

14th ICCRTS
“C2 and Agility”

Title: Symbiotic Planning: Cognitive-Level Collaboration Between Users and Automated

Planners

Topic 3: Information Sharing and Collaboration Processes and Behaviors

Ron Scott, PhD
BBN Technologies
8778 Danton Way

Eden Prairie, MN 55347
952-974-3756

rscott@bbn.com

Emilie M. Roth, PhD
Roth Cognitive Engineering

89 Rawson Road, Brookline, MA 02445
617-277-4824

emroth@mindspring.com

Jeffrey L. Wampler
Air Force Research Laboratory

Human Effectiveness Directorate
711HPW/RHCS

2255 H Street
Wright Patterson, AFB 45433-7604

(937) 255-7773
jeff.wampler@wpafb.af.mil

Elizabeth Kean
Air Force Research Laboratory

Information Directorate
AFRL/RISA

525 Brooks Rd
Rome, NY 13441-4505

(315)330-2601
Elizabeth.Kean@rl.af.mil

POC: Ron Scott

88 ABW PA Cleared 3/4/2009; 88 ABW-2009-0851

mailto:rscott@bbn.com
mailto:emroth@mindspring.com

Abstract

As the Department of Defense (DoD) moves into a more agile C2 environment, added
requirements will be laid on operators and systems – integration with outside systems and
organizations, operation in an environment where rules change daily, and severely limited
resources. We foresee an increased reliance on automated support tools – optimizers, schedulers,
evaluators – to meet these requirements. These automated tools need to be closely coupled with
an operator interface, allowing the operator to:

 Task and constrain the automated tool,
 View and understand what the automated tool has done, and
 Override, correct, and retask the automated tool.

This paper describes a mission planning/execution work aid coupled with an automated

scheduler. The prototype has been designed using a cognitive approach which concisely presents
critical information to allow the operator to rapidly understand and assess the planner’s
recommendations. The operator can finely control the scheduling tool, setting constraints and
bounds on what the scheduler may affect. The operator can evaluate multiple options suggested
by the scheduler, and can retask the scheduler to modify its work. This symbiotic prototype
allows the operator and automated tool to collaborate at a cognitive level to arrive at a better
solution than either alone could find.

 Introduction

This paper describes applied research being sponsored by the Air Force Research
Laboratory (AFRL) on Air Mobility Command C2 under two separate advanced technology
demonstration programs, Work-Centered Interface Distributed Environment (WIDE) and Global
Response Synchronization (GRS). The paper will first briefly discuss our cognitive based
approach to developing work aids called Work Centered Support Solutions (WCSS), which has
previously been described in (Wampler, et al., 2005). In the current research project, we have
extended the WCD methodology, applying it to designing a prototype system including
interaction between a human user and an automated scheduling support tool. We describe in
some detail both the problem we’ve chosen to attack and the design of the prototype system
we’ve implemented. We conclude with a discussion of the characteristics of C2 problems
amenable to solution by variations on this design concept.

Work Centered Support Solutions

Work-centered support solutions (WCSS) have been a focus of AFRL research and
development projects for nearly a decade. WCSS facilitate C2 decision making performance by
exploiting advanced visualization and automation to keep users on topic, focused, and well-
informed. More specifically, WCSS enhance visibility of mission-critical decision factors,
depict relationships between mission plan elements and constraints, and highlight problematical
conditions.

 A WCSS is a client that “plugs” into net-centric data services, links to the right
information, and “knows” how to effectively present it (Young et al., 2000). A WCSS affords its

 1

user(s) an optimal 'window' onto their work subject matter, in the sense that it is tailored to
provide effective information support for the task(s) at hand plus the functions necessary to
accomplish the users' work activities. WCSS visualizations depict the problem space from a
user's perspective, including constraints and possibilities, so as to aid user memory and “suggest”
solutions (Eggleston & Whitaker, 2002). We fit automation into the natural flow of work activity
by using intelligent agents to find, fuse and embed relevant information in these visualizations.
In a good WCSS design, the user can address essential elements of work on the same terms as he
/ she cognitively engages them. By facilitating attention to the work and not the system or tool
itself, a WCSS affords the user improved situation awareness on his/her overall workstream, the
facts of particular 'cases' within that workstream, and the state of the task(s) at hand in processing
each 'case'. In other words, WCSS supply the right data for the task at hand, minimize overhead
associated with finding and fusing this data, and effectively convert this data into actionable
information.

WCD's goal is to generate effective WCSS designs by crafting data visualization,
navigation, and manipulation to reflect and accommodate actual work practices. This is the
optimum approach for effectively supporting the key components of information-intensive C2
tasks - decision-making, collaboration, work management and work product generation
(Eggleston, & Whitaker, 2002). Our WCD methodology builds on work in cognitive
engineering (e.g., Rasmussen, 1986; Woods and Roth, 1988) and cognitive work analysis (e.g.,
Vicente, 1999) to overcome prior limitations in applying cognitive research to practical settings
(Eggleston, 2002, 2003). We conduct WCD as a team incorporating 3 expert roles - cognitive
engineer, WCSS designer, and software engineer. All 3 roles actively participate throughout the
WCD process.

An important product of the work-centered design process is a set of system software
requirements. While, of course, there are numerous other requirements analysis processes, the
requirements produced as output of work-centered design tend to be quite different. Our work-
centered design process in some ways considers the human operator and software together as a
combined system. The requirements we produce concentrate on the ability of the human
operator to use the software to effectively perform the high-level tasks required by his day-to-day
duties, as opposed to more traditional software system requirements which generally treat the
software systems as black boxes – maybe dependent on user input, but not in any way in
collaboration with the user.

 Problem Domain Background

Air Mobility Command (AMC) conducts centralized command and control of airlift and
air refueling assets in an air operations center (AOC) called the Tanker Airlift Control Center
(TACC). The TACC schedules and tracks strategic tanker and airlift resources worldwide. Air
Force and Department of Defense support taskings are channeled through this state-of-the-art
mobility C2 hub. It is a global AOC with several hundred people planning and executing
hundreds of air missions per day.

