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Abstract 

JAGUAR is a set of tools that perform model-based plan-
ning and replanning, real-time execution monitoring, and 
adaptive modeling in the domain of military air operations. 
Model driven planners are susceptible to biases, omissions, 
and errors within the models. Operating in a dynamic, real-
time environment requires continual model updates to meet 
the ever changing requirements. This paper describes how 
the JAGUAR Model Adaptor tool uses Case-Based Reason-
ing (CBR) technology, visualization tools, machine learn-
ing, and decision trees to evaluate executed plan data and 
drive model revisions. The paper also presents some results 
obtained about the Model Adaptor from several experiments 
that were conducted to evaluate the usefulness of the entire 
JAGUAR tool suite to operational users.  

Introduction
JAGUAR is a set of state-of-the-art tools that provide plan 
generation and execution monitoring for military air and 
ground operations. Leading edge technologies and research 
incorporated in JAGUAR include model-based plan gen-
eration, real-time plan execution monitoring, replanning, 
and adaptive modeling. The main JAGUAR components 
include a Problem Definer, a Plan Generator, a Plan Moni-
tor, and a Model Adaptor. All of the components commu-
nicate through XML information products. The Problem 
Definer provides the JAGUAR components with a descrip-
tion of the problem, which includes the objectives that the 
planner needs to satisfy. The Plan Generator takes each 
objective, information about available resources, the cur-
rent plan and execution context, and references models of 
entities and processes to generate a plan. The Plan Monitor 
tracks the plan as it is being executed, updates the world 
state, and triggers replanning requirements.  

Because JAGUAR is still under development, we use a 
simulator to provide a planning environment and to sup-
port monitoring of plan execution. The simulator supports 
context updates with data from a variety of sensor systems. 
When plan execution is in violation of certain environ-
mental and/or modeling constraints, the Plan Monitor will 
publish an anomaly describing the violation.  

In this paper we describe our experiences in developing 
Model Adaptor (MA) tools which help JAGUAR operators 
evaluate executed plan data and subsequently make model 
revisions.  Our paper also describes a set of experiments 
that were conducted across the entire JAGUAR system.   
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Only the results that pertain to the usefulness of the Model 
Adaptor tools are described in this paper.   

CBR and Model Adaptation in JAGUAR 
Automated planning systems achieve plan goals in a vari-
ety of ways. The most prevalent implementations include 
generative planners, case based planners, mixed-initiative 
planning and combinations thereof. [See 1 for an overview 
of planning.]  Research evidence indicates that if a plan-
ning system can leverage historical experiences, the resul-
tant planning time and expense are reduced, and the results 
are comparable or better than the performance of a genera-
tive planner alone.  

Most planning software relies on internal algorithms and 
access to domain models for problem solving. The planner 
in JAGUAR is primarily model-driven. When a planner is 
model-driven, biases, omissions and errors within the mod-
els have a direct influence over the final executed plan. 
Analyzing executed plan data is a method that allows hu-
man operators to assess how the Plan Generator is using 
the models.  If analysis reveals plan biases or modeling 
errors, the operator can modify the models to, in effect, 
change the biases or correct the errors. 

The Model Adaptor, the focus of this paper, stores all 
versions of published models, the executed plans, objec-
tives, and published anomalies for use in determining 
model updates. The Model Adaptor also includes a set of 
executed mission analysis tools that aid in the discovery 
and identification of planning biases and/or modeling er-
rors. Several of these tools leverage case based reasoning 
(CBR) technology. While UML modeling tools are avail-
able for use by the Model Adaptor operators to assist in 
model creation and refinement, these tools do not help the 
operator evaluate model usage by the Plan Generator. In-
stead, diagnosis and analysis tools were developed to sup-
port this requirement. The diagnosis tool [2] analyzes gen-
erated plans as they are being executed, reading the pub-
lished anomalies and evaluating them with respect to his-
torical plan execution data. The diagnosis tool will gener-
ate model repair suggestions when it finds a correlation 
between some number of published anomalies and proper-
ties of the published models. The analysis tools operate on 
specified case features defined to describe certain aspects 
of plan execution.   

