional components nii

i
xh 1

)(  ; )(
1

as described in 

Definition 1. It should be noted that we are not mapping the  
nii

i
xh

1
)(

1 )( values onto conditional 

probabilities 
niixBP

1)|( . Instead, we are using the values for  
nii

i
xh

1
)(

1 )( to construct a global )( 1
n

n xh

influence function; it is the latter function which is mapped onto the conditional probability )|( 1
nxBP , as 

in (3). The analytical functions presented below can be categorized into multiplicative and additive 
models due to the way these one-dimensional components are combined to form the higher-order 



influence function.  

A. Multiplicative Models 

1) The )( 1
n

n xh  Corresponding to the CAST logic [6] 
The influence constant presented below is that used by the CAST logic in [6]. 
In this case, given the values for 

nii

i xh 1
)( )}({

1
the global influence function, )( 1
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n xh , is defined as 
follows:       
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The global values of the function )( 1
n

n xh and the probabilities )( 1
nxP and )(BP must satisfy the 

consistency condition as in (4). We, therefore, determine )(BP via (4) and the conditional probabilities 

)|( 1
nxBP  are then calculated via (3). 

2) The )( 1
n

n xh  Representing Noisy OR Format [1, 2] 

Given the constants nii

i xh 1
)(

1 )}({ , we define here )( 1
n

n xh as follows; where  is such that 10  : 
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Then, via (4), we obtain: 
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The expression in (6) represents the Noisy-OR format [1, 2], where the probabilities in the latter are here 
substituted by the absolute values of the one-dimensional influence functions nii

i xh 1
)(

1 )}({ . 

B. Additive Model 

 3) A Linear )( 1
n

n xh  

In this case, we assume that the effects of events niiA 1}{  on event B are weighted by a known set 
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 A nonzero  value translates to the probability of event B being equal to one, not only when all the 



nii

i xh 1
)(

1 )}({  values equal one, but also when a predefined weighted majority exceeds a total weighted 
sum of 1 . Similarly then, the event B occurs with zero probability when the weighted sum of the 

nii

i xh 1
)(

1 )}({ values is less than )1(  , rather than only when it equals -1.  
 
2.1 Temporal Evolution of Influences 
 
In this section, we present the formalization of the temporal issues involved in the development of TINs.  
In particular, we present the dynamics of the niiA 1}{  to B relationship, when the status of various 
affecting events are learned asynchronously in time. This asynchronous evolution of influences is due to 
the temporal parameters defined in the definition of TINs. The time tags on the affecting events 

niiA 1}{  correspond to the time points at which the status of these events is realized. The delay 
parameters on edges, on the other hand, determine the time taken by an influence of an affecting event to 
reach B. An algorithm by Haider and Zaidi [4] determines a time sequence for the realization of affecting 
events‘ status with the help of time tags on affecting events and draws a time-sliced version of a TIN after 
taking into account the delays on edges. Fig. 2 shows an example TIN with time-tagged affecting events 
and with delays on the edges. Fig. 3 shows the resulting time-sliced TIN obtained by the application of 
algorithm in [4] on the TIN in Fig. 2. We assume in our description that niiA 1}{  is the maximum set of 
events affecting event B. It is evident from Fig. 3 that there might be time instances when the status of 
some of the affecting events may be unknown. Without lack in generality – to avoid cumbersome notation 
– we also assume that the affecting events niiA 1}{  are ordered in the order when their status become 

known. That is, the status of events 
i

A  is first known, then that of event 2A , and so on. Towards this 
direction, we derive a dynamic programming relationship between the influence functions )( 1

n

n xh  and

)( 1
11




n

n xh , where )( 1
11




n

n xh  corresponds to the case where the status of the affecting event 
nA is unknown.  

 
Lemma 2 [22] 
Let the joint probability )( 1

nxP  be given and the probability  BP  is defined as in (4) and let )|( 1
1
n

n xxP  

denote the probability of the least bit in the status vector nX1  being nx , given that the reduced status vector 

value is 1
1
nx . Then, )( 1
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n xh  is given as a function of )( 1
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n xh , as shown below. 
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We note that the influence functions are deduced from the same functions of higher dimensionality, as 
shown in Lemma 2. In accordance, conditional probabilities of event B are produced from the deduced 
influence function values, via (3), as: 
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Fig. 2. Example TIN with COA and Edge Delays 
 

 

 
 
 
 
 
 

Fig. 3. Temporal Model for the Example TIN in Fig. 2. 

