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Abstract 
Modern warfare is intensely information centric with vast amounts of data transmitted around the 
battlespace. Within this environment, it is critical to provide predictive and timely intelligence for planning 
and execution of operations. Due to the changing nature of the asymmetric battles, the intelligence analysis 
and collection operations are integral part of one another. However, current technologies and tactics, 
techniques, and procedures (TTPs) decompose these two types of activities, resulting oftentimes in 
disjointed solutions. For example, information collection planning is often done without accounting for the 
results of the intelligence analysis, and collected information does not get immediately incorporated to 
update intelligence estimates. This may result in collecting information that is not critical to situation 
understanding and delays in changing the situation estimates. 

In this paper, we describe a decision support tool for intelligence analysts and collection planners 
integrating automated behavior pattern identification with intelligence collection planning in a close-loop 
solution. This technology promises to provide warfighters with a comprehensive, accurate, and cost-
effective solution for intelligence gathering, analysis, and operations planning. 

Motivation: Integrating Disruption and Collection Plans with 
Intelligence Estimates 
Due to the changing nature of the asymmetric battles, the intelligence analysis and collection are integral 
part of one another. However, current technologies and tactics, techniques, and procedures (TTPs) 
decompose these two types of activities, resulting oftentimes in disjointed solutions. For example, 
information collection planning is often done without accounting for the results of the intelligence analysis, 
and collected information does not get immediately incorporated t update intelligence estimates. This may 
result in collecting information that is not critical to situation understanding and delays in changing the 
situation estimates. 

 

Figure 1: Collection, reasoning, and planning in a close-loop workflow of operational and strategic 
decision making 

The collection, reasoning and planning are three elements in the close-loop workflow of operational and 
strategic decision making (Figure 1). First, the intelligence collections can be conducted with varied sensors 
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and produce data in different formats. This data will have large information gaps: missing events, errors in 
classifying what events and actors are, ambiguous information, and irrelevant data. Second, the intelligence 
analysis processes observed data through reasoning to identify actors and behavior patterns. Finally, current 
estimates of possible patterns can be used to identify information elements that are most critical to current 
situation understanding. This criticality means that collection of such data may improve the current 
understanding of the situation by disambiguating between multiple hypotheses that may currently seem 
equally likely. To develop efficient automated decision support systems that can reason about environment 
and design collection actions, we need to establish tight dependencies between various decision phases. 
This can be done by establishing direct input-output data flow and feedback between decision phases. 

Method: Integrating Collection Planning with Behavior Pattern 
Recognition 
Under a  project called Contextualized Pattern Recognition (CoPR) sponsored by the Air Force Research 
Lab (AFRL), Aptima Inc. is currently developing a decision support system (Figure 2) for intelligence 
analysts and collection planners to find structures and patterns in all-source multi-scale data and identify 
critical information collection requirements. This technology probabilistically maps hypothesized 
adversarial behavior signatures against observed actor activity and interaction networks. The mappings are 
used to identify information for intelligence collection that disambiguates current predictions and improves 
situation understanding. We envision the CoPR system as a multi-user collaborative decision support tool, 
which must enable the following three types of uses (Figure 2): 

 

Figure 2: CoPR system workflow 

Use 1: Hypotheses Generation. The CoPR system will allow analysts and commanders to define the 
hypotheses in the form of potential adversarial activity patterns (which we call behavior signatures) that 
may take place and/or are of interest to the users. This functionality allows different users to define their 
own distinct hypotheses, share them with other users, and refine them and their estimates over time as 
more intelligence becomes available that either confirms or contradicts the hypotheses. The activity 
patterns are represented in the form of the networks consisting of possible hostile operations, their 
profiles, and temporal and relational dependencies among these operations. Thus, the structure of the 
activity patterns is natural for modeling decision and action steps defining how the adversaries might 
achieve their objectives. 

Use 2: Adversarial Analyses. As hypothesized hostile behavior signatures are defined, CoPR will analyze 
available intelligence to estimate which of these hypotheses are likely to be present. That is, CoPR will 
automatically identify, given observed events, which adversarial operations are taking place, where they 
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may occur, what is their status, who is involved in those operations, and forecast which operations will 
happen next. 

Use 3: Intelligence, Surveillance, and Reconnaissance (ISR) Planning and Course of Action (COA) 
Development. As behavior signature recognition algorithms make estimates of potential hostile activities, 
many alternative predictions may seem equally likely due to information gaps in collected intelligence. The 
CoPR system will facilitate the design of the intelligence collection plans to conduct investigative actions to 
obtain new information that can disambiguate between different predictions. The functionality is supported 
by automated feature extraction and criticality assessment algorithm, which designs ISR collection plan and 
orders tasking to maximize information gain from collected intelligence. The users can also use disruption 
planning algorithms to determine which actors, operations, and resources of the adversaries to disrupt 
achieving highest impact on the adversaries. 

Accordingly, the CoPR system will help the users generate the following products: 

Product 1: Identify adversarial behavior signatures. CoPR behavior recognition algorithms will identify 
which of the hypothesized patterns of hostile activities are taking place. 

Product 2: Identify the roles of places and actors. CoPR will produce the mapping of observed actors and 
places to the hostile activities, thus specifying who did/does what in the enemy organization, and where 
operations have been conducted. 

Product 3: Forecast future operations. CoPR will estimate the state of adversarial missions, identifying 
which operations have completed and forecasting which of the operations will be conducted next. In 
addition, CoPR will map these operations to actors and places, specifying who will conduct operations and 
where they could occur. 

Product 4: Develop ISR pans. CoPR intelligence collection planning algorithms will define the tasking and 
structure of the ISR collection, specifying what needs to be collected, where, and what impact the collected 
intelligence may have on the situation understanding. 

The CoPR model is based on the following three elements: 

(1) Representation of the adversarial activities and state of the environment as networks; 

(2) Probabilistic network pattern matching to identify the adversarial activities and the actors involved 
in the activities; and 

(3) Information gain maximization algorithm to design ISR collection activities to improve situation 
understanding. 

In the following, we describe these elements in more detail. 

Environment representation 

In representing the environment and behaviors at different levels of granularity, we define the following 
three concepts: (i) adversarial behavior signatures (to which we often refer as adversarial missions or plans); 
(ii) observed networks; and (iii) environment state. 