Real-time model adaptation is a challenging problem 
because of what is implied by the term “adaptation” and 
because of the stresses introduced by real-time operation. 
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For example, if a person learns to drive in a moderate cli-
mate, this person will likely be faced with several chal-
lenging model update problems the first time that she at-
tempts to drive in snowy and icy conditions. To support 
problem solving, a set of interdependent models will likely 
be invoked; and through the process of trial and error, 
these models will be incrementally revised and adapted to 
meet the newly experienced environmental conditions. 

However, some problem solving environments do not 
allow the luxury of model adaptation by trial and error, 
especially if errors can result in catastrophic states that 
must be avoided. Additionally, in a dynamic problem solv-
ing environment, it is highly unlikely that any modeling 
tool will have properly and completely modeled a given 
problem domain; therefore, adaptation must also incorpo-
rate learning about new entities, behaviors, relationships, 
and constraints. A good problem solving tool must be able 
to adapt and learn from experience and allow operators to 
update models dynamically in order to respond to real-time 
problem solving environments and unexpected situations. 
Although the JAGUAR Model Adaptor does not currently 
support all of these objectives, it has been designed with 
these objectives as drivers. CBR technology was chosen to 
provide this element of the system’s incremental learning 
capability [3, 4, and 5]. 

CBR is the process of applying knowledge from past 
experiences to the solution of a current problem [6]. In a 
CBR system, a case base is comprised of a set of cases. 
Each case represents an episode or event that has occurred 
in time and space. In order to facilitate search and high-
light defining characteristics of a given case, each case is 
annotated by a set of case features or indices. These fea-
tures are generally attribute-value pairs. The CBR ap-
proach relies heavily on similarity matching between fea-
tures (indices) with information about the current problem 
state. For example, in the CBR logistics domain applica-
tion as described in [7], when a new event such as a hurri-
cane occurs and a disaster relief logistics deployment re-
sponse is required, the CBR force deployment tool can be 
used to rapidly construct a new basic deployment plan.  
Because previously developed similar (but not exact) dis-
aster relief force deployment plans are used to construct 
the new basic plan, the tool supports the adaptation of the 
new plan to meet the specific requirements of the current 
situation.  

The CBR research community has developed numerous 
techniques for supporting similarity evaluation and partial 
matching in planning domains [8, 9]. In many applications, 
historical cases rarely exactly match the requirements for 
the current problem solving context. For example, a CBR 
tool called CASEY helps doctors diagnose heart failure in 
patients [10]. CASEY includes case adaptation methods 
that support the merging of parts of previous cases so that 
the resulting product—the adapted case—can be more ef-
fectively applied in the current problem-solving episode. 
Such adaptation is a form of analogical learning [11], an-
other powerful learning technique that can be obtained 
with a CBR implementation. 

Similar to the CASEY system, JAGUAR helps human 
military operators diagnose the usefulness of the models 
that support plan generation and execution by retrieving 
historical executed mission cases and associated models. 
Since JAGUAR is model-driven, if a model for some ele-
ment in the world is not available, the JAGUAR Plan Gen-
erator will not be able to reason about it; if a model is in-
correct, the Plan Generator will not be able to correctly 
solve the problem. To support model diagnosis, modeling 
omissions and errors that result during plan execution are 
detected as anomalies and deviations by the Plan Monitor. 
This data is provided to the Model Adaptor for use in iden-
tifying modeling errors. Data about the anomalies are 
stored along with the executed mission data in the form of 
cases. The case bases are then used by the diagnosis tool 
for generating hypotheses about the likelihood that plan 
execution anomalies are caused by modeling problems. 
The case data is also used by a set of analysis tools to iden-
tify both successful and failed trends and to aid operators 
in performing plan assessment.  In this paper, we focus on 
the MA analysis tools. 

Using Multiple Case Bases 
Case creation, retrieval, publication and analysis within the 
JAGUAR Model Adaptor is provided through a suite of 
custom built software tools augmented with a set of well 
supported open-source products. Our CBR application uses 
a Tomcat Servlet Container [12] running a Xindice Native 
XML Database system (NXD) [13]. An NXD is a special-
ized database designed to store XML data and its model 
intact [14]. By retaining the structure of the XML data, 
queries can be implemented with standard XML tools that 
access specific elements within the data. Because our CBR 
application runs within Tomcat, we automatically gain 
client-server capabilities via the HTTP protocol, allowing 
multiple simultaneous connections to the case base. 