In an attempt to formalize this temporal evolution, let 0T denote the time when the computation of the 
system dynamics starts. Let 1T denote the time when the status of event 1A , becomes known. Let

nkkT 1  ; denote the time when the status of event 
k

A becomes known. Then at time
k

T , the conditional 
probabilities )|( 1

kxBP  is computed as: 
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  (9) 

; where the probability )(BP  is computed via the consistency condition (4). 
 

B 

A3 
         

A1 
         

x1 = 1 

x2 = 1 

x3 = 1 

x4 = 1 

B 

A2 
 
    

An 
 
 

B 

Timeline 

k = 1 
Time, t = 0 

k = 2 
Time, t = 1 

k = 4 
Time, t = 2 

B 

A2 
 
    

A3 
         

A1 
         

An 
 
 

Edge delay = 0 

Edge delay = 0 

Edge delay = 2 

Edge delay = 1 

x1 = 1 at t = 0 

x2 = 1 at t = 1 

x3 = 1 at t = 0 

x4 = 1 at t = 1 



The conditional probabilities of event B evolve dynamically and finally converge to the probability 
)|( 1

nxBP  at time 
n

T , when the status of all the affecting events becomes known. It is important to point 
out that the conditional probability in (9) is sensitive to the time ordering of the affecting events. That is, 
the probability of the decisive event B, given the partial status vector kx1  is defined by the time ordering 
of the affecting events at time k.  
 
Another temporal situation where the existence as well as the status of the affecting events are 
sequentially revealed, then at time k, )(BPk

and )|( 1
k

k xBP are computed as in (4) and (9) where n is 
substituted by k in the former and )(BP is replaced by )(BPk

in both. Computationally, the difference 
between the two situations is the evolution of )(BPk

with the revelation of affecting events. We note that 
the time evolution of the conditional probabilities )|( 1

k

k xBP  for this temporal situation is different for 
different time orderings of the affecting events niiA 1}{  presented earlier. 

2.2 Time-varying Influences 

In this section, we take the definition of influence functions a step further and propose time-varying 
influences that take on different values at different time points in the time-sliced version of a TIN. In the 
previous definition of influence functions the temporal parameters may determine the number of 
known/unknown affecting events at some time point and the aggregate influence captured by the value of 
an influence function at that time is determined only by the number of affecting events with known states. 
We now present influences that are also functions of time. This time-varying nature of influences is 
reflected by time-varying influence functions )( 1

n

n xh . For each given such function, as in (5), (6), and (7) 
that have the form: 
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For more tractable analysis and implementation, we may impose the time-varying property on the overall 
influence functions )( 1
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n xh  as follows: 
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Then, the consistency condition remains unchanged. That is, )(BP  is found (without the time element 
injected) from: 
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The conditional probabilities and the evolving lower dimensionality influence functions will now be time 
varying and are determined by the following: 
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This time-varying nature of influences is illustrated in Fig. 4. The figure shows the time-sliced version of 
the TIN in Fig. 2 with time-varying influence components h1

1(1) = 0.99 e 0.2t, h1
1(0) =   0.99 e 0.2t on the 

edge connecting affecting event A1 to node B.  
 

 

 
 
 
 
Fig. 4. Temporal Model for the Example TIN in Fig. 2 with Time-varying influence h1

1(1) = 0.99 e 0.2t,  
h1

1(0) =   0.99 e 0.2t on the edge from A1 to effect node B. 
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2.3 Cyclic Influences 