Adversarial behavior signature, also termed adversarial mission, is a collection of tasks (individual 
element operations) that adversaries plan to perform to achieve desired objectives. A task is an activity that 
entails the use of relevant resources (provided by the adversaries), and is conducted by individual actors or 
at specific locations. Tasks usually are defined by the set of resource requirements that must be satisfied to 
complete them (e.g., see task requirement modeling in (Levchuk et al., 2002)). Additional information can 
be specified, including task duration, location, deadlines, etc. Mission structure incorporates the temporal 
planning process and dependencies of tasks on each other (e.g., information/material flows between tasks, 
precedence constraints, etc.). The simplest mission model representation is a task precedence graph; a more 
complex representation that can be tied to objectives, events, conditional contingencies, and represented at 
different granularity levels. 
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Figure 3: Example of mission and mission state 

For precedence graph-based modeling (Levchuk et al., 2008), we represent a mission as a directed 
acyclic graph , where the set of graph nodes ),,( MMMM AEVG  },...,,{ 21 NM TTTV   represents the t
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The mission signatures are sometimes referred to as models networks – that is, the known hypotheses 
against which the observed data must be tested. 

Observed networks: We aggregate the environment observations into networks with attributes on nodes 
and links (Figure 4). The nodes in the network can represent groups, organizations, government, states, 
individuals, facilities, equipment, geo-political entities, etc. Node attributes can define size/membership of 
the groups, beliefs of people, economic power of organizations, social identities of individuals and groups, 
knowledge and materials, observed actions of the actor(s), capabilities of individuals/resources/areas, and 
other economic and social features. The links in the network represent who does what to whom in the area 
of interest – social interactions and influences, economic transactions, behavioral interactions, political 
events and activities, traffic, material exchange, etc., with link attributes defining the frequency and types of 
interactions among the nodes. 

The set of observed events is obtained by sensors, which may include human collection teams, tactical 
units, unmanned aerial vehicles, radars, cyber nodes, etc. These events contain three information entries: (i) 
geo-spatial information – indicating the location of activities; (ii) temporal information – indicating the 
time of activities; and (iii) feature information – indicating the type of actions, participating units, resources 
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used, etc. Then, the network data is constructed from observed events, of which we highlight three main 
event classes: 

 Capabilities events, which identify “who can do what” in the environment; for example, this data can 
include “city U has continued religious violence”, “individual X is a truck driver”, “building A has wide 
entrance and can be used as a storage facility”, etc. 

 Interaction events, which define “who is connected to/interacts with whom”, where connections can be 
of several classes, e.g., socio-economic influence, information flow, materials exchange, command and 
synchronization of activities, etc.; for example, interactions can include communication transactions, 
such as “country X has been engaged in military action with country Z”, “members of a militant wing 
engaged in a meeting with weapons suppliers at 11:35 am for 35 min to procure explosives”; financial 
transactions, such as “a report of a money transfer from accounts of political support groups to an 
organization of interest”; or geo-spatial link, such as “a member of potential terrorist cell has been seen 
at the same time in a village where IED attacks occurred” 

 Action events, which specify “who did/does what”; for example, action events can include  intel about 
individual and joint operations of adversaries, such as “organization X has staged a political protest that 
turned violent”, “BLUE team discovered a safe house and apprehended RED operatives attempting to 
manufacture weapons”, “trucks from company Z were used for transporting refugees”, etc. 

 

Figure 4: Example of observed network 

Formally, we represent the observations network as a graph ),,( DDDD AEVG  , – a data network where 

 is the set of nodes,  is the set of links among them, and  is a matrix of observed 

attributes on nodes and links (  is attributes vector for node i  and  is attribute vector for link 

between nodes  and 
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Environment state: To achieve desired objectives, we need to quantitatively represent the state of the 
environment. There can be many different state representations. For example, the state of the enemy’s plan 
can be of interest, or the state of the BLUE’s plan may need to be monitored and controlled. For CoPR, we 
define the state of environment as a true state of actors and their interactions. This state can be obtained by 
removing the noisy events from the observations and filling in information gaps. This can be achieved by 
identifying the pattern and state of adversarial behavior and mapping it against observed state of the 
environment. This would allow assessing the direct outcome of the enemy’s behavior on the environment. 
The state of the environment can be desired or undesired, and we will define the reward (or penalty) of 
achieving each state. Without loss of generality, we define a set of all feasible states the environment can 
take  . Nixi ,...,1, 
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Identifying adversarial actors and activities 

The knowledge of the adversarial mission and its state is needed to understand the progress of adversaries 
towards their objectives, predict future operations, and identify resources and actors that will be used to 
perform the corresponding actions. The problem is that the observed data is very noisy: there are many 
irrelevant “normal” events, much information is not collected due to limited information resources, and the 
enemy is concealing their operations. As the result, the available data cannot be straightforwardly used to 
predict adversarial actions. 

When the intelligence analysts using the CoPR system define hypotheses about adversarial missions, the 
CoPR system will rank-order these hypotheses, report the mostly likely current state of each mission, and 
identify the mapping of the tasks to actors and areas in the environment. The rank-ordering of the missions 
is based on their likelihood scores – probability that the mission has generated the observed data about the 
actors and their interactions. 

The true state of the adversarial activities can only be found if observed data is aligned with model behavior 
signature data. To do this, we need to map behavior activities to actors and places of the environment. That 
is, we need to discover the mapping (Figure 5) of the potential adversarial tasks (nodes of model network) 
to the observed actors (nodes of data network). This is accomplished by finding an assignment matrix 

DM ViVkkisS



,

, where  if model node  is mapped to data node  i.e., the actor i  is identified 

with activity k . We also can restrict a task to be performed by (mapped to) a single node, in which case 

. 

1kis k i

1
i

kis

 

Figure 5: Activity-to-actor mapping 
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As the result, we can find the most likely mission, its mapping, and its state in the following two steps: 

Step 1: Find mission state and activity-actor mapping for each mission 

 ),|,(Pmaxarg)ˆ,ˆ(
,
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Mission estimate indicates the hostile behavior pattern, the mission state estimate indicates “what is/will be 
done”, and task-to-actor mapping indicates “who does/will do what”. Quantitatively, solutions to above 
steps follow from the fact that we can rewrite probability function 
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One approach to solve this problem is to iteratively update the mission state variables  and mapping 

variables . Then, mission state variables can then be found using belief propagation algorithm, and the 

mapping solution found for the quadratic assignment problem (Grande et al., 2008; Levchuk et al., 2008). 

}{ T
i

}{ kis

Planning intelligence collection actions 

In the previous section, we described how mission, state, and mapping estimates can be derived. In the case 
the data has large noise and/or missing information, many behavior patterns, states, and mapping would 
seem equally likely. When this occurs, the model has a low confidence and large ambiguity, and additional 
information is needed to improve predictions. 

