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Abstract— A new method is proposed to estimate the probability 
distribution of specific communication network measures.   Real 
world communication networks are dynamic and vary based on 
an underlying social network, thus reliably estimating network 
measures is challenging.    Two individuals that are socially 
connected may communicate several times one day, and not at all 
on another, yet their basic relationship remains unchanged.  In 
this situation, estimates of network measures, such as density, 
degree centrality and others may be severely affected by the 
occurrence or absence of observed communication ties between 
individuals.   

The communication network of a group of mid-career Army 
officers is modeled from empirical data using the network 
probability matrix (NPM) proposed by McCulloh and Lospinoso 
(2007).  The NPM provides a framework to model a 
communication network by estimating the edge probabilities 
between two individuals in a network.  This framework can model 
a specific social group regardless of their network topology: 
random, small-world, scale-free, cellular, etc.  Monte Carlo 
simulation is used with the NPM to generate 100,000 instances of 
the communication network.  A statistical distribution is fit to the 
density measure.  Using this probability distribution, statistically 
significant changes in density can be detected. 

 
 

Index Terms—NPM, Network Probability Matrix, Social 
Network, Density, Distribution 

 

I. INTRODUCTION  
arious techniques are used in the network science 
community for the simulation of networks.  These 

frameworks typically are based on the topology and 
structure of the network i.e. triads, dyads and cliques.  
However theses techniques do not always take into 
account all of the factors that contribute to the dyadic 
relationship between agents.  In a network an agent may 
not care that there is a triad between 3 other agents or that 
certain agents in the network have dyadic ties.  The agent is 
primarily concerned with his or her own dyadic 
relationships leading to an underlying dynamic equilibrium 
in the network.   
 
 This dynamic equilibrium involves an underlying edge 
probability structure that contains a probability that each 

agent will communicate with every other agent in the 
network.   

 
This probability structure remains constant in the 

network independent of observations at a single instance in 
time.  In a single observation the appearance of a tie does 
not indicate that a relationship exists as the communication 
may have been made in error.  Conversely the lack of 
communication between two agents in a single observation 
does not indicate the lack of a relationship as an agent is 
not consistently communicating with every agent he has a 
relationship with at all times.  While the appearance or lack 
of communication does not indicate that the relationship 
between two agents exists, the communication at a single 
observation relies on the underlying probability that the 
agents will communicate.   

 
The network probability matrix (NPM) proposed by 

McCulloh and Lospinoso (2007) posits that networks can 
be simulated based on the underlying probability structure 
of the dynamic equilibrium.  This framework estimates the 
edge probabilities between each combination of two 
individuals in a network.  Probability estimation can range 
from a proportion of communications in a series of 
observations or be estimated from more complex 
distributions depending on the amount and type of data 
present.  This structure can then be used to simulate a 
variety of network topologies: random, small-world, scale 
free, cellular, ect.   

 
The edge probability structure of the underlying 

dynamic equilibrium remains constant in the network while 
the network is at a stable state.  However, it may shift as 
shocks to the network take place.  Using Monte Carlo 
simulation, the underlying distributions of network 
measures can be determined while the network is in its 
dynamic equilibrium.  These underlying distributions can 
be used in change detection and allow us to statically 
predict shocks to the network and may be an indicator to 
determine when significant changes occur.   

 
 

 V
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ore, weak ties are activated to 
bridge out of our circle of friends and into the outside 

3).  

versely, a 
value close to 0 shows that a node’s first order connections 

rough that particular node. 

II. BACKGROUND 
Social network analysis is a theoretical framework that 

examines the relationships between social entities (e.g. 
people, groups, organizations, beliefs, knowledge, etc.).  
These objects are known as nodes and their connections 
are referred to as edges.  Not all nodes are connected while 
some nodes are connected with multiple relationships.  
This network framework is applicable in a plethora of 
content areas such as communications, information flow, 
and group or organizational affiliation (Titchy & Tushman, 
1979).  Social network analysis relies heavily on graph 
theory to make predictions about network structure.   

