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Abstract. A formalism is suggested for specifying environment behavior models for software 
test scenario generation based on attributed event grammars. The environment model may 
contain descriptions of the events triggered by the software outputs and of the hazardous states 
in which the system could arrive, thus providing a framework for specifying properties of 
software behavior within the given environment. The behavior of the system can be rendered as 
an event set with two partial ordering relations: precedence and inclusion (event trace). This 
formalism may be used as a basis for automation tools for test generation, test result monitoring 
and verification, for experiments to gather statistics about software safety, and for evaluating of 
dependencies of system’s behavior on environment parameters. The monitoring activities can 
be implemented within a uniform framework as computations over event traces. 
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1   Introduction 

Reactive and real-time systems are at the core of many safety-critical software 
applications. In [1][2][3][4] an approach to testing automation for reactive and 
real-time software systems based on attributed event grammars (AEG) has 
been introduced. The main idea is to specify the environment behavior model 
as a set of events that control the inputs for the system under the test (SUT) 
and that may adjust the behavior depending on the outputs provided by the 
SUT (adaptive testing [14]).  

2. The Environment Model 
The notion of event is central for our approach. An event is any detectable 

action in the environment that could be relevant to the operation of the SUT. 
A keyboard button pressed by the user, a group of alarm sensors triggered by 
an intruder, a particular stage of a chemical reaction monitored by the system, 
and the detection of an enemy missile are examples of events. In our approach 
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an event usually is a time interval, and has a beginning, an end, and duration. 
An event has attributes, such as type and timing attributes. 

 
There are two basic relations defined for events: precedence (PRECEDES) 

and inclusion (IN). Two events may be ordered, or one event may appear 
inside another event. The behavior of the environment can be represented as a 
set of events with these two basic relations defined for them (event trace). 
Usually event traces have a certain structure (or constraints) in a given 
environment. The basic relations define two partial orders of events. For 
example, two events are not necessarily ordered under the PRECEDES 
relation, that is, they can happen concurrently. 

 
The structure of possible event traces can be specified by event grammar. 

Here identifiers stand for event types, sequence denotes precedence of events, 
(…|…) denotes alternative, * means repetition zero or more times of ordered 
events, {a, b} denotes a set of two events a and b without an ordering relation 
between them, and {…}* denotes a set of zero or more events without an 
ordering relation between them. The rule A::= B C means that an event of the 
type A contains (IN relation) ordered events of types B and C correspondingly 
(PRECEDES relation). 

 
 
Example 1  
 
OfficeAlarmSystem::= {DoorMonitoring,  

  WindowMonitoring } 
 

The OfficeAlarmSystem run is a set of two concurrent monitoring threads. 
 
DoorMonitoring::= DoorSensor * 
 
The DoorMonitoring is a composite event, which contains a sequence of 

ordered events of the type DoorSensor. 
 
WindowMonitoring::= WindowSensor * 
 
DoorSensor::= ( DoorClosed | DoorAlarm ) 
 
The DoorSensor event may contain one of two possible alternatives. 
 
WindowSensor::= ( WindowClosed | WindowAlarm ) 
 



This event grammar defines a set of possible event traces – a model of a 
certain environment. The purpose is to use it as a production grammar for 
random event trace generation by traversing grammar rules and making 
random selections of alternatives and numbers of repetitions. 

2.1 Event Attributes 

An event may have attributes and actions associated with it. Each event 
type may have a different attribute set. Event grammar rules can be decorated 
with attribute evaluation rules. The /action/ is performed immediately after 
the preceding event is completed. Events usually have timing attributes like 
begin_time, end_time, and duration. Some of those attributes can be defined 
in the grammar by appropriate actions, while others may be calculated by 
appropriate default rules. Attributes can be either inherited or synthesized, we 
assume that all attribute evaluations are accomplished in a single pass 
and the event grammar is traversed top-down, left-to-right for producing 
a particular event trace. The interface with the SUT can be specified by an 
action that sends input values to the SUT or listens for a message sent by the 
SUT. This may be a subroutine in a common programming language like C or 
Java that hides the necessary wrapping code.  

 
Example 2. 
 