To discover the adversarial activity pattern, mission state, task-to-actor mapping, and even true state of an 
environment (e.g., actors, their relationships, their views, intent, and power balance in the society), we can 
apply actions that are analogous to injecting test signals into physical systems. Such probing signals force 
the system to reveal itself. Mathematically, the main objective of probing actions is to maximize the 
information gain for current estimate of the environment’s state. This can be achieved by finding those 
probing actions that reduce the entropy, a measure of uncertainty, of the current estimates the most.  An 
example of a probing action could be providing information that coerces adversaries to communicate more 
and hence to reveal their relationships, commit actions that could be observed, or even change some of their 
plans. The outcome of probing is an improved understanding of the environment and, consequently, a better 
ability to prevent instability and/or control crises. 

Let’s denote the probability of being in state i  at the current time as  (here, the word state is 

used loosely, and can be interpreted as “mission pattern”, “mission state”, “mission mapping”, etc.). To 

)(ipt
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distinguish the states and determine the information collection and probing actions, we define the vector of 

features  for each state . For simplicity of notation, we can assume that each feature  

can be collected using some action (e.g., probing), and that the observation  will be obtained with the 

probability . The actions to collect the feature information can involve 

both types of investigative actions described above. For the purposes of the mathematical formulation, we 
ignore the differences between passive information collection and probing, but we note that the main 
differences in real-world settings would involve the probability of collecting correct intelligence, cost of the
actions, and the actio
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Without loss of generality, we assume that all environment states are among the current potentials 
(alternatively, we could have limited the analysis to a subset of sates that are currently very likely – such as 
with likelihood above certain threshold). We use the entropy as a score of ambiguity of current predictions, 
as it characterizes “how much uncertainty is there in predicting the true state given the data already 
collected?”. When the entropy is high (i.e., there is a high uncertainty that the current predictions can 

achieve a correct result, so  is close to log ), the likelihood estimates of the 

environment state predictions are similar. If these states carry significantly different projections in terms of 
the threat and consequent preventive actions, i.e. the best preventive policies for each state are significantly 
different and none is satisfactory for all states, we cannot rely with confidence on the preventive policy 
derived from the current state prediction.  Since significant uncertainty in predictions is often due to missing 
data, we can instead attempt to identify the features that are critical to prediction, so that the collection of 
these features would achieve the largest reduction in the prediction’s ambiguity. 
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Figure 6: Example of an intelligence collection 
plan structure 
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Finally, we can construct the plan as a 
conditional sequence of collection actions 
by defining a decision tree (Figure 6), where 
each internal node corresponds to the 
collection action (probe), and the links out 
of the nodes correspond to the action 
outcomes (collected information). The leaf 
nodes of the collection tree correspond to 
the environment states or groups of states. 
In the latter case, the leaf node is a belief 
about being in each of the states of the set, 
and we can compute the probability of each 
of those states. 
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The probing plan tree can be constructed using several approaches. One of the computationally simplest 
algorithms selects the probes greedily based on the maximum reduction in the entropy. Another approach 
can consider the outcomes of the probes in the future, so that the policy that maximizes the long-term 
reduction in the entropy is used. We can use a combination of the roll-out and greedy methods to design 
such a probing plan. 

Execution of the probing plan is accomplished by following the decision tree and the outcomes of the 
investigative actions. Each decision to collect the data splits the set of current hypotheses (environment 
states) into several subsets (two subsets if we have binary outcomes of the collection), and results in a 
reduction of the entropy (or increased information gain).  

In CoPR, we define the states as probabilistic behavior signature estimates (the hypothesized mission 
pattern, corresponding mapping, and concomitant probability score obtained during pattern matching), or in 
other words a pair of mission and its mapping . We define state features using the mapping of 

mission tasks to actors  and corresponding attributes of the mission tasks . For each probabilistic 

behavior signature estimate, we define the actor and relationship behavior signature profiles 

. This creates a matrix of features that defines each state (behavior estimate). In this case, 

the feature types are actors and their relationships against which intelligence collection can be conducted, 

and values  are feature values for a state in the prediction. Example of the resulting feature extraction in 

the case of defining task and actor attributes corresponding to the classes of activities is shown in Figure 7. 
The behavior signature profiles are then analyzed to identify the variables (actors, relationships, and their 
attributes) that have not been collected and that distinguish the behavior signatures with maximum total 
information gain. 

),( SM

|||| kis M
mka


nm

mjni
M
nm

s
ij ssa

s
ij

 

Figure 7: Extracting features and mission-based behavior signature profiles 

To find what intelligence collection actions need to be conducted, the algorithm first filters out the actors 
and relationships for which data has been collected, and second filters our the actors and relationships for 

which the profile vectors  are the same. Then, we find a set s
ij   of distinct values of vectors  for all 

behavior signatures.  

s
ij

For each actor and/or relationship  (for actor i  we have index ), we define subsets 
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algorithm then finds the actor/relationship  which maximizes the information gain. Approximately, 

we can compute information gain as 
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The algorithm then terminates if set  is empty. If it is not, then the algorithm takes that subset and 

proceeds in the same manner to find next data collection target (actor or relationship). 

iR

Results: Assessing the Effectiveness and Sensitivity of Automated 
Intelligence Collection Planning 
We have conducted three experiments incorporating several different types of hostile behaviors. In the first 
and second experiments, we generated random RED mission plans and conducted sensitivity analyses with 
different levels of information noise. In the first experiment, we tested the ability of CoPR to correctly map 
the operations to the actors. In the second experiment, we assessed ability of CoPR to identify correct RED 
mission states. In the third experiment, we have used an example dataset (see Appendix for more details) to 
illustrate the workflow of the system, process of generating ISR plans, and the assessment of ISR planning 
effectiveness. The results of these experiments appear below. 

Experiment 1: Analysis of task-to-actor mapping accuracy with random RED 
mission networks 

We conducted the first experiment to identify the mapping of tasks in randomly generated missions 
(model networks) to actors in the environment (data networks).  We assessed the task-actor mapping 
accuracy against several uncertainty levels (Error! Reference source not found.). The signal-to-noise 
(SNR) ratio was a good measure of the quality of the data; however, our results showed that the effect of 
noise on the pattern in the data has a higher impact on the accuracy than the amount of noise alone. 

