13t ICCRTS
“C2 for Complex Endeavors”
Title of Paper:
Beyond Reactive Planning:
Self Adaptive Software and Self Modeling Software in Predictive Deliberation
Management

Topics

C2 Concepts, Theory, and Policy: Cognitive and Social Issues
Authors: Jack Lenahan, Mike Nash, and Phil Charles
POC: Jack Lenahan
Organization: Office of the Chief Engineer
Space and Naval Warfare Systems Command
Charleston, S.C.

Address: P.O. Box 190022
N. Charleston, South Carolina: 29419
Phone: 843-218-6080
Email: John.Lenahan@Navy.mil

Introduction

The purpose of this paper is to examine an approach to planning which extends
beyond the traditional reactive planning state space. We present the following
hypothesis: predictive deliberation management using self adapting and self
modeling software will be required to provide mission planning adjustments after
the start of a mission. This to support the requirement for dynamically adaptive
planning.

Self adaptive software evaluates its own behavior and changes behavior when the
evaluation indicates that it is not accomplishing what the software is intended to do,
or when better functionality or performance is possible.

Self modeling systems construct their own abstractions as a basis of computational
intelligence.

In order to provide a proper process context for the evolution of software toward
this level of autonomy, and in alignment with the proposed planning maturity
models, we put forth a concept of a NCW C2 Software Maturity Model. This new
C2 software maturity model will take software beyond the service oriented
paradigm into a new era of software designing its own replacements or
modifications in order to satisfy new command and control requirements.

Introduction Continued

In this paper we explore the possibility of expanding the definition of predictive deliberation to include
computing the time necessary for permitting self adaptation to solve planning problems after the plan
execution begins. We discuss several agent architectures to accomplish this based upon the notion of agent
reputation. Through self modeling, an “honest agent” will be able to self evaluate whether or not it was
capable of producing the changes required to successfully adjust a plan. If the original un-adapted agent
believed that it could make the necessary changes to the plan, it would simply “adapt the plan” to the new
requirements. If the honest agent did not believe that it had the planning capability required, it would adapt
itself.

We advance the following approach to self-adaptation:

— Determine the new capabilities required and then find the new planning capabilities required by
conducting a “reputation based search” on the GIG. After discovering the required components and
services, the agent will then bind to them thus creating a new version of itself capable of solving the
new planning problems in the time allocated by the “predictive deliberator function”.

— If the merging of capabilities results in a set of integrated agents under the control of a manager agent
rather than a single large or complex agent, we have dubbed this configuration a “Mogul”.

The reputation mechanism we propose is a modified aggregation operator necessary to perform dynamic
reputation scoring possibly from many sources concerning the same agent or collection of agents acting as a
mogul.

Finally we propose a C2 agent planning software capability maturity model which would hopefully provide
a roadmap for the creation of this level of capability.

Self Modeling Systems

Self modeling systems construct their own abstractions as a basis of computational
intelligence

The literature describes “Self modeling systems” as systems capable of constructing their
own goals rather than simply attempting to carryout goals given to it exclusively from the
outside

Reactive agents are too slow to operate effectively in complex environments

We need anticipatory agents with models of their own processes so they can identify
anomalies in their behavior or in their environment’s behavior.

Suppose a planning agent fails to successfully plan for a particular task or set of tasks, it is the
goal of this type of autonomous system to maintain rules which say “I can do better than this
and | need to improve myself by adapting because my current self model does not
demonstrate sufficient capability to perform a particular task successfully”

Please note that this can be enhanced by continuous synthetic stimulation, adaptation, and
testing when the agent is not engaged in a mission. The agent can then anticipate future
capability needs for itself and include these in its self model. Thus, the agent can begin the
process of self adaptation without the pressure of time constraints.

Self Adapting Systems

o Self adaptive software evaluates its own
behavior and changes behavior when the
evaluation indicates that it Is not
accomplishing what the software is intended to
do, or when better functionality or
performance is possible?.

Predictive Deliberation and Self Adaptation

* Predictive deliberation attempts to predict in
advance how many remaining decisions there are to
make, how much time there is to make a particular
decision and how long it will take a particular
planning agent to make that decision.