 An (over)simplified environment model for a missile defense system that 
tracks radar sensors and at certain moment sends a command to proceed with 
an interception. 
Attack::= { Missile_launch } * (=N)  
 

The Attack event contains N parallel Missile_launch events. 
 

Missile_launch::=   
  Boost_stage   
  Middle_stage     
  WHEN(Middle_stage.completed)    Boom 
 
The Boom event (which happens if the interception attempts have failed) 
represents an environment event, which the SUT should try to avoid, or a 
“hazard state” in which the system may arrive. 
Middle_stage::=  
      / Middle_stage.completed := True/ 
       (   move  
     CATCH  SUT_launch_interception(hit_coordinates) 
        WHEN (hit_coordinates == Middle_stage.coordinates ) 



          [ p(p1) interception 
            / Middle_stage.completed := False; 
              send_hit_input( Middle_stage .coordinates); 
              BREAK; /   ]  
   ) * (<=M, EVERY 50 msec) 
 
The sequence of move events within Middle_stage event may be 

interrupted by receiving an external event from the SUT. This will suspend 
the move event sequence and will either continue with event interception 
(with probability p1), which simulates the missile interception event triggered 
by the SUT, followed by the BREAK command, which terminates the event 
iteration, or will resume the move sequence. This model allows several 
interception attempts during the same Middle_stage event. In general, external 
events generated by the SUT may be broadcasted to several event listeners in 
the AEG, or may be exclusive and be consumed by just one of the listeners. 
These interface details are encapsulated in the listener Boolean subroutines 
like SUT_launch_interception(hit_coordinates) where the parameter 
hit_coordinates is passed by reference.  

 
move ::=   / adjust( ENCLOSING Middle_stage .coordinates) ;  
     send_radar_signal(ENCLOSING Middle_stage.coordinates);  / 

 
This rule provides attribute calculations and sends an input to the SUT 

simulating the inputs from radar sensors. The ENCLOSING construct 
provides access to the attributes of parent event.  

 
It should be pointed out that most of the event trace generation and attribute 

evaluation can be accomplished during the generation time, and the test driver 
extracted from the event trace contains only actions and their time stamps 
(like send/catch subroutine calls) that should be postponed to the run time. 
This makes it amenable for fulfilling real time constraints for the input 
streams needed to be fed into SUT. The event trace provides a “scaffold” for 
building a light-weight and efficient test driver. Since the event trace 
generation from the AEG still may contain random elements, like alternative 
and number of iteration selection, the number of different scenarios generated 
from the same AEG is potentially unlimited.  

3. Behavior Properties Specification 

The next problem to be addressed after the system behavior model is set up is 
the formalism specifying properties of the behavior. As a unifying framework 



we came up with the concept of a computation over the event trace. This 
approach implies the design of a special programming language for 
computations over the event traces. In [6], [8], [7], [9] a language FORMAN, 
based on functional paradigm and the use of event patterns and aggregate 
operations over events, is suggested. 

Event patterns describe the structure of events with possible context 
conditions. Execution paths can be described by path expressions over events. 
This makes it possible to write assertions not only about pre-conditions and 
post-conditions at event trace points, but also about data flows in the entire 
trace.  

The subroutine calls for inputs in the SUT and for catching outputs from the 
SUT can be considered also as events with obvious precedence and inclusion 
relations with the rest of event trace. The parameter values at the beginning 
and the end of those events are specific attributes that provide the opportunity 
to write assertions about system input/output values at different points in the 
execution history.  

3.1 The Language for Computations over Event Traces 

FORMAN is a high-level specification language for expressing intended 
behavior or known types of error conditions when debugging or testing 
programs. FORMAN supplies a means for writing assertions about events and 
event sequences and sets. Monitoring activities can be implemented as 
computations over event traces. Typical examples of monitoring include:  

 Assertion checking (test oracles) 

 Debugging queries 

 Profiles 

 Performance measurements 

 Behaviour visualization 

The following provides an outline of the FORMAN constructs. More details 
are available in [6][8][7]. The environment model from Example 2 will be 
used as a background for further examples. 