Table 1: Sample/comparison points for random missions in experiment 1 (SNR shown in dB) 

Data Spec No Noise

rndNodeAttrErr = 3.0;
rndLinkAttrErr = 3.0;
probMiss = 0;
probFalse = 0;

rndNodeAttrErr = 3.0;
.0;

rndNode
rndLinkAt
probMiss
probFals

442499 3

rndLinkAttrErr = 3
probMiss = 10;
probFalse = 10;

AttrErr = 3.0;
trErr = 3.0;
 = 15;
e = 15;

rndNodeAttrErr = 5.0;
rndLinkAttrErr = 5.0;
probMiss = 15;
probFalse = 15;

rndNodeAttrErr = 5.0;
rndLinkAttrErr = 5.0;
probMiss = 20;
probFalse = 20;

rndNodeAttrErr = 8.0;
rndLinkAttrErr = 8.0;
probMiss = 20;
probFalse = 20;

SNR - 31.17834879 8.725 .936605233 3.199784794 0.966333683 0.084709562  

 

Figure 8: Sensitivity of mapping accuracy to data noise 
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The tests on random networks (Figure 8) was conducted by randomly generating the model networks of 20 
nodes with network link density equal to ten percent (10%) (on average two links per node). The true 
mapping was then randomly generated, and a random noise added to obtain observed data network. The 
outcome from CoPR’s network mapping was then compared to the ground truth. The results of 30 runs for 
each data sample in Error! Reference source not found. are shown in Figure 8. We can see that CoPR 
solution is perfect in finding permutations (case of no noise) and at low noise (31 dB SNR). CoPR’s 
network mapping algorithm accuracy is good at medium noise (>73% accuracy in 9 dB SNR) and at 
significant noise (>64% accuracy in 3 dB SNR, which had 15% miss, 15% deceptions, 25% errors). 
However, CoPR needs improvements in convergence for larger noise levels to achieve higher prediction 
accuracy. 

Experiment 2: Analysis of mission state identification accuracy with random RED 
mission networks 

We conducted a second experiment to predict the states of randomly generated missions.  We assessed 
the mission state predictive accuracy against several uncertainty levels (Error! Reference source not 
found.). Three measures of the accuracy were used in this experiment: mission ID accuracy was equal to 
the ratio of correctly identified RED mission patterns to the total number of test points; state ID 
accuracy was equal to the % of task states identified correctly (= 0 if the wrong mission pattern was 
selected), and state ID accuracy for correct missions was calculated as average of correct task state 
identifications over only correctly identified mission patterns. The SNR was used to measure quality of 
the data.  

First, we randomly generated 30 distinct feasible tasks. Next, we randomly generated seven mission 
models as hypotheses, selecting one as a true mission plan. Each mission was comprised of 15 tasks 
randomly selected from original 30-task set and had 20% precedence constraint density. The prior 
probability of task state = 1, given that all predecessor tasks have state = 1, was 80%. Using this 
parameter, we generated the state of the selected true mission, and finally generated a mission state 
observation. As shown in Error! Reference source not found., we varied the probability of missing the 
task execution and probability of falsely identifying task state as = 1 to generate observed mission state 
with different noise levels. The number of randomly generated tasks and number of tasks selected for 
mission models were chosen to produce a significant similarity between the true behavior and alternative 
hypotheses, so that on average every hypothesized mission had half of the task overlapping with the true 
hostile mission. This by intention introduced the challenge for the predictive algorithm, because the 
models it had to select from to match the observed data were similar to one another. 

Table 2: Sample/comparison points for random missions in experiment 2 (SNR shown in dB) 

Data Spec
probMiss = 0.1
probFalse = 0.1

probMiss = 0.2
probFalse = 0.2

probMiss = 0.3
probFalse = 0.3

probMiss = 0.4
probFalse = 0.4

probMiss = 0.5
probFalse = 0.5

SNR 4.988658376 2.384504666 0.479444814 -1.248397521 -2.225833734  
Figure 9 shows the average accuracy (over 100 Monte-Carlo simulations) of identifying the mission and 
its tasks’ states (= 1 or 0) for the observations with noise levels of Error! Reference source not found.. 
In our tests, the accuracy of mission identification and mission state identification algorithms was high 
(over 80% and 75% respectively) at significant noise level (2.38 dB, see Figure 9), but started to 
decrease sharply afterwards. However, for the situations in which the mission was identified correctly, 
the accuracy of recognizing its state (the state of all the tasks in the mission) was relatively high (over 
65%) for a very high noise level (-1.25 dB SNR); the average accuracy for all cases has dropped at that 
point to just below 45%. The measure of accuracy is equal to the percentage of the tasks with correctly 
identified state (= 1 or 0) among all tasks that were identified, which represents the true measure of 
correctly predicting the hostile operations that have occurred and .the ones that are planned but have not 
occurred yet.  

11 
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oth precision and recall measures dropped abruptly to 0 at the 
last test point (SNR=-2.23 dB). This indicates that almost no correct detection about hostile operations 
could be done with such noise in the data. 

The measures of precision (% of correctly predicted tasks with state = 1 among all tasks predicted to 
have state = 1) and recall (% of tasks correctly predicted tasks with state = 1 among all tasks with true 
state = 1) have followed the same pattern as the accuracy metric. Precision measure in our context 
assessed the percentage of correct predictions of hostile operations among all alarms about adversarial 
behavior, while the recall measure assessed the percentage of correctly identified hostile operations 
among all such operations that occurred. B
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Figure 9: Predicting random adversarial missions --- sensitivity of mission identification algorithm’s 

ta quality 

 to geo-spatial areas/actors (analyzing where activities took place rather than who did 

ecution in the CoPR prototype, where we show the target engagements and geo-spatial 

wing 

stance. The observed actor/area profile vectors will be of the 

accuracy to da

Experiment 3: Analyses with CoPR dataset 

In this section, we describe the example of analyses and supported decision making by CoPR prototype 
using an example dataset (see Appendix for details). In the following, the analysis was done to find the 
mappings of activities
them). Mapping activities to RED team members in addition to the physical areas will be our consideration 
for follow-on work.  

We start by showing an example of how a simulation component of the prototype generated RED 
actions. 

Example of the simulation process and output: The RED behaviors in the CoPR prototype were 
generated using C2 simulator that selects tasks from the RED mission to execute, finds what areas will be 
used for these tasks, identifies RED resources and actors, creates corresponding commands, and simulates 
how the task execution will happen geographically and over time. Figure 10 illustrates an example of the 
simulated mission ex
movements of RED team members. Figure 11 shows how the activities are done over time, in what areas 
and by what actors. 