* |n addition we are modifying this definition to state
that predictive deliberation must determine if an
agent has the time to ‘self modify’ or adapt itself
given a new planning requirement

A Planning Agent Talks to Itself

If we assume the perspective of a planning agent in this
context, we may have the following conversation with
ourselves as planning agents: “| may need to evaluate my own
planning competency rating or reputation since my planning
reputation does not match the planning skills or planning
competency required by the change in the mission. But if |
had two additional components inside me, | could accomplish
the planning task in half the required time.” In other words,
extend the predictive deliberation management functions to
ask the following question: “what capabilities would an agent
need to perform this task in time and is it possible to
reconfigure (adapt) the existing planning agents in time to
complete the superior plan?”

How does the agent self adapt to new
olanning requirements?

e First it asks itself if it is competent to perform
the new planning task requirements

e Second if the answer to the above question is
no, it can take 2 approaches:

— ‘Outsource the Planning Work” work to other
agents on a reputation bidding basis

— Discover other agents through a reputation based
search and bind to them forming a larger version

of itself

Am | good enough at Planning?

And if my (agent) planning skills do not match the planning tasks to be accomplished in the time predicted, do | have enough
time to reconfigure myself into a better planner? (Predictive deliberation with self adaptation of the agents). By requesting
services from other agents, the incomplete agent could integrate the components within its own code body or establish a
collaborative planning capability with other agents with the newly required skills.

Several schemes are available:

— The component centric work of Karsai et.al involves a technique which includes a supervisory layer and a run time
infrastructure which does not use CORBA style interfaces.

— The next type of agent planning model which I have termed a Mogul, is based upon Minsky’s’ work and in effect
becomes a “society of planning agents”, each agent providing a specific planning capability invoked as required by a
supervisory agent or Mogul. It is the Mogul’s task to engage in contract and QoS negotiations with the other agents
required for a particular task and to establish the agent based communications and data strategy required to be
successful with such an architecture. The predictive deliberator in this case must have predicted that sufficient time
exists for agent architecture creation on the fly, contract negotiations, and architectural testing.

— The “Huge Local Component Library” concept usually is applied to traditional software applications. Everything in
the library is put in the include file along with an enormous set of “hard wired rules” which invoke the different
modules upon the demand of some supervisory component, recompiling only the required modules at run time.

— Probabilistic agent architectures which, given a short time to reconfigure by the predictive deliberator, compute a
probabilistic model of which other components or agents will be likely satisfy a given set of new requirements and
then construct the probabilistic model under the assumption that the new configuration will actually generate an
acceptable plan and then execute the plan at run time with no testing.

— Workflow or BPEL based architectures, which may consist of agents, components, web services, or any combination
of these structures. Architectures of this type are less inviting since they usually rely only on web service descriptions
(UDDI level descriptions), or component descriptions or other types of Meta-data which do not support the rather
detailed level of data modeling required to perform dynamic reconfigurability. The other issue with this approach is
that the BPEL and Workflow engines are usually human centric and therefore are incompatible with dynamic
reconfigurability.

How do you get there from a software
perspective?

Planning Maturity Model

planning approaches

Dynamically
Traditional Collaborative Edge Adaptive

Shared
Understanding

Widespread
Information Sharing

Controlled/Restricted
Information Sharing

(=]
=
o

c

[Le]
17

i

(¥}
o

c

=
©

c
ke
)

(10}

=
=

[7]
Y

o

Q

E

(=]

@
o

Planning versus software maturity

Planning Agent Sofiware Maturity Model

Traditional Collaborative Edge Dynamically
Adaptive
A ScdiModeling & .
Self Adaptive Agents
Agent Trust & . .
AgentBased Reputation
Planning Capabilities
Software
Sophistication | Tnter Agent . . .
Scale Communications
Traditionsl
Software
Planning Sophistication Scale >

Pleaze neie that fer this discossen edge planning requires that decsien rizhis be meved forther dewn the traditienal chain
of command soch that edge planners may exernie their plans with 2 minimom of srFanizatisnal everhead . Thos, planning agent
reputaiiens will need te emersr which will enable grewing confidence in the delegation of decsien nights iw the edge.

Reputation Model

Reputation
M

Direct Reputation :‘i’”‘”_
T 7y
Interaction -
Desived R tats Observed Reputation
Prior Derived Group Dernived Propagated
Reputation Reputation Reputation

Conclusion

In order to achieve the goals of dynamically adaptive planning
and predictive deliberation, we believe that a movement
must be made towards software that is able to reconfigure
itself on the fly.

Our research indicates that self modeling and self adapting
agents, which can earn a reputation, offer the best approach
to solving this problem.

Our research and that of others also indicates that the use of
peer to peer agent communications offers a much more
flexible methodology in terms of orchestrating mission
sequences than does a BPEL or Workflow engine which
requires human intervention.