All case searching operations are supported by the Lu-
cene open-source text search engine [15]. Lucene uses the 
concept of a document, with each document consisting of a 
set of terms, representing the unit of search. In our usage 
of Lucene, a document is equivalent to a case, and each 
case feature of a case is equivalent to a unique term. Lu-
cene also provides efficient, scalable, high-performance 
indexing capabilities. In the JAGUAR MA case bases, 
each case is indexed at the document level; therefore, all 
case retrieval also occurs at the document level. While we 
do provide the ability to retrieve a document based on a 
match with a document excerpt (i.e., element), if the user is 
interested in finding the matching content, they need to dig 
through the XML within the returned document to locate 
the specific instance of the matched term. A “Find in 
Document” custom designed capability is provided to sup-
port searching within the data of an XML case. If this data 
is determined to be of use in the long run, then a new case 
feature can be added. 

In order to better manage JAGUAR domain data and in-
formation products, we have partitioned aspects of the 
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problem into separate case bases. The two main partitions 
are the model case base, which contains all of the model 
versions that have been provided to support the JAGUAR 
system, and the realized plan case base, which contains all 
of the executed missions comprising a plan generated by 
the JAGUAR system. In the model case base, each model 
constitutes a case. In the realized plan case base, an indi-
vidual mission within a plan constitutes a case. As 
JAGUAR has evolved, additional case bases have been 
created. These case bases include one that stores informa-
tion about mission anomalies and one that stores informa-
tion about the goals or objectives associated with a mis-
sion. 

Each case base in JAGUAR is defined as a collection, 
where a collection is synonymous with a table in a rela-
tional database. The data structure of the collection is 
based on an XML specification. A collection can be gener-
alized with arbitrary content, or it can be specialized 
through the addition of a set of domain features. By lever-
aging the fact that our domain data exists in XML, with a 
well-defined schema, the case features can mirror the XML 
tag names. While the usage of existing XML tags as fea-
tures has gained some popularity among CBR researchers 
in recent years [16, 17], no standard for what constitutes 
the content of an XML tag exists. Since we would like 
some of the case features to describe functional and se-
mantic content, we have developed a variety of other 
methods for creating case features that leverage the content 
of the case.  

Previous CBR systems have leveraged XML in various 
ways, such as a communication protocol between client 
and server components [18], and as a complete case base 
markup language, CBML [19, 20]. Like CBML, our case 
base definition contains a schema that defines the data 
structure for a specialized case base. However, our work 
goes beyond the work of CBML by supporting the creation 
of custom features that can be derived from the underlying 
XML content. For these custom features, a rule defines the 
query used to extract the value for the feature from the 
data. Utilizing this approach, we can easily annotate the 
case data to assist with search and analysis. 

Because the information products in JAGUAR are rep-
resented in XML, we gain access to a well-developed op-
erational toolkit for XML structures. Part of this toolkit 
includes various standardized query languages developed 
for the querying and extraction of information from XML 
marked up data. Using components of this toolkit, we cre-
ated a set of rule processors for extracting case features 
from the data. One of the rules we developed uses XPath 
for extracting specific information from the desired infor-
mation product. A widely documented and supported 
query language for addressing parts of an XML document, 
XPath allows users the ability to quickly develop feature 
extraction queries without learning a new, custom query 
language [21]. 

Each case in a specialized JAGUAR case base contains 
the full JAGUAR information product (e.g., executed plan, 
anomaly or objective) and a set of descriptive features. 

Each case feature is defined by the following data ele-
ments: 
• Name - human readable name of the feature. 
• Description - a short description of the feature name, 

e.g., what it is useful for or how it is derived. 
• Weight - the importance of the feature (primarily used 

for retrieval ranking). 
• Feature Type - the method by which the feature is de-

fined, e.g., XPath (rule-based), XSLT (transform-based), 
system (Java code-based). 