Example of behavior predictions: activity pattern and action-area mapping: To illustrate how 
the behavior pattern analysis is done, we first explain how the actor/area profiles are defined. The follo
analysis is for RED mission “Cyber Attack on Critical Financial Infrastructure” (see Appendix, Figure 16). 
In Table 3, we show the example of the actor profiles for only attributes relevant to analyzed mission 
(behavior pattern). The true profile vectors are shown in Table 3 broken into subvectors specifying counts 
of actor capabilities and events. Yellow color highlights the areas that are not involved in the hostile 
activities for analyzed example of behavior in
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same form, but the values of attributes would be based on whether corresponding features and events were 
observable and on the errors in observations. 

 

 

Figure 10: Example of the simulated dynamics 

 

Figure 11: Example of the simulated action-actor/area assignment and schedule 

Table 3: Example of true actor/area attributes 
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Accumulative Behavior Attributes 4 2 2 3 1 1 1 1 3 2 1 1 3 5 2

Actors/Areas VAL GOV AINF PINF CSVC CINFR KNW ATK AINF PINF BACT CSVC CINFR HACK PER
Airport 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Park 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Residential 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Commercial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Government 3 1 1 1 1 1 1 0 0 0 0 0 0 0 1
Mansion 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
School

Capability of Area/Actor Current events of Area/Actor

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Bank 0 1 1 1 0
AdminAccount-1 0 0 0 0 0
PersonalAccount-1 0 0 0 0 0
PersonalAccount-2 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
PersonalAccount-3 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0
PersonalAccount-4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
FinancialService-a 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
SensorNet-

1 0 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0

A 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
Military Administration-1 5 0 0 1 0 1 0 1 1 0 0 0 0 1 1
Military Administration-2 5 0 0 1 0 1 0 0 0 1 1 0 1 1 0
Military Administration-3 5 0 0 1 0 1 0 0 1 0 0 0 0 1 0
Telecommunications 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Processing/Treatment 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0  

Next, we illustrate how the parameters for pattern matching algorithm can be computed. Let’s assume that 
100% accurate data is available (that is, actor/area profile observations are equal exactly to the values in 

iti g 

 task re 
a 

Table 3). We now calculate the mismatch between the profiles of actors and behavior tasks/activ es usin
observed actor profiles and known model task profiles (task profiles for RED mission “Cyber Attack on 
Critical Financial Infrastructure” are shown in Table 4; here, requirements for target in  profile a
equivalent to actor/area capabilities profile, and requirements for resources are equivalent to actor/are
event profile). 

Table 4: Example of the activities/task profiles 

Tasks/Activities VAL GOV AINF PINF CSVC CINFR KNW ATK AINF PINF BACT CSVC CINFR HACK PER
Attacking with explosives 3 0 0 0 0 0 0 1 0 0 0 0 0 0
Diversionary explosives attacks/Stage 1 1 0 0 0 0 1 0 0 0 0 0 0 0
Mine/Crack User and Admin Passwords 
for Accounts 0 0 1 0 0 0 0 0 0 0 0 0 0 1
Insert Trojans to Capture Additional 
Passwords and Changes 0 0 0 1 0 0 0 0 1 0 0 0 0 1
Create false threat of bomb attack 0 1 0 0 0 0 0 0 1 0 0 0 1 0
Sell all stocks, bonds, and securities 0 0 1 1 1 0 0 0 0 1 0 1 1 1
Siphon Funds 0 0 0 1 0 0 0 0 0 1 1 0 1 1
Gain control over network 0 0 0 0 0

Requirements for Target Requirements for Resources

0
1

0

0
0
0
0

0 1 0 0 0 0 1 11 0
Accumulative Behavior Attributes 4 2 2 3 1 1 1 1 3 2 1 1 3 5 2  

Error! Reference source not found. shows the example of the mismatch function coefficients . We 

have used the weighted sigmoid function for these computations. Similarly, parameters 

 kic

 can be ijkmc ;

computed based on profiles of task relationships and actor/area links. We do not present them in this 
document due to large size of corresponding matrices. 

Table 5: Example of the mismatch parameters used by predictive algorithm 

14 
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Attacking with explosives 27.31 70 70 70 20 70 28.81 28.81 70 70 70 70 70 70 70 0 20 20 28.81 20
Diversionary explosives attacks/Stage 90 140 140 140 0 140 90 90 140 90 90 90 90 140 90 70 90 90 90 90
Mine/Crack User and Admin Passwords for 
Accounts 70 70 70 70 20 70 70 0 70 20 0 20 20 20 20 50 50 50 70 20
Insert Trojans to Capture Additional 
Passwords and Changes 90 90 90 90 40 40 40 20 90 90 70 70 90 90 90 0 20 0 40 90
Create false threat of bomb attack 90 90 90 90 40 90 90 70 90 40 40 0 40 90 40 70 70 70 90 90
Sell all stocks, bonds, and securities 230 230 230 230 80 180 180 0 230 180 160 160 180 130 180 160 120 160 180 180
Siphon Funds 130 130 130 130 80 80 80 20 130 130 110 110 130 130 130 60 0 60 80 130
Gain control over network 60 110 110 110 40 110 110 90 110 110 90 90 110 110 60 0 40 20 110 110  

In Error! Reference source not found., we highlighted in yellow the actors/areas not used for hostile 
actions. We can clearly see that the mismatch function parameters for these actors are large. Then, we 
indicate in RED the mismatch values = 0. If the links between tasks and areas were not accounted for, there 
will be ambiguity in mapping the activities/tasks to actors/areas. For example, activity “Mine/Crack User 
and Admin Passwords for Accounts” could be mapped similarly to actors “Bank” or “PersonalAccount-2” 
because the mismatch parameters in both cases are = 0. This ambiguity is due to the fact that we have 
ambiguous (although correct!) observations about the types of events taking place at these areas. The true 
mapping is to associate activity “Mine/Crack User and Admin Passwords for Accounts” with 
“PersonalAccount-2”, as indicated in Error! Reference source not found. with white cell. The algorithm 
is able to make mapping correction because it also considers the link mismatches between tasks and areas. 

When the observed event and concomitant actor/area profile information is noisy, a single mapping of tasks 
to actors may not be efficient. Therefore, we use the algorithm to generate multiple mappings, and rank-
order them with the value of corresponding mismatch function (equivalent to log-likelihood). An example 
of three alternative mappings generated by the algorithm is shown in 12(a). We can see that the first 
mapping had 100% accuracy of associating adversarial activities with the actors/areas, while other two 
mappings had 75% accuracy (yellow marking indicates incorrect mappings). 12(b) shows how the mapping 
is presented in CoPR prototype to the user in the form of the overlay labels on the geo-spatial terrain. 
Generating multiple mappings can reduce the probability of missing the activity, although increasing 
potential for false alarms. The false alarms are later removed by conducting additional ISR collection. 