Mission planning is an activity undertaken by AMC in response to United States
Transportation Command (USTC) requests to move military equipment and personnel by air.
Mission planning is a complicated activity that must take into account issues such as matching
loads to currently available aircraft, landings in and over-flights of foreign nations, competing
airlift demands, airfield constraints, air refueling requirements, and aircrew constraints.

 2

 There is a basically linear process path leading from mission planning through detailed
planning of mission factors (e.g., routes, permissions) to mission execution. The focus of this
work is an operational domain that is both complex and dynamic. Changes may occur at any
time, and the range of actionable events or conditions is essentially unconstrained. Relevant
decision making factors are numerous, situation-specific, and interrelated in complicated ways.
Though planning may have begun months in advance, it is not until a few hours prior to launch
that a plan can be finally evaluated for adequacy and feasibility. Once the mission is in progress,
C2 becomes an extremely time-sensitive and time-critical function.

 These operations are conducted by a staff of specialists. Mission Planners conduct initial
mission planning in response to incoming USTC requirements. As time goes on, other
specialized roles contribute detailed specifications to this plan. For example, Barrelmasters
assign aircraft, Aerial Port staff work out cargo logistics, diplomatic clearance (DIP) specialists
obtain overflight permissions, and Flight Planners lay out details of routing and scheduling. As
launch time approaches Flight Managers finalize flight plans and assemble aircrew
documentation, including weather forecasts generated by meteorological specialists.

Twenty-four hours prior to planned mission launch responsibility for the mission is
transferred to the Execution Cell that handles any last minute changes and deals with problems
during mission execution. The Execution Cell is manned by Duty Officers (DO) and enlisted
controllers that are responsible for identifying, tracking and resolving problems. Typically the
enlisted controllers receive calls from pilots or the wings alerting them to problems (e.g., aircraft
maintenance problems; delays in loading cargo; unanticipated changes in cargo; airfield
closures). Difficult cases are escalated to a DO who is responsible for identifying potential
repercussions for the current mission as well as follow-on missions and modifying mission plans
to resolve any problems identified.

Legacy computer systems support management and execution of TACC airlift and air
refueling missions. They are intended to provide accurate, near-real-time data required for
making decisions on effective use of AMC resources. This data is presented to TACC users via
Microsoft Windows compliant user interfaces. However, simple presentation of all available
data does not ensure effective support for TACC users' work activities. Critical information is
not always available at the right time or in the right format to support decision making and other
cognitive work activities.

In this paper we will describe a particular set of tasks to be performed by duty officers in
the TACC which are not particularly well-supported by the existing C2 system. We describe our
initial design for a WCSS to better support these tasks. We then broach the main topic of this
paper – how extending this WCSS to have the support of an automated scheduling tool led us to
a particular augmented WCSS design which includes the interaction of our human operator with
the automated tool. Finally, we describe the unique features of our problem that drove us to this
symbiotic design as an attempt to generalize the interaction and visualization techniques into
design principles which can be applied to other domains.

Initial Problem Description

Duty Officers (DOs) working on the TACC floor are tasked with monitoring and
correcting issues that arise with air missions currently (or soon to be) in execution. The primary
tool to support their work is the Global Decision Support System (GDSS) – AMC’s main C2
system. GDSS, in various versions, has been operational for well over a decade. It consists of a
large distributed database, containing information about air missions, airfields, aircrews, and

 3

various other domain objects. User interfaces are largely tabular, although there are some
graphical elements.

Air missions are complicated objects. Each air mission has multiple planning factors that
interact with each other and constrain each other. These factors include type of aircraft, type of
cargo, countries to be flown over, and airfields where intermediate stops will occur. Any change
in one factor can have repercussions for other factors. For example an unexpected change in
cargo (e.g., the presence of unplanned hazardous material) can influence the viability of the
planned route because some countries do not allow flights with such cargo. Similarly, a delay in
the flight (e.g., due to an aircraft maintenance requirement) can have further repercussions for a
mission. For example, it may cause a flight to reach an airfield after it has closed or result in a
violation of air crew duty day limitations.

The initial mission plan generated by the mission planner takes these multiple factors into
account. However, unanticipated changes can arise between the time the mission is initially
planned and when it is executed. The DO has to be able to understand the goals and constraints
in the mission plan initially developed by the mission planner and assess the implications of
these last minute changes for the viability of the flight. GDSS does not effectively support the
DO in assessing the impact of changes on the viability of a flight plan and revising the plan
appropriately. Although all the relevant data is available, it is presented in a tabular form that
makes it difficult to get a ‘holistic’ understanding of the elements of the mission plan and the
objectives and constraints that underlie it.

Let us illustrate this situation with regard to the concrete example of a mission delay. It
is quite common for a DO to receive a telephone call from a pilot in the field, informing him that
his mission is going to incur a delay. It may be that there is an aircraft maintenance problem to
be addressed. It may be that cargo or passengers had been delayed, so takeoff is going to have to
be delayed as well. It is the DO’s responsibility to essentially replan this mission on the fly – to
reschedule the current leg and all further legs of this mission in such a way that the schedule will
be legal with respect to all the various planning factors and constraints. Crew duty day
limitations, airfield operating hours and quiet hours, airfield parking capacities (referred to as
MOG – maximum on-ground), any relevant permissions and clearances, required delivery dates
of any cargo – all these must be taken into account and their constraints satisfied, if possible.
And if not possible, certain of these elements can be renegotiated, and again it is the
responsibility of the DO to make this happen.

GDSS offers the DO the opportunity to view any of these data elements. A mission
summary screen will show the scheduled times of departure and arrival at each airfield. Each
airfield can be brought up, in a separate window, to view the airfield operating hours. A
diplomatic clearance summary window can be brought up to show each of the diplomatic
clearances allowing overflight of countries, each with its own valid time window. The DO will
need to perform mental arithmetic to adjust for any potential delay to decide which clearances
might be violated. A separate tool, in a separate window, can give a summary of how many
planes are on the ground at any time at any particular airfield. An analysis of when and where
airfield MOG capacities might be exceeded can be done using this tool, but again, it will have to
be done multiple times, with multiple windows on the screen for multiple airfields. All of this is
to be handled, of course, in an environment of constant interruption by phones, by co-workers,
by superior officers all drawing attention to other, higher priority, problems.