Event patterns 

x: Middle_stage & x.Value_at_end(completed)== False 



This pattern matches an event of the type Middle_stage if and only if the 
value of the completed attribute at the end of this event is False. 

List of events 

Assuming that m is an event of the type Middle_stage. 

[ move FROM m ] 

This creates a list of move events from the enclosing even m preserving the 
precedence relation between them. 

List of values 

Assuming that m is an event of the type Middle_stage. 

[ x: move FROM m APPLY x.Value_at_end( m.coordinates 
) ] 

This creates a list of values of coordinates attribute of the enclosing 
Middle_stage event m taken at the end of each move event inside m. 
Note that the value of  m.coordinates may change after each move 
event. 

Aggregate operations 

Assuming that m is an event of the type Middle_stage. 

OR/[ x: SUT_launch_interception FROM m  

    APPLY x.param[1] == x.Value_at_end( m.coordinates )] 

This expression yields a Boolean value depending on whether there is at least 
one instance x of SUT_launch_interception event inside m that yields 
True for the expression x.param[1] == 
x.Value_at_end(m.coordinates). The x.param[1] denotes 
the value of the first actual parameter of the subroutine 
SUT_launch_interception  call. This aggregate operation can be 
abbreviated as: 

EXISTS x: SUT_launch_interception FROM m  

    ( x.param[1] == x.Value_at_end( m.coordinates )) 



In a similar way, FOREACH quantifier can be introduced as an abbreviation 
for the AND/ aggregate operation. 

Generic requirements for the SUT behaviour within the given environment 
can be specified in FORMAN. The following examples illustrate this. 

Example 3. 

The requirements for the SUT may include for example the following: “There 
is at least one interception attempt for each Missile_launch event within 
the Attack event.” 

FOREACH x: Missile_launch FROM Attack 

 EXISTS y: SUT_launch_interception FROM x 

Example 4. 

The first interception attempt should happen no later than 1 sec after the 
beginning of the Missile_launch event. 

FOREACH x: Missile_launch FROM Attack 

 EXISTS y: SUT_launch_interception FROM x 

y.begin_time – x.begin_time < 1 sec 

Example 5. 

There should not be unintercepted missile launches. 

CARD/[ Boom FROM Attack]  == 0 

The examples of FORMAN expressions above represent computations over 
the event traces and can be performed during the test run or after it based on a 
log file collected during the test run. This supports the requirement tracing as 
a part of testing process. 

This framework provides means for expressing quantifiers over events and 
ordering and inclusion relations for events and is comparable with the 
expressive power of other specification formalisms for behavior specification, 
such as temporal logic and abstract event traces [15], [16]. 

Figure 1 outlines the testing automation architecture based on AEG. 



 

4. Automated Safety Assessment 

NASA-STD-8719.13A [24] defines risk as a function of the possible 
frequency of occurrence of an undesired event, the potential severity of 
resulting consequences, and the uncertainties associated with the frequency 
and severity. It may be a challenge to estimate those for real systems because 
of size and lack of good analytical model. Here we suggest a pragmatic 
approach to this problem. An environment model may contain events and 
attributes representing some hazard situations that may occur during the run 
time as a result of SUT interaction with the environment. This feature of the 
AEG model provides a basis for automated system safety analysis. We can 
estimate the risk of arriving in a hazard state by running scenarios of SUT 
interacting with the environment model. 

In the previous example, the Boom event occurs in certain scenarios 
depending on the SUT outputs received by the test driver and random choices 
determined by the given probabilities. From the point of view of SUT this is a 
highly undesirable event. If we run a large enough number of (automatically 
generated) tests, the statistics gathered give some approximation for the risk 
of getting to this hazardous state. This becomes a simple constructive process 
of performing experiments with SUT behavior within the given environment 
model (“software-in-the-loop” simulations). Large sets of different scenarios 
(and, respectively, test cases extracted from them) can be generated from the 
same AEG model since each scenario generation is based on some 
(pseudo)random choices during the generation process. 



4.1 Parameterized Safety Analysis 

We can do a qualitative analysis as well and ask questions like “what has 
contributed to this outcome?” We can change some parameters of the 
environment model, or change some parameters in the SUT and repeat the set 
of tests. If the frequency of reaching a hazardous state changes, we can 
answer the question asked. These kinds of experiments with model parameters 
could be done automatically in a systematic way. 