 

A. Erdős-Rénia Random graphs 
In 1959 mathematicians Paul Erdős and Alfréd Rénia 

made revolutionary discoveries in the evolution of random 
graphs.  In their eight papers Erdős and Rénia evaluate the 
properties of random graphs with n vertices and m edges.  
For a random graph G containing no edges, at each time 

step a randomly chosen edge among the  possible 

edges is added to G.  This graph contains N edges and 

each edge of the  possible edges is equally 

likely.  Therefore, once an edge is chosen from the  

equally likely edges the next edge is chosen among the 

remaining  edges and this process is continued so 

that if k edges are fixed, all remain k−  edges 

have equal probabilities of being chosen (Erdős & Alfréd 
Rénia, 1960).  A general model used to generate random 
graphs is as follows: “For a given p, 0 ≤ p ≤ 1, each 
potential edge of G is chosen with probability p, 
independent of other edges.  Such a random graph is 
denoted by G
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n,p where each edge is determined by flipping 
a coin, which has probability p of coming up heads (Chung 
& Graham, 1998).”  In this model of random graphs each 
edge has an equal probability of occurring or not occurring 
within the graph.  This random graph model also assumes 
that all nodes in the graph are present at the beginning and 
the number of nodes in the network is fixed and remains 
the same throughout the network’s life.  Additionally, all 
nodes in this model are considered equal and are 

1999).  
 

B. Statistical tests 
Utilizing Erdos’ theory of random graphs as well as the 

class of uniform distributions associated with these graphs, 
Holland and Leinheart (1971) developed a variety of 
statistical tests for the analysis of social networks.  Using a 
uniform distribution these tests spread the total probability 
mass equally over all possible outcomes, therefore giving 
an equal probability to the existence of an edge between 
any two nodes in the network.  These statistical tests were 
used to develop a reference frame or constant benchmark 
to which observed data could be compared in order to 
determine how “structur

& Wasserman, 1994).
 

C. Strength of weak ties 
In 1969, Mark Granovetter proposed the strength of 

weak ties.  In Granovetter’s social world our close friends 
are often friends with each other as well, leading to a 
society of small, fully connected circle of friends who are 
all connected by strong ties.  These small circles of friends 
are connected through weak ties of acquaintances.  In turn, 
these acquaintances have strong connections within their 
own circle of friends.  The weak ties connecting circles of 
friends play an imperative role in numerous social activities 
from finding a job to spreading the latest fad.  Close 
friends who have strong connections are often exposed to 
the same information, theref

world (Granovetter, 197
 

D. Small World Networks 
Building off of Granovetter’s model Duncan Watts and 

Steven Strogatz (1998) developed the clustering coefficient, 
dividing the number of links of a node’s first order 
connections by the number of links possible between these 
first order connections.  This clustering coefficient 
illustrates the interconnectivity of a circle of friends, where 
a value close to 1 demonstrates all first order connections 
of a node are connected with each other.  Con

are only connected th
 

E. Scale Free Networks 
The clustering coefficient of the Watts-Strogatz small 

world network model is the first to reconcile clustering 
with the characteristics of random graphs.  According to 
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 rewired some of the 
links to distant nodes, the addition of random links was 
pr

 that contains most of the links in the 
network and creates short paths between any two nodes in 
th

ollecting new links while newer 
nodes with lower degrees do not collect as many links 
(B

connections based completely on preferential attachment 
new n

the Watts-Strogatz model each node is directly connected 
to each one of its neighbors resulting in a high clustering 
coefficient.  By clustering alone, this model has a high 
average path length connecting two random nodes. 
However, by adding only a few random links between 
nodes of different clusters the average separation between 
nodes drastically decreases.  This model while containing 
random links between nodes keeps the clustering 
coefficient relatively unchanged (Watts & Newman, 1999).  
While the Watts-Strogatz model originally did not add 
extra links to the graph but randomly

oposed by Watts and M. Newman. 
 
According to Albert-László Barabási the random graph 

theory of Erdős and Rénia was rarely found in the real 
world.  Barabási has found that many real world networks 
have some nodes that are connected to many nodes and 
others that are connected to few nodes.  His empirical tests 
showed that the distribution of the number of connections 
in many networks all followed a power-law distribution.  
These networks lack the characteristic scale in node 
connectivity present in random graphs, and therefore, are 
scale-free (Barabási, 2003).  As a result of the number of 
connections following a power distribution, hubs are 
created among nodes in the network.  A hub is a highly 
connected node

e network.    
 