15 
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Figure 12: Example of the mapping obtained by the algorithm 

e of RED 

s, 

Example of the analysis for different levels of data uncertainty: In the previous subsection, we showed 
an example of analysis when all data has been observed accurately although there was an ambiguity of the 
correct association between RED mission tasks and actors/areas. The algorithm was able to find the 
mapping with 100% accuracy for that situation. In this section, we show how the % of missing data affects 
the analysis and how the behavior identification can proceed over time. 

In Figure 13, we show an example of how the accuracy of activity mapping changes with tim
mission progress. The test points indicating changes in the accuracy corresponded to the times when new 
observations of activities were received. This happened as the RED executed next tasks in its mission. Thu
the X-axis can also be considered as the % of data available for analysis (this can also be considered as data 
completeness). The Y-axis plots the % of correctly mapped activities. In this diagram, there are three 
functions: blue line plots the accuracy when a single “best” mapping was taken as a solution; red line plots 
the accuracy when 3 best mappings were taken and then the mapping of activity was considered accurate if 
it was present in any of the three mappings; and green line plots the completeness of data available for 
analysis.  

16 
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Figure 13: Example of changes in prediction over time as adversaries progress with their operations 

From Figure 13, we notice the following three important observations: 

(a) Algorithm is able to correctly map >62% of activities (current and future) when only 37% of RED 
operations have been completed. This indicates the ability of the algorithm to reason well with very 
scarce data; 

(b) Algorithm accuracy reduced when more data was presented. We analyzed this behavior and found 
that this was due to the ambiguity that new events introduced into the data. This ambiguity was 
caused by similarity of actor/area profiles given the set of events. In this situation, additional data 
collection is needed to disambiguate among many possibilities; 

(c) While the 3-mapping option gives 100% accuracy of activity mapping when all data is available, a 
“single-best” mapping achieves only 75% accuracy. This was due to the fact that RED team did not 
act rationally in the simulation, and selected several intermediate options for its activities that were 
not geo-spatially efficient to the total RED mission execution. In this case, the “score of mismatch” 
computed by the algorithm, which accounts for the observation signal as well as “utility” (goodness 
of fit between the area/action and a task and links between tasks and actors), would score the 
incorrect mapping higher than the true one as performed by RED in the simulation. 

Example of intelligence collection planning process: The intelligence collection planning algorithm 
identifies most critical information that can achieve highest impact on disambiguating current predictions. 
We use the inform he set of current 
predictions, from which we derive the feature profiles of actors/areas. Figure 14 shows an example of the 

ree mappings from Figure 12(a). The vectors for “task profile” are 0-1’s corresponding 
rea/actor is mapped to. We immediately see that actors “Bank”, “Government”, and 

 
mappings 

e 
his 

ation gain metric to score different ISR options. The process starts with t

area profiles using th
to the tasks that the a
“Military Administration-2” have exactly the same task profiles and therefore are the same for all
mappings. Collecting data for these actors will not change the relative scores among these three 
and therefore cannot disambiguate them. Hence, three potential areas of interest remain: “Military 
Administration-1”, “Personal Account-2”, and “Personal Account-3”.  

We now need to perform a more detailed analysis than task profiles would allow. For this purpose, we us
the feature/event profile which we calculate as the sum of all resource requirements of tasks mapped to t
area/actor. While task profiles for “Military Administration-1” are different for all three mappings, the 

17 
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ill 
nd therefore will not result in distinguishing any of the mappings. Next, 

ation 

 
will 

feature/event profiles are similar for all three mappings. Hence, collecting intelligence at this actor/area w
not change the mismatch functions a
we look at event/feature profile for “Personal Account-2” and notice that while it can disambiguate 
mapping 1 from the other two, it has the same (zero) feature profile vector for mappings 2 and 3, and 
therefore this actor/area cannot differentiate all three mappings at the same time. Collecting intelligence at 
this actor/area will result in some reduction of the entropy, but may not produce the maximum inform
gain possible. Finally, we look at event/feature profile for “Personal Account-3” and see that it is clearly 
different for all three mappings: profile for mapping 1 has all 0’s, and profiles for mappings 2 and 3 are 
distinct by the “HACK” feature. Therefore, collecting data at “Personal Account-3” will completely 
disambiguate all current mapping predictions, and therefore we designate this actor/area for the ISR 
collection action. Specifically, the collection will include instruction to collect values (events) for either 
“AINF” or “CINFR” feature as well as “HACK” feature; no other features are necessary, and accordingly
the actions and ISR asset allocations can be specified. As the result, the ISR collection planning process 
define where the collection must be conducted, what must be collected, and what will happen if sought 
information is obtained. 

 

Figure 14: Example of the feature profile derived from predictions 

Conclusions 
In this paper, we de
behavior signatures 

scribe process, algorithms, and example analyses for recognizing adversarial 
and devising guided intelligence collection plans. We have tested behavior 

reco
imp nalyses products further by targeting the information collection 

mod
reli

prediction algorithms with random data sets and have shown high accuracy of behavior/mission pattern 
gnition and activity mapping for large levels of data uncertainty. The ISR collection planning can 
rove the robustness of the behavior a

most critical to current predictions. We have illustrated the process of behavior analysis and ISR 
planning on the example dataset developed in CoPR project. During our research, we identified several 

eling challenges and additional functionality that must be implemented to improve the accuracy and 
ability of the CoPR technology.  
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r 
ana  
incr

gs 
ior recognition; 

ore, event attributes should not be used for calculating the task-actor mismatch. However, 
when the task has completed, the preference should be given to events over standard actor/area 
capability profiles, as on activities. In this case, the 

a and improve the algorithm’s accuracy in 

 

o implement these improvements and technologies into the 
future CoPR system. 
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We presented the Experiment 3 above to showcase the challenges of adversarial behavior recognition. Afte
lyzing these results, we concluded that the following improvements need to be made to the algorithms to
ease the accuracy of behavior recognition and activity mapping: 

(1) Generate multiple mapping predictions for further analysis: On one hand, having larger 
number of alternative mappings can reduce probability of miss; on the other hand, these mappin
can be used to find information to be collected to improve the accuracy of behav

(2) Change which attributes are used for mismatch calculation: When the task has not been 
completed, the algorithm should not expect to have observation events of corresponding activities. 
Theref

ly events can indicate what actors did what 
capability attributes should only be used to “help” the algorithm find correct mapping when there 
are many missing events. 

(3) Track activity pattern over time: The analysis and experiments presented in this paper were 
based on a “batch-mode algorithm” that did not consider temporal information in finding the 
mapping. Instead, integrating the mapping with mission state recognition would allow changing 
what attributes are considered during the mapping and account for sequencing of tasks at 
areas/actors. This will reduce the ambiguity in the dat
computing the approximation to the likelihood function. 