 
Experimenting with increasing or decreasing the number of missile 

launches N, the duration of particular missile launch M, and the probability of 
interception p1 in the previous example, we can determine what impact those 
parameters have on the probability of hazardous outcome, and find thresholds 
for SUT behavior in terms of N, M, and p1 values. 

 
We suggest to use the combinatorial testing technique based on orthogonal 

arrays [19], an approach well familiar to statisticians, to conduct the 
experiments with parameterized environment models. In 1997, researchers at 
Telcordia Technologies (formerly Bell Communications Research, or 
Bellcore) published a paper by Siddharta Dalal et al., “The Combinatorial 
Design Approach to Automatic Test Generation [18].” Telcordia's studies 
suggest that “most field faults were caused by either incorrect single values or 
by an interaction of pairs of values.” If that's generally correct, we ought to 
focus our testing on the risk of single-mode and double-mode faults. The 
same conjecture that stipulates that the fault in behavior of the SUT in most 
cases depends either on a single parameter value or on an interaction of a pair 
of parameter values could be applied to the system safety testing.  

 
The rationale for using orthogonal arrays for experiments with the SUT is 

similar to the rationale for the use of orthogonal arrays for experiments in 
other engineering domains [20], [22], [23].  The use of an orthogonal array 
guarantees that all pair-wise samples are represented evenly for statistical 
purposes. 

 
Combinatorial approach will significantly reduce the number of experiments 

needed to establish statistically sound conclusions about probabilities to reach hazard 
states for different environment model settings. In order to apply combinatorial 
testing techniques the values of model parameters have to be split into a finite number 
of equivalence classes, a technique well known in software component testing [21].   

 
Figure 2 outlines the major steps in the testing and safety assessment process based 

on AEG. 
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Figure 2. Testing and system safety assessment automation framework based 
on attributed event grammars as environment models. 

 

5. Related work 

Traditionally, modeling approaches used for software development focus 
on the system under development. These models emphasize the reactive 
aspects of the system behavior, which are typically modeled using statechart 
formalism. In contrast, the purpose of the environment model is to generate 
stimuli for the system under test. An environment model emphasizes the 
productive aspects of the behavior. 

 
It has become a common practice for engineers to analyze system behaviors 

from an external point of view using use cases. In UML (Unified Modeling 
Language) [26] use case scenarios are written in natural language and focus 
on the events and responses between the actors and the system. Functional 



requirements can be derived from the description of events received by the 
system and the expected responses generated by the system. 

 
The major paradigms for modeling system behavior are based on different 

variations of finite state machines. Active research in this area focuses on 
different aspects of behavior specification based on UML statecharts, message 
sequence diagrams, or other types of extended finite state machines, like 
timing automata [27] or Petri nets.  

 
State machines are typically used for modeling systems. System models are 

built around the notion of a transition in response to the environment stimulus. 
Grammars are common vehicles for generating structured sets of inputs. 
While grammars and state machines are considered to be dual, researchers 
have long recognized the power of state machines as acceptors and grammars 
as generators.  

 
A major feature of our approach is the notion of an event trace as a formal 

model of behavior. Event grammars are one of the possible frameworks to 
utilize this notion. They are text-based, have a smaller semantic distance from 
the use case scenarios than the state machines, and are well suited to model 
environments described via use case scenarios. Event grammars are 
convenient in specifying dynamic environments with an arbitrary number of 
actors (and concurrent events), whereas state machines are effective for 
modeling static environments (with a predetermined numbers of actors).  

 
In [28], Wang and Parnas proposed to use trace assertions to formally 

specify the externally observable behavior of a software module and presented 
a trace simulator to symbolically interpret the trace assertions and simulate the 
externally observable behavior of the module specified.  Their approach is 
based on algebraic specifications and term rewriting techniques and is only 
applicable to non-real-time applications. 