In this section, we propose to relax the condition in the definition of a Timed Influence Nets which 
requires the graphical representation of a TIN to be a directed-acyclic graph, i.e, no loops. In the temporal 
evolution of influences in TINs, as illustrated with the TIN in Fig. 2, and its time-sliced version in Figs. 3 
and 4, one can easily observe that if cycles of non-zero delays (i.e., the sum of delays on edges involved 
in a cycle) are permitted in a TIN, then such cycles will disappear in the time-sliced version of that TIN. 
A cycle in a TIN will unravel its constituent nodes on subsequent time slices without an influence ever 
going back in time to create a cycle in the time-sliced case. The key requirement, however, is to have 
these cycles with non-zero positive delays. The resulting time-sliced TIN will conform to the acyclic 
graph requirement and, therefore, will be amenable for analysis as presented in the following sections. 
The algorithm by Haider and Zaidi [4] that transforms a TIN into its time-sliced representation requires a 
minor modification to accommodate the presence of cycles in the original TIN. In the new 
implementation of this algorithm, the cycles are first identified as strongly-connected components in a 
TIN graph. The sub-graphs representing these strongly-connected components are replaced by single 
nodes, thus removing cycles in the graphical representation. The old algorithm then estimates the 
maximum number of slices required for a complete analysis of influences in the time sliced TIN. The new 
approach adds to this maximum the delays associated with the cycles. Once the maximum number of time 
slices is determined, the TIN is transformed to its time-sliced representation using the approach in [4]. 
Fig. 5 presents a TIN model with a cycle in it. A time-sliced version of this TIN is shown in Fig. 6, 
obtained via the modified algorithm. It can be seen in the TIN of Fig. 6 that the cyclic influence in Fig. 5 
unravels itself on the timeline. 
 
The provision of cyclic influences in a TIN is a useful construct in modeling self-promoting set of 
influences where the status of an affecting event may in turn be influenced by an affected event. 

3. Experimental Setup and Numerical Evaluations 
 
In this section, we lay out the steps involved in an experimental setup. 

 
a. Given an event B, determine all the events niiA 1}{  known to be affecting its occurrence. 

b. Given B, all the known affecting events niiA 1}{ , and the causal strengths     0,1 )(
1

)(
1  i

i

i

i xhxh  

between each iA and B, design an influence constant )( 1
n

n xh , where nx1 signifies the value of the 

status vector of the events niiA 1}{ , and where nn

n xxh 11   ; 1)(1  values. The )( 1
n

n xh constant 
may have one of the forms presented in section IX. 

c. If all in (b) is given, then upon a given probability of the status vector nX1 , say nn xxP 11   ; )(  values, 
the probability of event B is given by consistency equation in (4)  

d. When all the affecting events niiA 1}{  are known, but the status of some of them are unknown, 
then, the probability )(BP , as computed in step (c) is used to compute the conditional probability 

)|( 1
kxBP  as given in (9), where k represents the known affecting events and )( 1

k

k xh  is computed in 

a dynamic programming fashion from the influence constant )( 1
n

n xh in (b). Note that the affecting 

events niiA 1}{  are assumed ordered as of the revealing of their status in time.  Different such 

ordering results in different evolutions of the conditional probabilities )|( 1
kxBP . 

e. When the existence as well as the status of the affecting events are sequentially revealed, then at time 



k, )(BPk and )|( 1
k

k xBP are computed as in (c) and (d) where n is substituted by k in the latter. 
 

 
 
 

Fig. 5. Example TIN with Cyclic Influences 
 
 

 
 

Fig. 6. Temporal Model for the Example TIN in Fig. 5. 
 
Example 1: 
 
The following example illustrates the steps (a) to (e) with the help of the TIN in Figs. 2 and 3. 
 
i. Fig. 7 shows the TIN in Fig. 2 annotated with the constants     01 )(

1
)(

1 ,  i

i

i

i xhxh for each i, 

where 1 0,ix represents one of the two states of an affecting event iA . A global influence function 

)( 4
14 xh is then designed using the multiplicative model 1 in Section 2.1.  Table 1 shows the 

computed values for nxxh 1
4
14   ; )(  . 

ii. The joint probability 4
1

4
1   ; )( xxP  values are computed by assigning ixPxP ii   ; 5.0)0()1(   

and by assuming 41}{  iiA  to be mutually independent. The probability of occurrence of event B, 
i.e., z = 1, is now calculated with the consistency equation, and is given as 0.5)1( zP . Assuming 

the status of all the affecting events to be known, the conditional probabilities 4
1

