
High Productivity Computing Systems for
Command and Control

13th ICCRTS: C2 for Complex Endeavors
Bellevue, WA

June 17 – 19, 2008

Scott Spetka – SUNYIT and ITT Corp. – scott@cs.sunyit.edu
Christopher Flynn – Air Force Research Laboratory, Information Directorate

- Christopher.Flynn@rl.af.mil

• Pub/Sub Model

• Chapel, X10, MPI

• Language Comparison

• Conclusion

Outline

Pub/Sub ModelPub/Sub Model - GPAS

Pub/Sub ModelPub/Sub Model - Fragmented

Chapel X10 MPI

Used Chapel

compiler

version 0.6.

Chapel 0.7

x10-1.0.47

used in this

study.

Current is

MPICH 2.0

verson 1.0.6.

Current is

now 1.0.7

Chapel, X10, MPI

Chapel X10 MPI

Ongoing

email group.

Some

examples.

Newsgroups.

A lot of

examples.

Mature

Documentati

on

Documentation/Help

Chapel X10 MPI

Define data

distributions

separate

from variable

Define data

distributions

separate

from variable

Collections

are built

from local

component

Data Distribution

Chapel X10 MPI

Inheriting

from multiple

base classes,

with

Interfaces

(Java

approach to

multiple

Used

Mpich2.0 not

OO (OOMPI

or MPI C++

Object-Oriented

Chapel X10 MPI

”Sync”

variables and

“atomic”

statement

”async” and

“finish”

operations on

remote data

”barriers”

and

“communicat

ors” for

Synchronization

Chapel X10 MPI

Type the

compiled

executable

name.

Use

“testScript”,

find output in

log and error

Use Mpich2

scripts to

start mpd

and mpiexec

Running the Code

Chapel X10 MPI

Transparent

Global

Partitioned

Address

Transparent

Global

Partitioned

Address

Workers

share data

by “send”,

“receive”

Sharing Data

• Offers a variety of mechanisms that can assure cooperating processes are synchronized.

• Sync variables were used to synchronize producers and consumers. Sync and single variables

are easy to use and an interesting feature of the Chapel language.

• Could not use Chapel "atomic" sections because they are not yet implemented.

• Time related functions, like sleep, are supported through a Time module. External function call

mechanism also supported.

• Added synchronization for multiple brokers.

• Easy to extend synchronization for more complex pub/sub model.

• Easy to extend pub/sub example code to experiment with other built-in data distributions.

Chapel Language Experience

• This study was unable to get Eclipse set up yet to work with the X10 code.

• X10 has a lot of built-in functionality, including most of Java. X10 is implemented as an extension

of the Java language, replacing some of its functionality. Also inherited disadvantages of Java for

high performance computing, including garbage collection and lack of pointers.

• We worked with array distribution code examples and then built a process distribution version.

X10 has a lot of examples to work with. The runtime environment, based on their test harness

was easy to work with, but put all output into a test results file. This is reasonable for checking to

be sure that all test codes work correctly for each build.

• We implemented code to print the processing locations where operations take place and verified

that operations were taking place at each processor at the correct time.

X10 Language Experience

	 Pub/Sub Model
	 Pub/Sub Model