 
In [29], Alfonso et al. presented a formal visual language for expressing 

real-time system constraints as event scenarios (events and responses) and a 
tool to translate the scenarios into observer timed automata, which can be 
used to study properties of the formal model of the system under analysis via 
model checking and run-time verification. While there are a lot of similarities 
between the approach presented in [29] and ours, the former is effective for 
modeling static environments (with fixed scenarios) whereas ours, which is 
based on event grammar, is more effective in specifying dynamic 
environments with an arbitrary number of actors (and concurrent events). 

 



Context-free grammars have been used for test generation, in particular, to 
check compiler implementation, such as in [30] and [31]. Maurer’s article  
[31] provides an outlook in the use of enhanced context-free grammars for 
generation of test data. 

 

6. Advantages of the suggested approach 

 Test result verification is an important aspect of testing automation. 
The AEG approach assumes that all interaction between the SUT and 
environment model flows through the subroutine calls attached to the 
environment events. This implies that it will be straightforward to instrument 
the interface points with necessary code to monitor and verify the information 
flow between the SUT and the environment model. In fact, this template 
closely resembles the Aspect-Oriented Programming paradigm [33]. 

Traditionally reactive systems and their environments are modeled with 
some kind of finite state machine, like statecharts or timing automata. For the 
purposes of scenario (and corresponding test case) generation, the AEG 
approach may have several useful features, in particular: 

 
 It is based on a precise behavior model in terms of an event trace with 

precedence and inclusion relations, well suited to capture hierarchical 
and concurrent behaviors. Since an event may be shared by other events, 
the model can represent synchronization events as well. 

 The control structure suggested by the event grammar notation 
(sequence, alternative, iteration, concurrent event set) and the top-down, 
left-to-right order of traversal seems to be intuitive and close to the tradi-
tional imperative programming style, hence facilitating the design of 
models.  

 Data flow of attributes is integrated with the control flow (i.e., event 
trace), and AEG notation provides means for ease of navigation within 
the derivation tree (e.g., the ENCLOSING event construct for 
referencing parent event attributes on any distance in the derivation tree). 

 The probabilities for alternatives or number of iterations may be attached 
to meaningful events in the model and are more intuitive and less 
numerous than in Markov models based on finite state machines. This 
provides for a natural definition of functional profiles for scenario 
generation. 

 
The main advantages of the suggested approach may be summarized as 

follows. 



 
 Environment models specified by attributed event grammars provide for 

automated generation of a large number of pseudo-random (but satisfying 
the constraints) test drivers. This feature provides for gathering of large 
enough statistical data for safety assessment experiments. 

 All attribute values which don’t depend on the SUT output can be 
calculated at the generation time. As a result the generated test driver 
contains only actions that should be postponed to the run time (like 
sending inputs to the SUT and listening to the SUT outputs), has a low 
overhead, and could be used as a real-time test driver. 

 As any notation based on formal grammars AEG is well structured, 
hierarchical, and scalable. 

 The environment model may contain events which represent hazardous 
states of the environment. Experiments with the SUT embedded in the 
environment model (“software-in-the-loop”) provide a constructive 
method for quantitative and qualitative assessment of software safety.  

 Different environment models for different purposes can be designed, 
such as for testing extreme scenarios by increasing probability or number 
of certain events, or for load testing. The same safety assessment 
methodology as described above may be applied for these special cases as 
well.  

 The environment model itself is an asset and could be reused. 

 It addresses the regression testing problem – generated test drivers can be 
saved and reused.  We expect that environment models will be changed 
relatively seldom unless serious requirement errors are discovered during 
testing. 

 Event traces generated from the AEG model represent examples of SUT 
interaction with the environment, and are in fact use cases, that could be 
useful for requirements specification and other prototyping tasks. 

The novelty of our approach is in the notion of a formal system behavior 
model based on event grammars for automated generation of test scenarios 
and test drivers.  

C2 systems to a large degree are reactive and real-time systems, and 
therefore can benefit from the AEG approach.  Our previous work has 
provided a basis for testing and debugging automation tool design within this 
framework Error! Reference source not found.[9][10][11][12][13]. The 
feasibility has been proven by the first prototype implementation of AEG 
Error! Reference source not found.[2][3] and case studies, like Infusion 



Pump example Error! Reference source not found. and environment models 
for US Marine Corps Technology Center. 
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