(4) Use observation/event data at links between actors/areas: In our analysis, we used event data for
actors but accounted only for capability profiles for links. Including events from actor relationships 
will improve the algorithm accuracy. 

(5) Use different mismatch and utility functions: We noticed the impact of different utility/mismatch 
functions on the accuracy of the behavior recognition and activity mapping. In our future research, 
we will develop alternative mismatch functions that could be tailored or trained to the domain of 
analysis and types of RED behaviors. 

(6) Tradeoff node and link attributes: We noticed the impact on decision accuracy when node and 
link attributes are weighted differently in computation of the global pattern mismatch function. We 
will incorporate these weights as parameters for the behavior recognition model than can either be 
modified by the users or trained given training data sets of adversarial behavior. 

In our current research, we are working t

ion warfare and organizational decision-making. 
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Appendix: Example Dataset 
In CoPR project, we developed a use-case and corresponding example dataset that utilized synthetic data 
intentionally designed to emulate real-world data. Synthetic data was needed to provide the ground truth 
about the reasons or prerequisite actions of the adversaries, which is required to measure the accuracy of 
predictive algorit
able to test the ability of predictive algorithms to recognize different types of hostile operations. 
following, we describe in detail the elements of the use case. 

The environment: We have described the environment terrain as structural information about buildings 
and geo-political areas. Our data consisted of a list of buildings/areas together with their location, size, and 
function. We defined eight functions: plant, transportation, government, military, infrastructure, social, 
residential, and network. In particular, the facilities with “network” function could be used to conduct cyber 
attacks. Accordingly, the geo-political area of analysis contained several types of facilities and areas, 
including houses of worship, military administration facilities, water treatment facilities, schools, oil service 
facilities, shopping centers, data storage and service networks, government office buildings, police station
parks and entertainment centers, manufacturing and laboratories, storage and warehouse facilities, 
automotive repair centers, financial institutions, serv

Figure 15 shows buildings/areas layout in the use case, and provides an example of their functions. In 
addition to size and function of buildings, we used other attributes to define the profile of buildings/areas
including data about the neighboring population, cultural trends, demographics of the region, availability of
technologies at the facility, etc. 

 

Figure 15: Dataset area layout and functions 

The actors: Buildings and areas in the use case were passive actors, to which we sometimes refer to as 
anizations, 

ld 

targets. The active actors in the dataset have been defined to represent the members of RED org
 the elements of BLUE forces and their assets, and other actors such as non-government organizations 

(NGOs), normal people in the environment, etc. The adversaries were represented by a set of team-actors, 
including bomb makers, reconnaissance cells, support personnel, financiers, transportation, security teams, 
hackers, and weapons attack teams. The types of teams have been selected based on analysis of real-wor
terrorist networks and their operations. 
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rm 
s (tasks of their plan) based on the resources required for execution of this operation and 

m 
 

e resource-based task modeling, see Levchuk et 
al., 2002; 2003. 

The attack events in CoPR dataset were generated using organizational performance simulation 
functionality of CoPR prototype, which was designed as agent-based distributed controller of simulated 
actors. This model implemented four main organizational and actor behaviors: (i) selecting tasks in the 
mission to execute, targets for corresponding operations, and assigning actors to those tasks; (ii) moving in 
the environment by routes and zones; (iii) engaging other simulated actors in the environment – e.g., hostile 
actors can attack other actors; and (iv) sensing information in the environment – e.g., actors can detect other 
actors, classify them, observe actions, etc. In our simulations, we have used a single mission and 
organization for RED at a time. The BLUE actors operated in two phases: in first phase, BLUE actors were 
kept stationary in the environment to provide sensed data feeds (detected entities and action events) for 
predicting RED’s hostile behaviors; in second phase, BLUE actors would move to execute the ISR plan 
devised by CoPR intelligence collection algorithm. 

We have developed several adversarial behavior signatures, i.e. mission patterns, and ran the simulation 
comparing the predictive algorithm capability against each of them. An example of five such patterns is 
shown in Figure 16. Mission plan specification captured the spatial information (information about task 
locations via specification of target requirements), temporal information (sequencing of tasks according to 
precedence constraints in the mission), and type information (overlap in the types of activities that need to 
be performed). The use case contained different modus operandi (missions) for adversaries that, while 
distinct in the objective for the adversaries, had overlapping operations.  

RED actors can take different roles and form different adversarial organizations depending on the 
membership of actors in different cells and their subordination to intermediate RED commanders. For our 
example dataset, we defined a single RED organization and did not require identifying its structure. We will 
incorporate the organizational network identification in our future work. 

Quantitative definition of actors, operations, and execution utility: To identify who are hostile actors 
and what actions they execute, we quantitatively defined models of action and actor profiles. The action 
profile definition also enabled specification of observable action signals – i.e., the events that can be 
observed about the actor executing the action. For example, if the action is to store the weapons, its might 
require storage facility and possession of weapon materials. Only adversarial actors possessing such 
materials can conduct this action, and it can only be done at a facility with existing storage capacity. The 
match between profile of the actor and profile of the task then defines the utility of action to the enemy. On 
the other hand, this action may result in the events of loading materials from trucks to the facility. Adding 
this information to utility match helped determine the true occurrence of the action in the area and the actors 
involved.  

To determine how actors can be associated with actions, we defined three classes of attributes: 

 attributes describing capabilities of actors: this data is current before the start of enemy’s operations; 
data about facility capabilities can be collected from analyzing imagery by automated or manual means 
(e.g., using radar scans and intelligence data about availability of resources at facilities); data about 
capabilities of human actors can be collected based on intelligence reports about them, where 
demographic information about their areas of operation can fill the data gaps; data about groups and 
geo-political entities can be collected using open-source intelligence (websites, news reports, blogs, 
etc.). 

The situation, RED missions, activities, and organization: In the area of interest, several adversarial 
attacks occurred over time. To succeed in task execution, RED team had to assign a set of actors to perfo
the operation
resources capabilities of RED actors. The application of actor’s resources to the task can be viewed as an 
individual action by this actor. For example, task “dump contaminant” requires possession of chemical 
poison materials and the unloading activity; this task can then be performed with the help of a support tea
and any of the actors who possess “chemicals” capability (this capability must be acquired during mission
with the help of a financial group). For more details on th
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ic and 
 human collection teams, UAV data feeds, etc. 

n that could have been 

 attributes describing current events and actions performed by actors: this information is dynam
can be obtained from

 attributes describing previous actions of the actors: this is historic informatio
obtained from the past events in the area of interest. 