While we have not seen the requirements specification for GDSS, our experience with
such documents leads us to believe the requirements are of the form: The system shall be able to

 4

display planned departure and arrival time for each leg of each mission. The system shall be
able to display operating hours for each airfield. The system shall be able to display the valid
time window for each diplomatic clearance for each leg.

Our contention is that these requirements miss the mark. Each of these is a valid, and
necessary, requirement. But a system that meets all these requirements is not necessarily a
system that supports its user in replanning missions on the fly. These requirements need to be
augmented with the higher-level cognitive requirements that we produced in our work-centered
design process:

 The user must be able to use the system to simultaneously view all the basic planning factors and constraints for

all the legs of a mission on a common referential context (e.g. time), and be alerted to any constraint violations
within that context.

 The user must be able to use the system to quickly do a what-if – i.e., reschedule a mission and immediately see
the effects on planning factors and constraints within the referential context.

As we have performed knowledge acquisition activities within the TACC, conducting

many hours of interviews and observations covering a wide range of user subjects, one additional
critical factor has been made clear to us. There are effectively two kinds of information flows
within the TACC. There is the formal path, in which information is captured, represented, and
displayed in GDSS, the existing C2 system. A DO will look at the representation of a particular
mission in GDSS and be able to find all the basic mission information.

There is also an informal path – mechanisms by which extra information may be made
available to the DO. There may be information about the cargo carried on this mission, and its
relative priority. There may be special requirements attached to a mission, or maintenance
information about the airplane assigned to the mission. Any of this information might come
from telephone conversations, from shared notes, from several home-grown software tools. This
extra information may override information from GDSS. This extra information may even
repeat information from GDSS (in this case it might be considered that the extra information is
really the meta-information that this fact here is a critical bit of information about this mission,
and its role is really that of a cue to draw the user’s attention). Frequently, the extra information
may be stored in GDSS in unstructured textual form, in “mission remarks”. In this case, the DO
might easily not notice an important bit of information lost in a sea of standard remarks.

We have seen numerous artifacts in use in the TACC for users to save, keep track of, and
share this extra information. We’ve seen users use sticky notes attached to the edges of their
terminals. We’ve seen users use a formally organized text document shared among cooperating
users. We’ve even seen a graphic mission display with allowance for graphical and textual
annotations to manage this information. But a central truth about how work is done and
decisions are made in the TACC is that this “extra” information is often the deciding factor when
it comes to evaluating replanning options. Any decision support tool that hopes to help improve
replanning decisions must explicitly provide support for entering, viewing, and drawing the
user’s attention to these critical decision factors.

Initial Design

Based on the requirements listed above, an initial prototype of the WIDE timeline GUI
was designed and implemented. A series of empirical evaluations of the prototype were
conducted to compare targeted users' replanning performance on multi-mission synchronization

 5

problems using the new tool vs. using a comparison tool representative of their current computer
systems. The results revealed statistically significant improvements in solution times (three times
faster), quality of solution (a third as many errors), situation awareness and workload (Roth, et,
al. 2006) (Roth et.al in press).

 The WIDE timeline GUI was designed to serve as an alternative viewing mechanism for
air missions described in the GDSS database. The intent of the design is to let multiple air
missions be viewed simultaneously, with each air mission showing indication of any planning
constraint violations. There are mechanisms for drilling down into details of mission data to
better understand constraint violations. A key functionality of the design is an edit mode
allowing a dynamic ‘what-if’ capability. Users can click and drag on any number of sorties to
“visually” reschedule them within constraints while the effects of these changes on constraint
violations are dynamically updated on the screen. The user basically drags the sortie(s) until the
display is violation-free. This approach drastically reduces the user’s cognitive burden (mental
math) associated with calculating multiple constraint violations and mentally “fusing” violations
from multiple displays as schedule repairs are made.

The timeline graphical user interface (GUI) consists of three linked displays–the multi-
aircraft timeline view, a multi-airfield timeline view, and a compact timeline view. These
displays are linked in the sense that they are different views of the same data. Any modifications
to the data in one display will be reflected in the other displays.

Figure 1

The multi-aircraft timeline view (see Figure 1) is organized around aircraft. Each main
horizontal slice of the display represents a single aircraft showing all the missions that aircraft is
scheduled to fly. Each mission is enclosed in a colored envelope, color-coded by a user-
specified characterization of the mission’s type. Within the envelope, each sortie is represented
as a dark gray bar, reflecting the planned takeoff and landing times for that sortie. Ground legs–

 6

periods during which the tail is on the ground at an airfield are represented as dotted lines, with
the ICAO symbol for the airport labeled. Also available in the default mode of the multi-aircraft
timeline view are the purpose codes for each takeoff and landing, giving an indication not only
of the purpose of the mission, but of any necessary ground activity.

By clicking on the “Options” button at the right-hand side of each single aircraft timeline
users can access a menu that will let him expand the data available for that timeline. Additional
data clusters include aircrew data, airspace data, cargo requirements data, airfield parking MOG,
and airfield operating and quiet hours. In Figure 2 we’ve expanded data clusters for airspace,
aircrew, and cargo requirements, and have zoomed in in timescale to see more detail for a
particular mission. We can see which aircrew is tasked with flying this mission, when they must
report for duty and when they are expected to complete their duty day. We can see the expected
pick-up and delivery times for cargo, and the fact that the current plan affords a buffer of about
eight hours before the cargo must be delivered. We can also see windows of times in which the
mission is projected to be overflying which countries, and in some cases the windows of
diplomatic clearances covering those overflights. Finally, we can see that the current plan takes
this mission over the country of Mali about eight hours earlier than the diplomatic clearance calls
for.