• Data Type - the data type for the feature value, e.g., 
string, Boolean, or other. 

 
 Since each case includes the complete XML information 
product, analysts can add new case features to meet chang-
ing needs and requirements. When a case feature is defined 
using the XPath feature type, the values for the features are 
automatically computed either during an import of raw 
case data or when feature regeneration is requested by the 
user. The down side of this approach is that if the XML 
structure for the content of a defined XPath feature 
changes, we need to update the associated feature value 
XPath extraction method to handle the change.  

Because the XPath query language does not support the 
computation of values from the aggregation of multiple 
paths, or across multiple information products, specialized 
features were developed to allow operators to create fea-
ture/value pairs that are derived from a numerical compu-
tation of the value of multiple features in any of the 
JAGUAR case bases. These features are harder to create 
within the constraints of the XPath query language, and 
thus require custom developed Java code; however, we 
find that they are very powerful. For example, we have 
developed a specialized feature to compute the number of 
anomalies recorded for an executed plan by anomaly type. 
Another specialized feature has been developed to com-
pute the completeness of activities for a given executed 
mission. These specialized feature types are extremely 
useful in providing an abstracted description of a mission 
case for subsequent analysis. 

Analyzing Case Base Data 
As a military operation evolves in time, the requirement 
for operators to efficiently collect, analyze and reflect on 
that data becomes more important. Additionally, patterns 
start to emerge that may or may not be desirable.  Since the 
JAGUAR Plan Generator is model driven, some of the bias 
patterns that emerge may also be indicative of modeling 
inefficiencies or errors in other JAGUAR components.  

To support the domain experts and Model Adaptor op-
erators, we have developed several tools that allow the 
operators to view the data from various perspectives. Each 
of the information views makes use of case features. 

One of the analysis tools developed to support analysis 
is a pie chart tool which is shown in Figure 1. This tool 



provides the analyst with a quick, descriptive distribution 
of the data within a specified analysis set. Through a cus-
tom developed graphical user interface called the Browser, 
the operator can choose a case base and either generate a 
set of pie charts using all of the data from the selected case 
base, or from some subset of cases within the case base, 
derived from a case base query. The pie charting analysis 
component of the Browser allows for dynamic filtering, 
providing the ability to turn on and off the views of vari-
ous features within the charting analysis without the need 
to reload the feature data. This helps the analyst restrict the 
analysis space and focus upon key areas of the data.  
Screen-prints of the pie charts can be used to generate per-
manent reports. 

A down side of the pie charts is that it can be difficult to 

recognize areas of missing or misrepresented data. Figure 
1 shows an example in which correct interpretation of the 
data is difficult without a sophisticated understanding of 
the models. In this figure, executed mission data involving 
both A10 and B1B aircraft are being analyzed. This figure 
shows the value distribution of three features found within 
the set of data being analyzed: “Formation Component 
Type”, “Expended Munitions Type”, and “Mission Actor 
Type”. Note that the “Mission Actor Type” feature pie 
chart shows feature values of both A10 and B1B, but the 
“Formation Component Type” feature pie chart shows 
values of only A10 and NIL. The NIL value, added during 
case import when the desired feature value is missing, 
could indicate an instance either where the value was not 
provided by the planner when it should have been, or 

 

Figure 1:  NIL values caused by entities type values not being recorded in the data. 
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where the feature does not exist or apply for the particular 
case. If more than two different values for “Mission Actor 
Type” existed in the case base, however, the user would 
find it difficult to determine which of the cases had no val-
ues for “Formation Component Type”.  In the simple ex-
ample in Figure 1, the NIL values seen in the “Formation 
Component Type” feature pie chart are easily identified to 
be those of B1B actors. From a modeler’s perspective, the 
B1B aircraft are known in the models to fly solo and not in 
formation, and thus those B1B cases correctly do not have 
“Formation Component Type” information. Without a de-
tailed knowledge of the models, deciphering the missing 
data is not always possible. 
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In the third pie chart for “Expended Munitions Type” 
shown in Figure 1, the seven NIL values are harder to cate-
gorize. The user would have to delve further into the un-
derlying data to find out if seven cases incorrectly flew 
without munitions at all, if the seven missions flew with 
munitions but did not use the munitions (not expended) 
because the mission was aborted for some reason, or if the 
mission was completed without using munitions that were 
loaded. As the case base grows, analyzing what informa-
tion is missing gets more difficult. 