 
Figure 16: RED missions in CoPR example dataset 

The CoPR example dataset definition started with quantitative specification of behavior signatures, 
including the following: 

1. List of attribute types (for capabilities, current events, and historic data); 
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rganization roles and their attributes; 

2. Facilities and their attributes; and 

3. Events (capability, interaction, and action) and their attributes. 

In our example dataset, we focused only on capabilities and current event attributes and defined the 
following attributes for these classes: 

 Value (VAL): indicates the significance in attacking a target for RED 

 Transportation (TRS): indicates the resources/availability/event of transporting the materials/bomb 

 Storage (STR): indicated ability and conduct of storing materials for extended time periods 

 Reconnaissance (REC): indicates a capability to conduct recon missions by RED and the needs for task 
definition 

 Attack (ATK): the capability acquired when bomb is manufactured 

 Money (MON): availability of and outcome of financial transaction  

 Security (SEC): defined the security of conducting hostile actions for RED operatives, as well as the 
capability of conduct security operations 

 Materials (MAT): defined the availability of materials that could be used to manufacture the explosives 

 Technology (TEC): indicated availability of technology to manufacture dirty bomb or need 
for/availability of kno

 Poison (POIS): chemical or biolo g 

 
. 

acilities) for our dataset, we specified their profile using 

ctor is 

2. List of RED model tasks/activities and their attributes; 

3. List of RED model o

4. List of patterns of RED model (hypotheses) missions; and 

5. List of patterns of RED model (hypotheses) organizations. 

Then, we defined observed data, including the following: 

1. Observed actors (including RED) and their attributes; 

wledge of how the explosives is manufactured. 

gical material for dirty-bomb attack or water poisonin

 AdminInfo/Access (AINF): indicates the ability to access network resources under administrative 
privileges 

 Personal & Financial Info (PINF): indicates information about person’s profile and access to their 
financial and other accounts 

 Bank Accounts (BACT): access to financial institutions and banking services 

 Control of Sensors (CSENS): indicates ability to manipulate remote sensors 

 Control of Services (CSVC): ability to control network services, and remote services, such as traffic
lights, gates, bridges, water and electricity distribution, media networks, communication channels, etc

 Control of Infrastructure (CINFR): ability to physically control infrastructure  

 Hacker (HACK): expertise in password breaking and network intrusion/cyber attacks 

 Personnel (PER): need for personnel support, e.g., for loading explosives onto the cars, etc. 

 Public Health (HELTH): indicates the access to public safety resources, such as food, water, 
medication, etc. 

When defining actors (humans, groups, f
capabilities and current events. When defining tasks (RED operations), we split attributes notionally into 
two vectors:  

 resource requirement – what actors should possess to successfully conduct the operation; this ve
matched with the actor profile; and 

 target requirements – what facilities should possess to support the operation; this vector is matched 
with the facility profile. 
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Figure 17 shows some examples of attributes that we have defined for actors and tasks in CoPR dataset. 
intentionally created tasks that had overlapping attributes, so that missing action observations could resu
the confusion of associating these observations with more than one task. Based on the functions of buildin
and areas, we have defined their capability vectors. The capabilities of actors have been defined based on 
their knowledge, skills, possessed resources, and roles in the enemy organization. 

 

Figure 17: Example of attributes for actors and tasks 

Observable data was extracted from capability, action, and interaction events, which had time, location, and 
individuals involved in the event. To explain how we defined action events, we note that often multiple 
RED actors participate in the same operation due to the need to satisfy the resource requirements of tasks, 
while we assumed that a single facility/area is used to conduct an operation. When actors perform their 
portion of the operation, this is equivalent to them “applying” their capabilities to the task or target of the 
operation. For example, the task “assemble bomb” (Figure 16) requires three types of capabilities: materials, 
technology, and security protection. These capabilities can be brought together by explosives specialists 
(who possess technology capability) and support team (who possess materials and security). Thus, an 
observable ac data of 
action events volved in 

e event; and iii) capabilities of actor used in the action. 

Thus, for the example of “assemble bomb” operation, BLUE may detect action events describing the 
operatives of RED conducting security around the building, and actors who brought bomb making materials 
to the building, while the information about actors with technological bomb assembly knowledge might be 
missing. Therefore, the observed data might be incomplete, ambiguous, and noisy. Overall, CoPR can deal 
with four types of data collection noise: 

(1) Event miss: Events about the activities are captured by sensors (SIGINT, HUMINT, IMINT, …), 
and not all such events might be detectable. For example: Facility was used to hold a meeting 
between terrorists, but there was no UAV/patrol at the time in the area. As an outcome, all 
attributes from the missed event are excluded from analysis. 

(2) Attributes miss: Sensors (humans, algorithms, …) might miss an attribute present in the incoming 
data/event. For example: LIDAR data was incorrectly analyzed by the image classification 
algorithm. As an outcome, correct attribute was missed and excluded from the analysis. 

(3) Irrelevant Attributes/events: Sensors (humans, algorithms, …) might falsely perceive that an 
attribute was present in the incoming data/event or might falsely add an event due to deceptive 
information that has never occurred or irrelevant information wrongly associated with event. For 

tion event is the detection of activity associated with using these capabilities. The 
included the following fields: i) time and geo-spatial location of event; ii) actor in

th
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example: Analyst, based on studied imagery, reported a presence of hide-out at the construction 
site. As an outcome, incorrect attribute is added as input and is used for analysis. 

(4) Attributes errors: Sensors (humans, algorithms, …) might incorrectly assess the value of an 
attribute in the incoming data/event. For example: Analyst, based on studied imagery, reported that 
the building had large footprint, while building had medium-to-small footprint. As an outcome, 
incorrect attribute value is used as input for analysis. 

The example in Figure 18 shows how the observed information about actors and facilities might get 
generated. We have developed the uncertainty layer component that takes the true data from the simulation 
and makes it noisy for the sensitivity analysis of algorithm accuracy versus different noise levels. 

Hence, we extract the profiles of actors and facilities from event attribute vectors. Similar data can be 
collected about linkages between actors and facilities. For example, linkages between actors are related 
to actor interactions, and linkages between facilities are profiles from the activities on the roads between 
them. The profiles of actors and facilities are then organized in the form of a data network – an attributed 
graph where the nodes are actors/facilities and links are actor and facility interactions. The nodes and 
links are labeled with profiles in the form of observed attribute vectors.  

 

Figure 18: Example of observed data generation for task “Assemble Bomb” 
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