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Chapel X10 MPI
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Chapel X10 MPI
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Chapel X10 MPI

”Sync”

variables and 

“atomic”

statement 

”async” and 

“finish”

operations on 

remote data 

”barriers”

and 

“communicat

ors” for 

Synchronization 



Chapel X10 MPI
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Chapel X10 MPI
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• Offers a variety of mechanisms that can assure cooperating processes are synchronized.

• Sync variables were used to synchronize producers and consumers. Sync and single variables 

are easy to use and an interesting feature of the Chapel language.

• Could not use Chapel "atomic" sections because they are not yet implemented.

• Time related functions, like sleep, are supported through a Time module. External function call 

mechanism also supported.

• Added synchronization for multiple brokers.

• Easy to extend synchronization for more complex pub/sub model. 

• Easy to extend pub/sub example code to experiment with other built-in data distributions.

Chapel Language Experience



• This study was unable to get Eclipse set up yet to work with the X10 code.

• X10 has a lot of built-in functionality, including most of Java. X10 is implemented as an extension 

of the Java language, replacing some of its functionality. Also inherited disadvantages of Java for 

high performance computing, including garbage collection and lack of pointers.

• We worked with array distribution code examples and then built a process distribution version. 

X10 has a lot of examples to work with. The runtime environment, based on their test harness 

was easy to work with, but put all output into a test results file. This is reasonable for checking to 

be sure that all test codes work correctly for each build.

• We implemented code to print the processing locations where operations take place and verified 

that operations were taking place at each processor at the correct time.

X10 Language Experience
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