Machine Learning With Weka  
While the pie charts are useful for the high-level visual 
display of distributions in the data, in order for the analyst 
to identify correlations across features and cases, machine 
learning technology is being used to classify data and to 
generate decision trees. Decision tree technology is com-
monly used in many domains to find decision points. In-
ductive machine learning algorithms such as C4.5 support 
the generation of decision trees.  

In an effort to determine if these types of algorithms 
could support our model revision needs, we have been 
experimenting with an open-source machine learning 
framework called Weka [22, 23]. Developed at the Univer-
sity of Waikato, Weka is a collection of machine learning 
algorithms (including an implementation of C4.5 called 
J4.8), accessible through a user-friendly toolkit that allows 
for complex data mining of varying amounts of data and 
provides several graphical visualization tools to aid in op-
erator interpretation. Weka algorithms can produce useful 
decision trees, given properly formatted data.  The case 
features in the JAGUAR Model Adaptor’s case bases 
proved to be easily transformable into the proper format 
required for Weka.  After some successful experimentation 
with select Weka tools, we developed an API between 
Weka and the Model Adaptor Browser so that an entire 
case base or selected cases from a given case base could be 
passed from the Browser to Weka for analysis.  

One important metric resulting from the generation of a 
decision tree is the percentage of correctly classified 
nodes. For our investigations, we have discarded trees pro-
duced with less than 80% accuracy. In our experiments 
with Weka, we have had to add additional feature pairs to 
the case base data in order to help us generate more useful 

decision trees. For example, the feature “Expended Muni-
tions Type” (displayed in Figure 1) was created specifi-
cally for Weka usage. Prior to the inclusion of this feature 
we were passing “Expended Munitions Type” instance 
data to Weka. Since instance data is unique, no trends were 
detected. The added feature allowed us to categorize the 
munitions data instances to yield better formed decision 
trees. Interestingly, these additional features improved the 
pie chart interpretation as well.  
 

 
Figure 2:  Decision tree describing the correlation between Ex-

pended Munitions Type and Mission Actors. 

In general, our experience using Weka to generate deci-
sion trees about executed plan data was mixed.  For exam-
ple, Figure 2 is a decision tree generated with the C4.5 
algorithm within Weka. It describes a correlation between 
“Expended Munitions Type” and “Mission Actor Type”. 
The numbers in parentheses show how well C4.5 classified 
the data. For example, in 6 out of 7 instances, C4.5 found 
that the A10 used an AGM65. This particular tree is useful 
since it allows operators to quickly determine how weap-
ons are being expended in the selected missions. 
 



 
Figure 3:  Decision tree associated with anomaly data. 

However, we have encountered problems with the deci-
sion trees.  While Weka tools such as C4.5 provide power-
ful ways of interpreting the data, in order to generate a 
decision tree; the analyst needs to select a starting node. 
Improper selection results in trees that make little or no 
sense. In addition, Weka supports multiple data types, such 
as dates, strings and numbers.  This typing limits the con-
struction of decision trees as a tree cannot be generated 
based upon a node that is numerically typed. For example, 
if the analyst is interested in understanding how anomalies 
are associated with the completion or quality of missions, 
they must experiment with node selection to generate a 
decision tree displaying the desired relations, often gener-
ating multiple useless trees in the process.  Even with a 
properly generated tree, the observer still might have diffi-
culty accurately understanding the meaning of the dis-
played data.  For example, Figure 3 is an example of a tree 
generated with C4.5 that shows how the existence of 
anomalies is related to the completeness (or quality) of a 
mission.  Quality less than 0 indicates that none of the mis-
sion activities were completed. The end node values in the 
figure represent trial dates.  For JAGUAR, a trial with no 
completed mission activities indicates an aborted simulated 
trial.  We can use trees like this to find good trial sets and 
in some cases to determine the cause of the anomaly. But, 
without sufficient, high quality, sample data and knowl-
edge of the input data structures, analysis done with Weka 
tools can be misleading and ambiguous.  
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Experiments:  Design and Observations 
 