Figure 2

The multi-airfield view gives a different view of the same air missions (see Figure 3).
This display is organized around the airfields. Each airfield there has a summary line showing
the parking MOG status for that airfield. MOG data comes to us from another TACC system,
known as the Station Coordinator tool. If the airfield is one that is managed by the Station
Coordinator, we have information about both narrow-body and wide-body MOG capacities (as
well as what tail types are considered to be narrow-body and wide-body for this particular
airfield). In that case, the MOG status of the airfield will be summarized by two lines–one
showing the narrow-body MOG status and one showing the wide-body MOG status. At any
particular time, the line will be colored gray (at least one parking spot available), yellow (zero
parking spots available), or red-brown (meaning the airfield is over MOG capacity for the body
category). For airfields not managed through the Station Coordinator tool, we have no such
information for either body category or capacity. For these airfields we have a single line,

 7

displaying various shades of gray (together with a number) that depicts directly how many tails
are on the ground at that airfield at that time.

By clicking on the appropriate MOG bar of a Station Coordinator-managed airfield, users
can drill down to see the missions being flown for each tail that is on the ground during the
period depicted in this view. The ground time for this tail at this airfield is highlighted. In this
way, users get an immediate view of which tails are on the ground. Just as in the multi-aircraft
view, users can click and drag sorties and missions, with the effects on the MOG situation, as
well as any other constraint violations, being immediately visible. Using this facility, users can
try to reschedule to avoid MOG conflicts while staying aware of any other problems this
rescheduling introduces into the overall plan.

Figure 3

The compact timeline view (see Figure 4) is a schematic view of the same missions
displayed in the multi-aircraft view. As in the multi-aircraft view, the display is organized
around tails. Each horizontal segment depicts one tail and the missions it is scheduled to fly.
Displaying only missions, and not individual sorties, frees up the space to include useful data.
The sequence of airfield ICAOs the tail will be transiting is displayed within each mission
envelope. There is also a space allocated for description of this mission’s cargo.

This compact timeline view, since it has less detail (and hence more available pixel space), is
also our primary view in which extra annotation information may be entered and viewed. With a
right mouse-click, a user may choose to add an annotation, either to an individual mission, or to
an individual aircraft. The annotation is entered by the user in a rich text format (allowing the
user to use color and/or font to emphasize certain information). There is also a facility to add
annotation templates, new annotations that are likely to be useful for multiple missions or tails.

 8

Once an annotation template has been added, the user can add an annotation of this type to a
particular mission using a drop-down menu choice.

Figure 4

The compact timeline view, while the only view in which annotations can be entered, is not
the only place annotations can be viewed. While there is not enough space to include full
annotations in the multi-aircraft and multi-airfield views, the presence of an annotation will be
noted by an icon near the annotated object. With a mouse-click, the user can bring up the full
annotation from such an icon. The critical factor from the cognitive point of view, though, is that
even in these other views, the user is still cued to the fact that there is an item of interest about
this mission (and can take further action to get details about what that item of interest is).

To summarize, and illustrate the use of this GUI design, we will refer back to the previous
example of a DO receiving a telephone call from a pilot in the field informing him of a mission
delay. The DO, using the multi-aircraft view, would click and drag the appropriate sorties of the
mission under consideration to reflect the new proposed schedule. Any constraint violations (the
aircrew flight duty period being too long, or sortie trying to land at an airfield outside of its
operating hours, for example) would immediately be marked in red on the multi-aircraft timeline
view. The DO could continue to move sorties around until a conflict-free solution is found. If
there are MOG constraint violations, the same procedure may be followed, but typically the
situation is a little more difficult – MOG constraint violations involve multiple aircraft, so the
appropriate solution might need to affect missions on any or all of those aircraft. In this case, the
DO might switch to the multi-airfield view, looking in detail at the missions involving aircraft on
the ground at any airfields where the MOG constraint has been exceeded. In the multi-airfield
view, the DO can again click and drag to move any or all of the missions he sees to try to
deconflict the situation.

 9

Augmented Problem Statement

As we evaluated the effectiveness of operators using our initial prototype design it
became clear that, while operator effectiveness was greatly improved using this prototype, there
were still opportunities for further advances. As operators were attempting to solve replanning
problems like the one described in the previous paragraph, involving MOG constraints, situations
often arose in which operators were reduced to manually hunting a large search space for
rescheduling solutions. Our initial prototype at least made this manual search feasible – the
what-if mode allowed the operator to graphically move missions on the timeline and
immediately see the consequences. But an automated planner that could automatically find
solutions to such constraint problems would certainly provide for both quicker and better
replanning solutions.

On Time Systems (OTS) had previously demonstrated the Distributed Worldwide
Aeronautic Route Planner (DWARP) as an extension to its existing optimized aircraft-routing
technology. We began a collaboration with OTS to marry their DWARP system with our initial
prototype, using DWARP’s optimization technology as an automated rescheduling tool to solve
our replanning problems.

Optimization technologies had previously been applied to applications within the TACC,
with mixed success. During knowledge acquisition trips we had heard many stories from TACC
users of research programs applying optimization techniques within the TACC, producing tools
that users were unwilling or unable to use. In the summer of 2006, just before the GRS program
got started, members of the BBN knowledge acquisition team were present at a briefing where an
experience AMC user listed his difficulties with the “plan-set generator” in AMC’s main mission
planning system Computer-Aided Mission Planning System (CAMPS).

1. There is no way for users to compare the new plan set (output of the optimization tool)
with the old plan set.

2. There is no way for users to constrain the operation of the optimizer–to say, for example,
leave this particular set of mission plans untouched.

3. There is no way for users to evaluate the operation of the optimization tool–is the new
plan set better in some way than the old one? The user just has to have faith that the tool
is operating as designed, and is improving the plan set.

This feedback from a CAMPS user, together with our understanding of the cognitive
environment of the TACC floor led us to lay out a number of design goals for this project
combining DWARP and WIDE technology. These goals were seen as the key constraints in our
design that would let us produce a capability that would not only be effective for our users, but
would be able to be trusted by our users.