Barabási’s model of scale-free networks is constructed 

around two ideas—growth and preferential attachment.  
For each time step a new node is added to the network.  
This illustrates the principal that networks are assembled 
one node at a time (Barabási & Albert, 1999).  Assuming 
that each new node connects to the existing nodes of the 
network with two links, the probability that the new node 
will choose a given node is proportional to the number of 
links the chosen node has.  Therefore, a node with more 
links has a higher probability of being connected to.  This 
creates a “rich get richer” scenario where nodes with many 
links continue to grow by c

arabási & Albert, 1999). 
 
Based on a scale-free network model where nodes make 

the probability that a ode will connect to a node with 

k links is given by 
∑i ik

 (Barabási, 2003).  This causes 

the first nodes in the network to develop into hub nodes 
due to having the longest time to

k

 collect links.  However it 

is not always the case that the first nodes in a network 
 biggest hubs.   

and its fitness.  In this model the probability a new node 
will conn

develop into the
 

F. Fitness Model 
In order to account for newer nodes overtaking older 

nodes as hubs, Barabási constructed the fitness model.  
Fitness is a nodes ability to collect links relative to every 
other node in the network and is based on competition in 
complex systems (Barabási, & Bianconi, 2001).  In this new 
model a node’s attractiveness is not determined completely 
by its number of links, but preferential attachment is 
driven by the product of the number of links a node has 

ect to a node with k links a fitness of η  is 

∑i iik η
kη

(Barabási, & Bianconi, 2001).  Nodes in this 

model acquire links following the power law distribution of 
the scale-free model, however, the dynamic exponent, β, 
which determines how fast a node acquires new links, is 
different for each node.  This is proportional to a node’s 
fitness, therefore, a node that is twice as fit as another 
node will obtain nodes twice as fast because its dynamic 
exponent is twice as large.  This “fit-get-rich” model allows 
nodes to become hubs based on their attractiveness 
regardless of when they enter the network (Barabási, & 

y nodes.  This 
network develops a star topology and nodes do not acquire 

 distribution.   

o

Bianconi, 2001).   
 

G. Winner Take All Model 
Contrary to the scale-free network model Barabási 

developed the “winner take all model,” which strongly 
portrays monopolies.  The “winner-take-all-model” 
consists of a single hub and many tin

links following a power law
 

H. Network Probability Model 
Ian McCulloh and Joshua Lospinoso (2007) proposed a 

new structure for random communication networks over 
time, based on empirical data collected on real world 
networks.  This framework, estimates distributions for the 
time between communication messages, then based on a 
given time interval the probability of an edge occurring in 
the network is calculated for every ordered pair of nodes.  
These probabilities can be constructed through multiple 
techniques.  T  derive the probabilities from empirical data 
collected over several time periods, a proportion of edge 
occurrences, ije , can be used to estimate probabilities for 
each cell in the adjacency matrix aij.  These probabilities are 
displayed in a network probability matrix where each cell is 
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teractions of agents in a network collected by a self 

reported communications survey. 
 

res the distribution of the density 
measure in simulated networks using the network 
pr

elow is an outline of the approach pursued in this 

er of discrete time 
periods to determine the underlying edge probabilities for 
the network in dynamic equilibrium.   

imulation to create a dataset 
of 100,000 network densities. 

ta 

e hamming distances were then analyzed using a t-
test.   

nsity is ormally distributed, given 
certain assumptions. 

and the simulated hamming distances.  
Additionally, since 

the probability that node i communicates with node j.  This 
framework is capable of generating networks that are 
similar to scale free networks.  Thus, this model can be 
used to construct any network topology: Erdős-Rénia 
random, Watts-Strogatz small world, Albert-Barabási scale-
free, star, cellular, ect. The NPM model is estimated f

hips in spec

III. DATA 
This research evaluates the density of a real world 

network in order to find the underlying distribution of 
network density.  The data was collected from a war 
fighting simulation in FT Leavenworth, KS in April 2007 
by Craig Schreiber and Lieutenant Colonel John Graham.  
There were 99 participants in the experiment that were 
monitored over the course of four days.  This 99 agent 
data set was then cut down to 68 agents.  These 68 
participants served as staff members in the headquarters of 
the brigade conducting the exercis
in

IV. METHOD 
Our study explo

obability matrix.  
 