4
1 );|( xxBP  are 

calculated via (9), and are shown in Table 1. 
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Fig. 7. Example TIN 

 
 

TABLE 1 

1x  2x  3x  4x  )( 4
14 xh   4

1|1 xzP   

0 0 0 0 -0.990000 0.005000 

0 0 0 1 -0.999900 0.000050 

0 0 1 0 -0.900000 0.050000 

0 0 1 1 -0.999000 0.000500 

0 1 0 0 -0.900000 0.050000 

0 1 0 1 -0.999000 0.000500 

0 1 1 0 -0.000001 0.499999 

0 1 1 1 -0.990000 0.005000 

1 0 0 0 0.990000 0.995000 

1 0 0 1 0.000001 0.500001 

1 0 1 0 0.999000 0.999500 

1 0 1 1 0.900000 0.950000 

1 1 0 0 0.999000 0.999500 

1 1 0 1 0.900000 0.950000 

1 1 1 0 0.999900 0.999950 

1 1 1 1 0.990000 0.995000 

 
iii. The assumption in step (ii), regarding the knowledge of the status of all the affecting events, may not 

be valid at times.  Such is the case of a TIN with delays on edges, reflecting variations in the times 
when the status of the affecting events become known (see Definition 1). To illustrate this notion, we 
use the TIN in Fig.2. The time assigned to an affecting event iA is the instance at when it assumes a 

state, i.e., ix = 0 or 1. Prior to that time, the state of the event is assumed unknown. As stated in 
Definition 1, this combination of the external affecting events‘ status and their timing is also termed 
a Course of Action (COA), in the TIN literature. 
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iv. The temporal information in the TIN, Fig. 2, determines the dynamics of the relationship between 
the affecting events and the affected event B; specifically, the times when the status of the affecting 
events are revealed to B. Fig. 3 shows a time-sliced version of this TIN, obtained by mapping the 
status of the affecting events and their effects on the event B, on a timeline. This mapping 
determines the number of affecting events ‗k‘ at different time points (or time slices). For the 
temporal case presented above, the existence of all the affecting events is known to the event B a 
priori; their status, however, remain unknown until revealed, as determined by the COA (i.e., time-
tagged set of external affecting events) and the delays on the edges. The probability )(BP , as 

calculated in step (c), is used to compute the conditional probabilities 4,2,1);|( 1 kxBP k , i.e., 

)|( 1
1xBP , )|( 2

1xBP , and )|( 4
1xBP , as illustrated in the figure. Table 2 shows the values for

)|( 1
1xBP and )|( 2

1xBP , as computed by the corresponding )( 1
11 xh  and )( 2

12 xh . The posterior 
probability of B captures the impact of an affecting event on B and can be plotted as a function of 
time for a corresponding COA. This plot is called a Probability Profile [13, 14].  
 

TABLE 2 

1x  )|1( 1
1xzP   1x  2x  )|1( 2

1xzP   

0 0.076381 0 0 0.013887 

1 0.923619 0 1 0.138875 

 1 0 0.861125 

1 1 0.986113 

 

A. Probability Propagation in a Multi-node Network 

In multi-node connected network structures, given a set of external affecting events 
iiA , given influence 

constants 
k

k

n xh )( 1 , pertinent conditional probabilities are constructed hierarchically, as the structure of 

the network dictates. Consider, for example, the network in Fig. 8. In this network, the affecting events 
4,3,2,1; iAi

are external and unaffected by other events, while events B and C are affected, B being 

affecting as well. Let us denote the status of event 4,3,2,1; iAi
; ix , the status of event B as y and the status 

of event C as z, where y, z and   41 iix are 0-1 binary numbers. Let the influence functions

),,( and ),(),,( 434321 xxyhxxhxxh be given. Let also the joint probability ),,,( 4321 xxxxP be given. We then 
compute all the pertinent probabilities in the above network following the steps stated below: 

 
 
 
 
 
 
 
 
 
 
 