Design Goals

1. Our primary goal is to provide an automated planner to assist users in solving
complicated multiple-mission rescheduling problems. The tool will deal with critical
planning factors including MOG constraints, crew-duty-day issues, airfield operating
hours, diplomatic clearances, and minimum ground times.

2. Users must be able to understand the solution(s) provided by the automated support tool.
It must be readily apparent what missions have been rescheduled in what ways, what

 10

constraint violations have been corrected as a result of the rescheduling, and what
constraint violations still remain.

3. Users must be able to compare schedules provided by the optimizer with the original
mission schedules. This helps users understand, and ultimately trust, the solutions that
the tool generates.

4. Users must be able to override particular decisions made by the automated support tool,
for example designating some individual constraint violations as unimportant (not to be
taken into account by the tool) or some individual constraints as waiverable. The user is
the authority, and is always likely to have information relevant to the solution that the
system does not. This extra information might take the form of understanding the
relative priority of cargo or passengers on the planes; it might be an order dependency
between two missions; it might just be duty-officer-level information on airfields for
which a MOG waiver or quiet hours waiver might be obtainable. [Note: while this was
one of our initial design goals, we have not fully addressed this in our prototype solution.
It does, however, remain as a primary design goal in any continuation of this work.]

5. Users must be able to receive, visualize, understand, and compare multiple possible
solutions returned by the automated support tool. Any single solution may turn out to be
unworkable or otherwise undesirable, for reasons that a duty officer might know (but the
automated planner would not). Giving users the ability to see and compare multiple
possible solutions increases the chances of finding a truly desirable solution.

Augmented Design

In our augmented timeline GUI design, we have made a number of modifications to
enable the user to collaboratively solve a problem with the DWARP automated support tool. To
outline the added functionalities, we’ll pick up our canonical use case where we left it off. A DO
is working on a mission replanning problem, initially cued by a telephone call from the field
informing him of a new mission delay. The DO uses our initial design, in the steps we’ve
already described, to try to find a good solution. But (in the kind of situation that prompted us to
begin on this augmented design) there are MOG constraint violations – possibly at multiple
airfields, and certainly involving multiple missions. Even with the WIDE timeline GUI click-
and-drag capability, it is not easy to find a violation-free solution. This is exactly the case that
our augmented GRS timeline was designed for.

There are two major steps to using the DWARP automated planner to help solve this
problem. The first is to describe (and appropriately constrain) the problem to DWARP. The
second is to evaluate the possibly multiple solutions that DWARP proposes.

Our first design task was to find a way for the user to appropriately constrain the problem
being sent to DWARP. The problem needs to be constrained in two distinct ways. The first is to
limit the set of air missions that are to be “in play” – those missions that can be altered at all by
DWARP. The first observation to be made is that in order to produce a correct solution,
DWARP needs to see all the missions currently in operation – i.e., it would not suffice to just tell
DWARP to operate on the missions currently on the user’s screen. DWARP is designed to
reschedule missions to fix constraint violations. Since MOG constraints, are essentially resource
constraints (the resource being parking space at an airfield), to not tell DWARP about some of
the resource’s consumers (i.e., some of the missions) would increase the likelihood that
DWARP would find incorrect and unworkable solutions.

 11

But even though DWARP will need to see all the current missions, it still needs to have
limits on which missions it can consider for rescheduling. The organizational structure of the
TACC demands this. A single DO is responsible for a subset of current missions. A DO would
like to find a solution that requires changes to only missions that he is responsible for. If no such
solution exists, he may widen the scope of missions and try again, but would not want to
unnecessarily reschedule missions out of his control. It is also true that rescheduling missions is
not free – each rescheduled mission requires re-coordination among various parties, both inside
and outside the TACC. As a rule, the DO would like to find a solution that minimizes the
number of missions to be rescheduled.

There is a second way in which a rescheduling problem can be constrained. For each
mission that is considered to be in-play (moveable by DWARP), there may still be individual
time constraints that need to be honored by DWARP. An air mission is a sequence of sorties (a
sortie being a flight from a takeoff to a landing). Each takeoff and each landing might have
some real time constraint. In our canonical example with a pilot calling in from the field, he may
be telling the DO that the takeoff from his airfield cannot be any earlier that 1400 today. The
DO needs to be able to enter such time constraints on individual mission events, view them on
the timeline GUI, and send them to DWARP with a problem definition.

Figure 5

Constraining the Problem - Resolver Mode

 12

The WIDE timeline’s Edit Mode lets users alter the mission schedules for each aircraft.
For the augmented GRS timeline, we have added a new Resolver Mode, which is the user’s entry
to interaction with DWARP. With Resolver Mode enabled, the multi-aircraft timeline view shifts
from an interface where users can reschedule sorties and missions to one where they can add or
remove additional constraints to DWARP. DWARP is already constrained by each aircraft’s
schedule. Resolver Mode provides locks and bounds so that users can add their knowledge about
the scenario not represented by the data to further constrain DWARP (Error! Reference source
not found.).

When Resolver Mode is enabled, each aircraft’s timeline is repainted with an unlocked
padlock icon next to the mission number. The unlocked icon indicates that the mission as a
whole has no additional constraints. Right-clicking on the unlocked icon displays a menu with
three options: disallow cancellation, lock an entire mission, unlock mission. Disallowing
cancellation of a mission tells the Resolver that it can make changes to the mission but must not
cancel it. This locking capability corresponds to the first type of constraint mentioned above.

Each sortie departure and arrival can be locked or given upper or lower bounds. If a sortie
departure or arrival is locked, the Resolver must not change the departure or arrival time at all. If
there is a lower bound on a sortie departure (green arrow pointing to the right), the Resolver can
only consider schedules where that sortie departs at or after the time where the green arrow is
displayed. If there is an upper bound on a sortie departure (green arrow pointing to the left), then
the Resolver can only consider schedules where that sortie departs at or before the time where the
green arrow is displayed.