In order to test some of the assumptions about the useful-
ness of each of the JAGUAR component tools, a series of 
formal experiments were performed.  An independent 
evaluator (not a JAGUAR tool developer) designed and 
managed the experiments.  The evaluator requested that 
each JAGUAR component provide one or more checklists 

to describe how the subjects should use the tools. The sub-
jects for a given component were also selected by the in-
dependent evaluator.  Subject domain expertise ranged 
from retired subject matter experts to current operational 
Air Operations Center staff.   

A total of five experiments were conducted.  Table 1 de-
scribes the overall statistics for the experiments.   

 
Table 1:   Experiment Statistics 

Experiment 
# 

Experiment 
Duration 

Number 
of 

Executed 
Missions 

Subject 
Participation* 

1 1 day 379 A, B, c 
2 1 day 440 A, B, d 
3 3 days 804 A, B, d, e, f, 

g, h 
4 1 day 186 A, B, d 
5 3 days 863 A, B, d, f, i 
* Each letter represents an actual subject.  When A occurs across experi-
ments that indicates that subject A participated in the experiment.  Sub-
jects A and B participated in all of the experiments and hence became 
more skilled in the usage of the JAGUAR tools. 

 
Each experiment ran for 1 – 3 days and incorporated one 

or more trials that correlated with JAGUAR test and 
evaluation exercises.  A trial could vary from 30 minutes 
to 3 hours.  Long duration trials often involved multiple 
subjects, each using the elements of the checklists that 
were applicable for that part of the trial.   

While JAGUAR staff were available to support the test 
subjects for most of the experimental trials, in the final 
experiment, a selected set of operational users were ex-
pected to use the checklists to independently control each 
of the JAGUAR components during a simulated execution 
run.  

For the Model Adaptor component, a set of checklists 
were developed to walk the subject and/or operational user 
through the main MA operations: publication of models, 
monitoring of models, analysis of executed plans, and fi-
nally changes to models.  For each experiment, the subject 
was exposed to the full data sets that would normally be 
available during a simulator-based exercise.  For MA this 
included an average of 330 historical executed missions (in 
an integration test setting) and an average of 800 missions 
(in formal test and evaluation setting).  Associated anoma-
lies and objectives, and access to the historical model re-
pository were also provided.  Each published model set 
included approximately 1000 model elements.  To prevent 
damage to the official MA dataset, a virtual MA sandbox 
was created to support the experiments. 

In the early experiments, the subjects were becoming 
familiar with operating the software.  By the 3rd experi-
ment, the subjects, with repeated exposure to the tool, were 
beginning to explore other aspects of the tool and were 
reporting undesirable behavior in the executed mission 
data that they wanted to fix.  These subjects were able to 
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use the model editors to make model changes.  For exam-
ple, during one of the trials, while analyzing the mission 
case base of executed plan data, one of the subjects noticed 
that an aircraft type that they expected would be used to fly 
an air interdiction mission was not being used in any of the 
executed missions to service that mission type.  On inspec-
tion of the models, the subject discovered that the aircraft 
was defined with the proper weapon load for air interdic-
tion, but the aircraft model was missing the capability 
marking which allows it to support the air interdiction mis-
sion.  The subject was able to make this change by using 
the aircraft editors and was able to create a new model set 
for publication. 

In another experiment trial, one of the trained subjects 
was able to create a mission case base using 2 days of test 
data, aggregating appropriate historical information to-
gether into one case base for easier analysis.  This particu-
lar subject then wanted to look at the distribution of mis-
sion types across those datasets. He successfully used the 
Feature Analysis pie charts to obtain the data that he was 
interested in seeing. 

In another experiment trial, a subject wanted to view 
how targets were serviced in sequence.  Since the mission 
case base typically contains all of the runs during a particu-
lar time frame, if the entire case base is analyzed, then the 
results would yield insights about target acquisition over 
time.  The subject indicated that this data was extremely 
difficult to see in the pie charts, so we enhanced the tool so 
that in a subsequent experiment (about a month later) we 
had a tabular view of the data.  With this new view on the 
data, the subject reported that he was able to better under-
stand the historical data and could see how targets were 
serviced over time by different missions.  The subject also 
appreciated that he could save the tabular report of the data 
in a comma separated file format for later use.  