B C 

A1 
 
   x1 

y z 

A3 
        x3 A4 

 
x4 

A2 
        x2 

Fig.  5.  A Multi-node Influence Network 



1. Compute the probability )(yP from the consistency condition: 
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3. Compute  43,, xxyP as:      
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4. Compute  zP  from the consistency condition 
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B. A Hypothetical Illustrative Example 

In this section, we apply some of the presented temporal aspects in this paper to an illustrative TIN.  The 
model used in this section was first presented by Wagenhals et al. in 2001 [18] to address the following 
scenario:  As described in [18], internal political instabilities in Indonesia have deteriorated and ethnic 
tensions between the multiple groups that comprise Indonesia have increased. Religion has been a major 
factor in these conflicts. Members of one of the minority (2%) religious groups have banded together to 
combat disenfranchisement. These members have formed a rebel militia group. Armed conflicts recently 
occurred between those rebels and the Indonesian military. The rebels fled to eastern Java where they 
have secured an enclave of land. This has resulted in a large number of Indonesian citizens being within 
the rebel-secured territory. Many of these people are unsympathetic to the rebels and are considered to be 
at risk. It is feared that they may be used as hostages if ongoing negotiations break down with the 
Indonesian government. The food and water supply and sanitation facilities are very limited within the 
rebel-secured territory.  

Several humanitarian assistance (HA) organizations are on the island, having been involved with food 
distribution and the delivery of public health services to the urban poor for several years. So far, the rebels 
have not prevented HA personnel from entering the territory to take supplies to the citizens. The U.S. and 
Australian embassies in Jakarta are closely monitoring the situation for any indications of increasing rebel 
activity. In addition, Thailand, which has sent several hundred citizens to staff numerous capital 
investment projects on Java, is known to be closely monitoring the situation.  To reflect the situation 
stated above, a TIN was first created in [18] and is shown in Fig. 9. 

The latter TIN models the causal and influencing relationships between (external) affecting events (on the 
left side and along the top of the model in Fig. 9) and the overall effect of concern which is the single 
node with no children on the right-hand side of the model.  In this case, the effect is ―Rebels decide to 
avoid violence‖. The actionable (external) events in this model include a combination of potential 
coalition, UN, and rebel actions.  The coalition actions include actions by the US government, its military 
instrument of national power, actions by the Government of Indonesia, and actions by Thailand. 

For the purpose of illustration, we have selected a part of this network, as shown in Fig. 10. For the sake 
of brevity, the influences used in this illustrative example are all static and acyclic. The presence of time-
varying and cyclic influences only changes the way temporal (i.e., time-sliced) model evolves over time 
and the values of the influences that are used to estimate the conditional probabilities (as illustrated in 



Figs. 4-6). Once a temporal model is determined, the probability propagation is carried out using the steps 
presented in Section 3A. 

  

Fig. 9.  Timed Influence Net Inspired by the East Timor Situation [18]  

The (external) affecting events in the TIN of Fig. 10 are drawn as root nodes (nodes without incoming 
edges). The text in each node, e.g., ―1—Coalition Deploys Forces to Indonesia,‖ represents a node ID and 
a statement describing the binary proposition. In Fig. 11, 40}{  iiA  represents the set of the external 



affecting events, where the index ‗i‘ depicts the node ID.  The marginal probabilities for the external 
affecting events are also shown inside each node. In this illustration, we assume all external affecting 
events to be mutually independent (Section IV.) A desired effect, or an objective which a decision maker 
is interested in, is modeled as a leaf node (node without outgoing edges). The node with ID ‗10‘ in Fig. 10 
represents the objective for the illustration. In both Figs. 6 and 7, the root nodes are drawn as rectangles 
while the non-root nodes are drawn as rounded rectangles. A directed edge with an arrowhead between 
two nodes shows the parent node promoting the chances of a child node being true, while the roundhead 
edge shows the parent node inhibiting the chances of a child node being true. The first two elements in the 
inscription associated with each arc quantify the corresponding strengths of the influence of a parent 
node‘s state (as being either true or false) on its child node. The third element in the inscription depicts 
the time it takes for a parent node to influence a child node. For instance, in Fig. 10, event ―1—Coalition 
Deploys Forces to Indonesia‖ influences the occurrence of event ―7—Coalition Secures APOD and 
SPOD‖ after 3 time units. 