Locks or bounds for a sortie event are added by right-clicking near the event (departure or
arrival). A menu will appear with the options to lock the event, clear locks/bounds, add an upper
bound, and add a lower bound (Figure 6). Locks or bounds can be changed or removed by right
clicking on the green-circle around the event to which they are attached.

Figure 6

Users can assert more control and tightly manage the Resolver by adding locks and
bounds in Resolver Mode. To quickly add or remove locks to all missions based on Mission
Category or JCS Priority (a mission priority scheme in use in the TACC), users can use the lock
buttons on the Resolver toolbar, which is less time consuming to adding locks to individual
sorties and missions. The Mission Category button will let users lock or unlock all missions of a
certain type. If all missions of a certain category are locked, then the “Lock by category” menu
will show lock icons next to that category. The JCS Priority button lets users lock or unlock all
missions above, at, or below a given priority. Again, if all missions of a certain priority are
locked, then the “Lock by JCS” menu will show lock icons next to that priority. In Figure 7, a
lock icon appears next to 1B3 because all missions with priority 1B3 are currently locked. If
there are no missions in the dataset that match a certain Mission Category or JCS Priority that

 13

appears in these lists, then a lock icon will never appear next to that option. For this reason, none
of 2A1, 2A2, 2B1, 2B2, and 3A1 priorities have lock icons.

Finally, the problem can be sent to DWARP by clicking on the green arrow button in the
Resolver toolbar. WIDE will then send the schedule and locks to DWARP and wait for its
response before displaying the Resolver Results. If the user wishes to cancel this process, he may
click on the cancel button (the red X in the toolbar).

Figure 7

Evaluating Proposed Solutions

The second step to using the DWARP automated planner to solve a problem is to
evaluate the proposed solutions returned from DWARP. As stated above, it is often true that the
key bits of information that let a DO decide between possible solutions are not contained in the
GDSS C2 system (or are in GDSS only embedded in long textual remarks). In either case, these
important tidbits of information are not amenable to automated processing, and are not evaluated
by DWARP. This has two important implications for the design of our system.

Firstly, we need to have DWARP return multiple potential solutions to us, instead of
performing a traditional optimization relative to a scoring function and returning only the best
schedule to us. The reason is simple. Any particular solution, no matter how high scoring,
might have a feature that makes it unworkable. The DO might have the extra information about
priority of one particular mission that makes a solution that delays that mission unpalatable. For
example, a DO will not likely accept a solution that delays a mission carrying a 3-star general.
He will reject that solution in favor of one that may be suboptimal in other ways (and consider
himself lucky that he noticed the pitfall before he made it happen).

Secondly, our design must be geared to let the user quickly browse the potential
solutions, understand the effects of each, compare the solutions to each other. To the extent
possible, we need to make it easy for the user to see which missions are rescheduled by which
options, and which of those missions have factors that make those changes unworkable. To that
end, we have designed a tabular format for presenting DWARP’s proposed solutions to the DO.

 14

After the user queries DWARP for solutions, the WIDE interface will respond with a table
summarizing all of the resulting options (see Figure 8). This display contains two major parts:
the tabular summary of solution options (this consists of the white tabular component, and its
two gray headers); and summary information about the mission set and solution options with
buttons that invoke more-detailed visualizations of these options.

The tabular component of the Resolver Results display is broken into three parts: the white
summary grid with icons representing schedule changes and the two gray headers. The gray
header that appears above the white summary grid displays summary information about each
individual option (including the number of small changes - reschedules by less than 24 hours,
large changes – changes by more than 24 hours, cancellations, RONs – changes in where an
aircrew remains overnight, and number of constraint violations unable to be resolved by
DWARP in this solution). The gray header to the left of the white summary grid contains
summary information about each aircraft and mission that is affected by a delay or cancellation
in one of the resolver options.

Figure 8

The Mission ID column stands out from other columns as it can have a background color
and an annotation icon. The background color represents the Mission Category of the mission.
The Mission Category is consistent with other views of the WIDE software. If an annotation icon
(a yellow paper icon) exists next to the mission ID, then at least one user-entered annotation
exists for that mission. Right-clicking on the icon will invoke a menu that allows users to access
each annotation.

The Next Departure column represents the time offset (relative to the current time) of the
next departing sortie for a particular mission. A mission with the value “8+30” means that its
next departure is eight and one half hours from the current time. This information is useful as it
may be a crucial factor in deciding whether a delay to that mission is feasible.

The Cargo column contains a number representing the cargo priority. Priorities are from 1-
10, with 1 being the highest. The cargo priority numbering and coloring scheme is consistent

 15

with WIDE’s compact timeline view. Mousing-over the cargo requirement column will invoke a
description of the cargo.

Finally, the Attributes column contains a list of abbreviated attributes that further qualify a
particular aircraft or mission. Some of the available attributes for display in this column are:

DV = Distinguished visitor onboard
CW = Close-watch
MC = MICAP – carrying parts/personnel to fix a broken airplane
AE = Performing an air evacuation mission, and so unlikely to be rescheduled

The white summary grid contains cells that indicate how a particular resolver option affected
a mission. If the cell is blank, then no change to a particular mission was made. If the cell
contains a clock icon with a plus sign, there is at least one sortie of the mission represented by
that row that was changed by 24 hours or more. If the cell contains a clock icon without a plus
sign, there is at least one sortie that was changed by less than 24 hours. Mousing-over the clock
icons will give details about which sorties were changed and by how much. If a cell contains a
red X icon, then the mission represented by that row was canceled.

Figure 9

The Resolver Results display supports various forms of interaction. Users can hide and
unhide options and drill down into different views of the options. The button panel on the top-
left of the Resolver Results window provides controls for launching additional views and
accepting an option

Each option’s column has a left or right-pointing arrow next to its title, which will hide or
unhide the option when clicked. A hidden column cannot be selected nor accepted as the new
schedule.