There were varied reactions to the analysis provided 
through the Weka tool.  The subjects were happy with the 
quantitative data about each of the features that was readily 
available through the Weka screen. During the course of 
our experiments, we discovered that the background of the 
individual subject influenced the choice of tool for analyz-
ing the data.  Every subject initially viewed the data from a 
high level, using the pie charts to help get a visual feel for 
the structure and composition of the data.  We noticed that 
subjects who had a background that included work in the 
intelligence arena expressed interest in viewing the data in 
multiple, more complex formats, such as the Weka confu-
sion matrices and decision trees.   

Results 
The experiments conducted to date indicate that the sub-
jects found the analysis tools to be very useful for situation 
understanding.  Many of the subjects wanted to be able to 
use the data as a way to provide briefings to higher author-
ity.   

The subjects generally reacted favorably to the editing 
tools.  One of the problems encountered was the sequence 

of creating the models.  For example, if one wants a par-
ticular weapon load on an aircraft, the weapon has to be 
defined before it can be associated with the aircraft.  There 
was no information in the system to advise the subject on 
this fact. 

The process of validating and publishing a model set 
was determined to be too complex, especially when only a 
simple model change, e.g., revision of a fuel burn rate, was 
performed.  The subjects requested that a simpler model 
validation and publication process be provided. 

When subjects wanted to build reports using data in the 
executed plans that were not available via any of the exist-
ing features, we showed them how to build new features.  
We discovered that the existing tools available for building 
new features was too difficult to use, especially those re-
quiring complicated XPath queries. 

We discovered that the benefits of machine learning 
tools are a function of how well the subject understands 
the output of machine learning algorithms.  Only three out 
of seven of the subjects fell in this category.  Since the 
JAGUAR Model Adaptor was developed for operators 
without expertise in machine learning, our observations of 
how the tools were being used during the experiments in-
dicates that custom tools will need to be developed to en-
able future operational users to take advantage of the ma-
chine learning algorithms, without having to understand 
them in detail. 

Finally, in a JAGUAR test and evaluation situation a 
plan tends to be run repeatedly and tends not to be com-
pletely flown out (or executed). This leads to misleading 
data and to repetitions that are not necessarily desirable or 
permanent. We found that many of these problems disap-
peared once we were in a richer testing and simulation 
environment (as was the case for experiment 3 and 5) 
where many of the planned missions were run to comple-
tion and not repeated.  

Conclusions 
In this paper, we have provided an overview of how exe-
cuted plan data is stored, annotated and analyzed. We have 
described how CBR technology, data visualization tools, 
and certain machine learning algorithms have been used to 
facilitate data analysis. Experiments with subjects have 
uncovered usability issues with the tools and the JAGUAR 
terminology, as well as modeling problems ranging from 
the mechanics of using the tools to user expectations about 
what has been modeled about the domain. Requirements 
for enhancements to the tools were expressed throughout 
the experiments. As a result of the feedback from the ear-
lier experiments, many of our tools were refined to allow 
the subjects to more easily identify, track, and report pat-
terns in the executed plan data.   

Our experience to date indicates that the MA tools can 
effectively assist domain experts, and potentially the op-
erational users, as they work to determine the validity of 
models and understand how the model set affects overall 
plan generation.  However, while tools such as the ones we 
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have described in this paper can provide credible indica-
tions of requirements for model repair and can support the 
generation of consistent and valid models, the human op-
erator has the final responsibility for implementing the 
repair.  

The goal of the Model Adaptor is to develop, publish 
and refine models that allow the Plan Generator to react 
and adapt in the environment.  This requires tools that pro-
vide a multitude of perspectives on the data.  As JAGUAR 
transitions to an operational environment, an intelligent 
user interface must be provided to the users so that they do 
not have to labor to understand the underlying technology 
and can develop trust in the results generated by the auto-
mated tools. 
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