The purpose of building a TIN is to evaluate and compare the performances of alternative courses of 
actions described by the set AT in the definition of TINs. The impact of a selected course of action on the 
desired effect is analyzed with the help of a probability profile.  The following is an illustration of such an 
analysis with the help of two COAs, given below:  

 
COA1: All external affecting events are taken simultaneously at time 1 and are mutually independent. 

COA2: Events {0, 2, 4} are taken at time 1, simultaneously, and events {1, 3} are taken at time 2, 

simultaneously. 

 
Fig. 10. Sample TIN for Analysis 

 

Note that the simultaneous occurrence of external affecting events does not necessarily imply 
simultaneous revealing of their status on an affected node; the time sequence of revealed affecting events 
is determined by both the time stamp on each affecting event and the delays on edges. Because of the 
propagation delay associated with each edge, influences of actions impact the affected event progressively 



in time. As a result, the probability of the affected event changes as time evolves. A probability profile 
draws these probabilities against the corresponding time line.  

The two COAs can also be described as in Table 3. 

TABLE 3 

Event 
COA1 COA2 

Time Status Time Status 

0 -- Rebels Underestimate the Strength of Coalition Power 1 1 (True) 
True) 

1 1 
1 -- Coalition Deploys Forces to Indonesia 1 1 2 1 
2 -- Thai can Conduct Unilateral NEO 1 1 1 1 
3 -- Coalition PSYOP can Counter Rebel Propaganda 1 1 2 1 
4 -- Rebels Overestimate their Strength 1 1 1 1 

For the same TIN model as in Fig. 10 and the corresponding course of actions, we used the approach 
presented in this paper and produced pertinent results for the following two cases: 

Case I: For this illustration, we utilize the multiplicative  influence  model 1 presented in Section 2.1 and 
assumed the knowledge of all external affecting events. The influence constants 111 )}({  ni

n

i xh are 
first pre-computed via the dynamic programming expression in Lemma 2. The resulting probability 
profiles for the two affected events/propositions in the TIN are shown in Fig. 11. 

 
COA1  

COA2 
Fig. 11. Probability Profiles for Case I 

 
4. Conclusions 

Decision problems often require modeling of cause and effect relationships between disparate aspects of a 
domain. A typical analysis problem may require study of effects of certain events and/or actions on 
various aspects of a domain, where the latter are modeled as propositional statements/variables. The 
aspects that are affected by decisions and/or (tactical) actions may include political, military, economic, 



social, infrastructure, and information (PMESII) variables. The advantage of Timed Influence Nets (TIN) 
lies in their ability to represent, in a compact and integrated manner, both causal and time-sensitive 
relationships among variables that represent PMESII aspects of a domain.  The TIN modeling approach is 
especially suitable for situations where it is difficult to either evaluate or estimate the conditional 
probabilities involved in the modeling; such is the case, for example, when potential human reactions and 
believes are being modeled. 

In this paper, we studied Time Influence Networks (TIN), in the presence of either multiplicative or 
additive influence functions, that may be also time-varying and/or cyclic. These influence functions allow 
a domain expert to interleave the strengths of pair- influences in various forms. Once all the affecting 
events/variables are identified for an effect variable, the individual influences may be combined to 
represent the aggregate influence by all the affecting variables.  The time-varying and cyclic functions are 
extensions to an earlier mapping from a TIN model to a Time Sliced Bayesian Network. The proposed 
time-varying influence functions allow modeling of influences whose strengths vary with time. A cyclic 
influence, on the other hand, provides a provision for self-promoting set of influences.  The two 
extensions will allow for further modeling flexibility regarding the use of TINs in the representation of 
uncertain domains. We also studied the temporal effects induced by such functions, as exhibited by the 
time evolution of event-probabilities.  The time evolution of event-probabilities is shown to be captured 
by probability profiles that map an event‘s probability on a timeline. These profiles can be an affective 
analysis tool for an analyst who, given a COA, might be interested in identifying time intervals or 
windows of opportunities, in terms of the likelihood of event/proposition occurrence.  

 

 
 

COA2      COA1 
Fig. 12. Probability Profiles for Case II 
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