The intent is that a DO will be able to scan the list of options, compare to missions that have
features which make them unsuitable for delays, and fairly quickly limit his scope down to a few
possible solutions. At this point, a more direct method of comparing a few options can be
employed. When one or more options are selected in the table, clicking on the Comparison View
button launches a new Comparison View window, bringing up a view that allows the user to

 16

quickly get a sense of the difference between multiple options (and the original mission
schedules).

The Comparison View is designed to visualize the differences between multiple options at a

high level (see Figure 10). It contains elements that are common to WIDE views: sorties
represented by a black bar, colored envelopes to visually group sorties by their mission and
mission category, and violations. Each row of black bars represents a different option’s schedule.
The base state is always shown in this display for reference.

Figure 10

WIDE’s usual timeline representation of a sortie is used in this display. Each mission is
surrounded by a mission envelope. The mission envelope, like the Multi-Tail view and the
compact timeline view, is colored based on its Mission Category. The base state is visually
distinguished from resolver options with a slightly darker (or lighter depending on the Mission
Category color) background color.

Since the Comparison View was designed to highlight the differences between multiple
options’ schedules, only missions that have changes are displayed with full opacity by default.
Missions that have identical schedules across all options are displayed with transparency for de-
emphasis. To view these options in full opacity, mouse-over the mission number that appears
above the schedule. Mousing-over a particular mission’s label will cause all other missions to
become transparent and deemphasized.

Canceled missions will appear with red X’s. Since a canceled mission has no particular
attachment in time, the red X’s are placed at the midpoint between two options.

Constraint violations are also shown on the Comparison View. Normally, the resolver
generates solutions with no violations, so usually they only appear on the top line (Base State) of
sorties.

To compare a different set of resolver options, the user simply opens the Resolver Results
display again, changes column selections, and clicks on the “Open Comparison View” button.

Generalizing Our Design Solution

 17

As we near the end of this research effort, it seems appropriate to take a more abstract look
at the problem space we’ve been working in, and the particular design solution we’ve found. We
would like to characterize the properties of our problem that drove us to our particular solution.
This would help us identify the set of human-automation interaction problems for which our
solution would be useful, and bring us closer to our ultimate goal of applying our technology to a
wider range of more generic problems.

The basic problem is dynamic replanning of AMC air missions, although we can make some
claim to also assisting in the problem of initially planning air missions. This is a very complex
planning domain. Each air mission must be planned to make use of at least three classes of
scarce resources–airplanes, crews, and airfield space. While each mission, as a rule, is planned
to use only one physical tail, a single mission may use multiple crews and will likely use
multiple airfields. In addition to the scarce resources and their effects on planning multiple
simultaneous missions, each mission is subject to a number of individual constraints ranging
from availability of cargo to be loaded, to diplomatic clearances required to cross certain national
airspaces, to availability of fuel at intermediate airfields.

This effort was conceived to investigate applying optimization technology to assist human
operators in a dynamic replanning problem. We have designed software user interfaces to help
users task DWARP (the optimization software), and display optimization results in such way as
to assist users in understanding, evaluating and trusting those results.

The particular task given to DWARP is, as a rule, something even an expert user would have
a difficult time performing in a reasonable amount of time. This is not due to the conceptual
complexity of the problem, but is due to the computational complexity – the sheer number of
possible schedules and constraints.

Characteristics of our problem space

1. We are searching for solutions in a high-dimensional space.

2. We operate in an environment with missing critical information. The information about
relative priorities of air missions and their cargo or passengers is generally not available
in GDSS, although the user may have other sources for this information.

3. The user is the authority, knowing more about each individual problem element than the
system. While users may not be able to optimally solve the problem, they can evaluate
potential solutions, and can identify problems with them.

4. Schedules will not be executed precisely according to plan. Environmental factors and
maintenance issues, among other factors, will perturb the plans. So just because a plan (a
set of mission schedules) is legal doesn’t mean it is a good plan–robustness in the face of
further perturbations is a factor.

5. As a rule, replanning decisions are not time-critical, at least not in the sense that solutions
need to be found in seconds or small numbers of minutes. Taking an hour or even two to
find and implement a replanning solution is generally acceptable. This, of course,
depends on the problem–there are cases when decisions need to be made quickly.

6. Thrashing (constantly changing solutions) is very bad. Replanning missions takes
coordination between multiple parties–air crews, ground crews, flight managers, and
DIPS planners are just some of the people that may have to act on changes to mission
plans.

 18

7. Our rescheduling problems generally allow for multiple solutions. There are multiple
measures of goodness for a plan–completing all the missions as quickly as possible,
having a robust schedule, getting air crews home at appropriate times, getting high-
priority cargo delivered first, minimizing flight hours or fuel usage, and minimizing time
spent doing time-consuming human re-coordinating as schedules change are just some of
them. The user community has no consensus on a single scoring function that accurately
reflects their preference for one solution over another.

Symbiotic Planning Design Guidelines

Abstracting from our design, we put forth the following design guidelines that we claim are
suitable for human-automation interaction problems which match the complex replanning
characteristics described earlier in the paper. In further work we expect to expand upon and
refine these guidelines as well as compare and contrast our design solution and our guidelines
with work described in (Hanson, 2004 and Horvitz, 1999).

1. The automated planner operates only as directed by the user–it does not operate
autonomously. The rationale for this is as follows: The user is the authority in the
problem space, adding value to a solution found by the automated tool by interpreting it
in light of domain information he possesses that is unknown to the automated tool.
Having the automated planner operate autonomously would essentially interrupt the
human operator to evaluate the work of a support tool.

2. The automated planner is tasked by the user to replan some set of missions–not to replan
the entire universe of missions. The set of missions to be considered for replanning is
entirely under the control of the user. This matches the organization of duty officers
within the TACC–each duty officer is responsible for a discrete set of missions. If he
observes conflicts between his missions and missions outside his responsibility, he may
be able, in some cases, to affect those other missions, but coordination would be needed
to make that happen.

