
© 2008 The MITRE Corporation. All rights Reserved.

Seth Landsman, Ph.D.
Sandeep Mulgund, Ph.D.
The MITRE Corporation
Bedford, MA 01730

Design Patterns for Net-
Centric Applications

© 2008 The MITRE Corporation. All rights Reserved.

Overview

■ Introduction

■Design Patterns
– Data Interaction Patterns
– Core System Design Patterns

■Example Implementation: User Defined Operational
Pictures

■Summary

© 2008 The MITRE Corporation. All rights Reserved.

Introduction

■ While making data available to other services is a key
requirement for net-centric applications and services, it is not
sufficient
– Data needs to be synthesized into the larger C2 picture to be

valuable
■ What is the next step after making data available?

– How do you move towards net-centric consumption of available net-
centric data sources?

■ Our work focuses on developing the design patterns that are
associated with consuming and exploiting net-centric data
– How do we partition a net-centric application so that it is not

dependent on specific data formats and access methods?
– How do we support multiple interaction styles for retrieving data?
– How do we support different data formats that are produced by data

sources?
– What are effective strategies for managing information and control

flows within a net-centric application?

© 2008 The MITRE Corporation. All rights Reserved.

Design Patterns

■ These design patterns are recurring solutions to software design
patterns we see in the construction of net-centric consumer
applications

■ Data Access Patterns
– How is data obtained from the system of record into the net-centric

application
- Request/Reply
- Publish/Subscribe
- Multi-part workflows

■ Core Integrating Design Principles
– What are the core principles that enable the construction of a net-

centric application

© 2008 The MITRE Corporation. All rights Reserved.

Design Patterns: Data Access

■ Publish / Subscribe
– Ongoing poll of a data source by

the client
– Client determines parameters of the

connection and occasionally
requests new data

– Examples: JMS, RSS feed, WS-
Messaging

■ Request / Reply
– One-off request from the client

service to retrieve data
– Examples: SOAP, RPC, REST /

HTTP

© 2008 The MITRE Corporation. All rights Reserved.

Design Patterns: Data Access

■ Multi-Part Workflow
– Combination of request /

reply and publish / subscribe
requests

■ Example:
– Client request list of available

data items from a service
– User chooses one or more

data item to subscribe to
– Client subscribes to selected

data items

© 2008 The MITRE Corporation. All rights Reserved.

Core Integrating Design Principles

■ Loosely Coupled Architecture
– Create strict boundaries and clear interfaces between functional

components
■ Asynchronous Data Transmissions

– Use messaging to eliminate dependencies on timely component
response

■ Localized dependencies on Specific Data Formats
– Choose a handful of key data formats that can be leveraged within

the system and the system can transform system of record data into
■ Encapsulate Message Flows With Schemas

– Use well understood data formats for message flows, allowing new
components and new clients to be added

■ Leverage COTS and Localize Dependencies
– COTS products may provide useful functionality, but any use of

these additional features should be localized

© 2008 The MITRE Corporation. All rights Reserved.

Example Implementation: User Defined
Operational Pictures

■ User Defined Operational Pictures (UDOP) is a C2 system to create,
visualize and share decision-focused views of the operational
environment

- Based on the need to support accurate situational awareness and
timely decision-making in a distributed C2 environment

© 2008 The MITRE Corporation. All rights Reserved.

Example Implementation: User Defined
Operational Pictures

■ Three layer architecture, information infrastructure, UDOP
services, and presentation applications
– Well defined connections between each layer

© 2008 The MITRE Corporation. All rights Reserved.

UDOP Key Design Patterns
Pattern Description Application in UDOP

Messaging Asynchronous inter-component communication Communication between data
source adapter to presentation
worker and presentation worker
to clients

Observer Observer subscribes to a subject, eliminating one-
to-one messaging flows

UDOP repository changes are
sent to clients

Proxy Proxy object provides intermediary access for a
delegate

Management of data sources is
proxied through the data source
adapter

Adapter Adapter transforms the interface and output of a
class

Adapt data sources into a
common interface and emit
UDOP data in a common
vocabulary

Strategy Algorithm or class is selected at run-time Construction of a client-specific
presentation pipeline

Aggregator Individual messages are collected and published as
a single, integrated message

Collect data source adapter
messages to avoid overwhelming
the client

© 2008 The MITRE Corporation. All rights Reserved.

Summary

■ More mission-oriented data is becoming available through net-
centric data sources
– Ensuring that systems can visualize, transform, and support

sensemaking over that data is becoming increasingly critical

■ A type of design approach is needed that is different than the
traditional “stovepiped” system methods

■ Our recommendations for developing net-centric consumer
applications are:
– Build a loosely coupled application with clear data and control flows
– Normalize the interaction with data sources, reducing the impact of

new access methods or data formats on the rest of the net-centric
application

© 2008 The MITRE Corporation. All rights Reserved.

BACKUPS

© 2008 The MITRE Corporation. All rights Reserved.

Recommendation 1: Employ loosely
coupled architectural principles
■ Loosely coupled architectures lead cheaper scaling,

maintenance, and modification
■ A loosely coupled system has two key properties

– Well defined flows of control and information defining component
interaction

– Strict and enforced boundaries between components
■ An effective loosely coupled architecture should

– Decompose distinct functional elements at an appropriate level of
granularity
■ Well defined boundaries and flows between components

– Separate generic and specific functional elements
■ Decouple and re-use the generic components

– Separate core business logic from implementation-specific details
■ Separate the “special sauce” of the deployment environment to avoid

being tied to a specific application server / database / etc

© 2008 The MITRE Corporation. All rights Reserved.

Recommendation 2: Define Strategies for
Normalizing interaction with data sources
■ Even with standard data representations, there are numerous,

disparate ways to access and interact with data
■ A net-centric consumer needs to limit the impact of supporting

an increasing number of data sources with different
– Access methods
– Filter parameters
– Data formats

■ An effective data consumer should consider
– Workflows for data retrieval

■ Decomposition of complex, multi-part workflows into a series of simple
workflows

– Appropriate use of different interaction styles
■ Request/Reply and publish/subscribe workflows are not equivalent, and

should not be used interchangeably

	Design Patterns for Net-Centric Applications
	Overview
	Introduction
	Design Patterns
	Design Patterns: Data Access
	Design Patterns: Data Access
	Core Integrating Design Principles�
	Example Implementation: User Defined Operational Pictures
	Example Implementation: User Defined Operational Pictures
	UDOP Key Design Patterns
	Summary
	BACKUPS
	Recommendation 1: Employ loosely coupled architectural principles�
	Recommendation 2: Define Strategies for Normalizing interaction with data sources