B

study: 
 

A. Construction of the Network Probability Matrix 
In order to simulate the network it is necessary for a 

network probability matrix, (NPM) to be created.  Once 
the datasets were trimmed of the scripted agents, they were 
symmetrized across the main diagonal in the 
Organizational Risk Analyzer (ORA) to account for the 
lack of directionality of communication in the data.  
Symmetrizing the data also corrects for the informant error 
of agents not reporting other agents they have 
communicated with.  Next, the datasets were dichotomized 
to remove the weighting set by the participants.  Once the 
data is dichotomized a one represents communication 
between two agents and a zero represents the lack of 
communication between two agents.  To construct the 
NPM all eight data sets were compiled into a single data set 
consisting of the total number of discrete time periods that 
each agent communicated with each other agent.  This 
matrix was then divided by the numb

 

B. Simulation Generation 
The NPM was then used as the edge probabilities for a 

Monte Carlo simulation of the network.  In this simulation 
a random number was generated for each edge.  If the 
random number is less than the edge probability then the 
edge is added to the graph.  This algorithm was used to 
create 100,000 simulations of the network.    Once 100,000 
simulations of the network were completed the average 
de sity was taken from each sn

 

C. Reliability and Consistency 
To analyze the reliability and consistency of our 

simulations hamming distances were utilized.  Using the 
NPM, 60,000 instances of the network were simulated.  
The average hamming distance from each empirical da
set to every other empirical data set and from each 
simulated network to each empirical data set.   These 
av rage

 

D. Distribution fitting 
The normal distribution was fit to the data using 

Maximum Likelihood Estimation.  An Anderson-Darling 
goodness of fit test and a comparison of the estimated 
cumulative distribution function to the data’s empirical 
distribution function indicated a very good fit for the data.  
In addition, since the density is a linear function of the 
average node degree, the central limit theorem would 
suggest that the de n

 

V. RESULTS 
Using the t-test it is shown that the simulated networks 

have a smaller average hamming distance to the empirical 
data sets than each empirical data set is to each other.  This 
illustrates that the simulated networks give a more reliable 
and consistent approximation of the underlying 
distribution.  The results of the t-test are shown below in 
Table 1. Where column one is the average hamming 
distance from each empirical data set to every other 
empirical data set and column three is the average 
hamming distance from 60,000 networks simulated with 
the NPM to each of the empirical data sets.  The p-value of 
each test is approximately zero indicating that there is a 
statistically significant difference between the empirical 
hamming distances 
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Table 1. t-test of Average Hamming Distances 

     

her.   

M 8 N 60000 

Data 
Se

Hamming 

Empirical 
N

Empirical 
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Simulated 
N

Simulated 
Ne t

p
vat 

Mean 

Distance 
to 

etworks 

Standard 
Deviation of 
Hamming 
Distance to 

tworks 

Mean 
Hamming 
Distance to 

etworks 

Standard 
Deviation of 
Hamming 
Distance to 

tworks -test 
-

lue 

1 409.286 38.560 358.094 12.775 3.755 0.00

2 365.857 18.298 320.097 12.739 7.073 0.00

3 365.857 29.043 320.164 12.793 4.450 0.00

4 377.857 38.247 330.674 12.773 3.489 0.00

5 375.286 36.100 328.377 12.796 3.675 0.00

6 349.857 38.159 306.078 12.785 3.245 0.00

7 373.8571 48.45076 327.0728 12.82622 
2.7311
35 0.01

8 362.4286 55.63529 317.1509 12.77754 49 0.02
2.3018

 
Once the reliability and consistency of the simulations 

created using the NPM was established, the distribution of 
the density could be analyzed.  Since density is a linear 
function of a sample average of a network statistic 
according to the formula 

)1( −
=

n
density , 

and the sample size, n, is greater than 30 the central limit 
theorem can be used to show that the underlying 

is the no

degreeavg

rmal distribution, 
6148.   

his is also shown in Figure 1.   

 
Figure 1. Stepwise Plot of Density Data  
and CDF of the Normal Distribution 
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This graph shows the stepwise plot of the 100,000 
densities overlaid with the CDF of the normal distribution.  
The sum of squared error of this model is 9.60609.  This 
small sum of squared error reinforces the model shown 
above in Figure 1.   

ork simulations 

 statistically predict changes and 
shocks to a network.   

reating the Mathematica 6.0 simulations used 
in this study. 
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VI. CONCLUSION 
This research validates the use of the NPM for 

simulating networks based on empirical data.  The 
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provide a strong framework for analysis.   
 This research can be extended in at least three aspects: 
assessing the underlying distribution for other network 
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distribution for agent level statistical measures, and using 
these distributions to
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