3. Even once the scope of the problem under consideration by the automated planner has
been established, the user should be able to add more information to constrain the action
of the automated tool to each individual problem element. In our prototype design, users
may lock individual events (takeoffs or landings) of a mission, specifying that they must
occur at specific times, or that they must occur before or after specific times.
Empowering users to add this additional constraint information is critical–it allows users
to enter real-world constraints that are not in the execution system (GDSS). For example,
a pilot may call in to the TACC floor with the information that his plane is in
maintenance and needs three more hours before it can take off. While this information
may eventually make its way into GDSS, the duty officer needs to consider that
information in his replanning decisions. In the prototype design, he can label the next
takeoff for this tail as to occur no sooner than three hours from now, and have the
solutions generated by the automated planner appropriately reflect the situation.

4. The automated planner generates multiple possible solutions to each problem to be
evaluated by the user. There are two characteristics of the problem space that make this
necessary. First, the fact that there is no globally agreed upon scoring function means
that there may be multiple solutions worthy of the user’s time. Secondly, there are often

 19

unrepresented critical information items such as high priority cargo, or an impending
airfield closure, that only the user may understand and appreciate. This additional
information can be used by the human operator to further distinguish between possible
solutions.

5. Users need to understand the solutions generated by the automated tool. To aid users'
understanding and reduce the cognitive burden of interpreting large data sets, the tool
needs to include a mechanism to graphically compare each proposed solution with the
original plan as well as a mechanism to graphically compare proposed solutions.

6. Users need the ability to incrementally modify a particular solution generated by the
automated support tool. This support needs to include a mechanism to accept a particular
solution and then manually modify individual elements of it. It would be useful if users
had the ability to accept a particular solution, modify it by altering the constraints, and
using the result as a new input to the automated support tool.

Conclusion

This paper describes a problem domain in which the close integration of an automated
support tool – in this case, an automated scheduler – with a user-centered decision support tool is
necessary to help human operators find solutions to problems they would otherwise be unlikely
to correct. The need for automated support is certainly not unique to this particular problem.
There are many other current instances of C2 systems which would benefit from close
integration with automated support tools. Evolving C2 system requirements will inevitably lead
to many more systems in which effective integration with automated support tools will be not
just helpful, but will be mission-critical.

Past attempts at integrating automated support tools into C2 systems have not always
been effective. On several occasions, automation has been rejected by the very operators it was
supposed to help most. The reason for the lack of acceptance varies, but is largely due to the
lack of control and insight of the “automation” and its output (i.e. the format of the interaction to
work with the automated planner and the complexity of the generated options or solutions).

Our methodology of work-centered design has led us to a very non-traditional design for
this particular problem, in which the role of the system was to present multiple possible solutions
to the operator and help the operator evaluate which (if any) solution to use. Specifically,
extensions to the timeline visualization provide controls for the user to collaborate with the
planner on a cognitive level. This dialogue is unique because it is not only visual in nature, but
has concise abstract representations of the work domain from a cognitive perspective which
afford rapid understanding, interaction and assessment, particularly with large data sets. Further,
by allowing the operator to collaborate with the scheduler through constraint/bound controls and
the option development process, the user becomes in integral part of the generation of the
solution. This, in turn, engages the user in the option generation process and instills
understanding and trust in the final solution.

We have, in this paper, identified some of the characteristics of our problem domain that
led us to this design. We expect to, in future work, further explore how to most effectively
integrate automated support tools into C2 decision support systems as well as generalize these
principles to be applied to other relevant domains.

 20

 21

References

Eggleston, R. G. (2002). Cognitive systems engineering at 20-something: Where do we
stand? In M. D. McNeese & M. Vidulich (Eds.), Cognitive Systems Engineering in
Military Aviation Environments: Avoiding Cogminutia Fragmentosa. Wright-Patterson
Air Force Base, OH: HSIAC Press, 15 - 78.

Eggleston, R. G., and Whitaker, R. D. (2002). Work Centered Support System design:
Using organizing frames to reduce work complexity. Proceedings of the Human Factors
and Ergonomics Society 46th Annual Meeting (Baltimore MD: Sept. 30 - Oct. 4 2002),
Santa Monica CA: Human Factors and Ergonomics Society, 265 - 269.

Eggleston, R. G. (2003). Work-centered design: A cognitive engineering approach to
system design. In Proceedings of the Human Factors and Ergonomics Society 47th
Annual Meeting Denver, CO: Human Factors and Ergonomics Society.

Hanson, Roth, Hopkins, Mancuso 2004, Developing Mixed-Initiative Interaction with Intelligent
Systems: Lessons Learned from Supervising Multiple UAVs

Horvitz, 1999, Principles of Mixed-Initiative User Interfaces

Rasmussen, J. (1986). Information Processing and Human-Machine Interaction: An
Approach to Cognitive Engineering. New York: North-Holland.

Roth, E. M., Stilson, M., Scott, R., Whitaker, R., Kazmierczak, T., Thomas-Meyers, G. and
Wampler, J. (2006). Work-centered Design and Evaluation of a C2 Visualization Aid.
Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting. (pp. 255-
259). Santa Monica, CA: Human Factors and Ergonomics Society.

Vicente, K.J. (1999). Cognitive Work Analysis: Toward Safe, Productive, and Healthy
Computer- Based Work. New Jersey: Lawrence Erlbaum Associates.

Wampler, J., Whitaker, R., Roth, E., Scott, R., Stilson, M. and Thomas-Meyers, G. (2005).
Cognitive Work Aids for C2 Planning: Actionable Information to Support Operational Decision
Making. In Proceedings of the 10th International Command and Control Research and
Technology Symposium (June, 2005).

Woods, D. D. & Roth, E. M. Cognitive Engineering: Human Problem Solving with
Tools. Human Factors, 1988, 30 (4), 415-430.

Young, M.J., Eggleston, R.G., and Whitaker, R.D. (2000). Direct manipulation interface
techniques for interaction with software agents. Paper presented at the NATO/RTO symposium
on Usability of Information in Battle Management Operations, Oslo, Norway, April 2000.

