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Abstract 
 
This paper examines the challenge of assessing operational measures of effectiveness 
given incomplete and often imperfect information. With the migration of software 
applications towards a service-oriented architecture and net-centric capability, the ability 
to capture, quantify, and aggregate uncertainty of information within a semantic 
framework will be integral to conveying the true operational picture. A potential way to 
represent the uncertainty of available data is through the incorporation of probabilistic 
information within a C2-focused semantic data structure. This paper establishes a 
notional framework for associating probabilities within a content-rich data structure and 
demonstrates this framework for the Mine Warfare operational measures of effectiveness. 
The management of multiple variable inputs and the improved bounding of uncertainty 
over time are developed within a Bayesian context. Finally, the implications of 
introducing a new method for handling uncertainty within an information-centric data 
model are explored.  
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Introduction 
 
With the advent of net-centric technologies and improved data gathering systems, tactical 
decision aids are achieving greater access to operationally-relevant information. The 
availability of tactical data provides greater opportunity to convey the level of uncertainty 
associated with a given mission. In particular cases, uncertainty surrounding an 
operational Measure of Effectiveness (MOE) may have a significant impact on both the 
variability of the metric calculation and the accurate communication of progress achieved 
towards the given metric. This paper utilizes the Naval Mine Warfare (MIW) example to 
explore the notion of uncertainty within an operational Command and Control (C2) 
context. Methodologies are considered for presenting uncertainty in information to both a 
human decision maker as well as to an automated expert system, which may be providing 
recommendations for potential Courses of Action (COAs).  The hypothesis explored is 
that including probabilistic information within a semantic data model can be a useful tool 
for considering multiple COAs within an uncertain operational context. 
 
The approach to this analysis is to briefly describe the mine warfare challenge and 
present a notional semantic framework to support C2 within a future data model. 
Semantic technologies have been identified as integral components to facilitate migration 
to a net-centric C2 architecture that can enable future expert systems. The semantic data 
framework, containing agreed upon definitions and hierarchical relationships to enable 
information exchange within a net-centric architecture, is based on the tactical contacts 
that may be found within the area of interest. These tactical contacts include all objects 
within the area of interest, both mines and non-mines. The number of total contacts in the 
area is a key assumption in the calculation of the primary MIW MOEs of the estimated 
risk to a transitor and the expected time required to clear all of the mines. The 
calculations required to arrive at these two metrics are then explained in detail. To 
convey the associated uncertainty, upper and lower bounds are drawn around the key 
metrics to convey the associated uncertainty. A methodology for determining an 
information score is derived for each MOE by considering both the inherent uncertainty 
in the probability as well as the underlying assumptions. This probabilistic information 
and information scoring technique are then tied back within the semantic framework 
previously described. Finally, using this data structure, several example COAs are 
generated to show the ability to make trade-offs between the two MOEs, given an 
uncertain operational context. 
 
The MIW Challenge 
 
The objective of the MIW mission is to reduce the risk of another ship hitting a mine 
while transiting through identified waterspace. Risk reduction is achieved through 
conducting mine countermeasures (MCM) effort.  The time to perform MCM effort is 
often limited and therefore becomes an important constraint when considering various 
courses of action (COAs) to employ MCM effort. Figure 1 illustrates the MIW problem 
of reducing risk within a specific area to support the reduction of risk to a transiting ship 
through the area.  
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Figure 1: Mine Warfare Problem 

 
In conducting MCM effort, mines and non-mines are discovered and prosecuted. “Risk” 
is defined as the probability of damage to the transiting ship and can be reduced through 
MCM effort. The expected time required to perform the MCM mission can be calculated 
by the number of all mine-like contacts (both mine and non-mine) in the area of interest. 
The fraction of mines removed, more commonly known as Percent Clearance, is an 
important underlying factor in determining the likelihood for the number of mines in the 
area and is a measure of the estimated results of MCM effort conducted in the area of 
interest. Percent Clearance can be calculated before any MCM effort has been conducted 
and with no knowledge of the number of mines in the area. This metric of the estimates 
results of the MCM effort can be updated as the mission progresses. 
 
MIW Measures of Effectiveness (MOEs) 
 
To calculate the Risk to a transiting ship and determine the expected time to conduct the 
MCM mission, it is useful to consider the underlying tactical contact information that is 
essential to determination of these operational objectives. The approach will be to create 
a semantic data model for both the underlying tactical contacts and the overarching 
MOEs for the MIW mission. This semantic data model will focus on the incorporation of 
probabilistic information as a method for incorporating uncertainty information within a 
net-centric architecture.  This paper applies and extends concepts described by George 
Mason doctoral student Paulo Cesar G. da Costa in his doctoral dissertation Bayesian 
Semantics for the Semantic Web (Costa, 2005). In this earlier body of work, an ontology 
standard is developed for Bayesian probabilistic semantics.  
 
To illustrate the making of a MIW data model, Figure 2 shows an abstraction of the 
contacts, both mine and non-mine, within the area. Basically, a contact is shown in the 
area, whether or not it is a mine.  
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Figure 2: Making a MIW Data Model 

 
Figure 3 focuses on the tactical contact and provides some examples of the types of 
metadata that could be associated with a tactical contact. These categories are notional 
only and meant to be representative of the types of metadata that might be included in a 
semantic data model.  
 

 
Figure 3: Making a MIW Contact Data Model 

 
For the purposes of incorporating probabilistic information within a semantic data 
framework for each MIW MOEs, it is necessary to provide “state” information as part of 
the data model for tactical contacts. A state is defined as the outcome of an event and can 
therefore be described by random variables. The states that are important to determining 
the MIW MOEs are: 

 Whether or not a contact is detectable 
 Whether or not a contact has been found 
 Whether or not a contact is mine-like (as determined by feature characteristics) 
 Whether or not a contact is a mine 
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Figure 4 depicts the combination of these various states with respect to the entire set of 
tactical contacts that exist in the area. (Note that contacts that are non-mines and also not 
detectable are not included as they do not directly impact either MIW MOE.) All other 
combinations of the states are shown to be mutually exclusive and when considered 
together, collectively exhaustive of the sample space. The sample space as shown in the 
diagram, represented by Ω, is the total number of contacts in “ground truth” in the 
operational area of interest.  

 
Figure 4: MIW Tactical Contact States 

 
The solid line circle on the left illustrates the total number of mines in the area, which are 
composed of detectable mines already found, detectable mines remaining, undetectable 
mines missed, and undetectable mines remaining. The solid line circle on the right 
describes the set of total mine-like Contacts (MILCOs) that are detectable in the area, 
which is made up of both mines and mine-like non-mines in the area of interest. Note that 
mine-like non-mines are described as MILCOs throughout this document. The total set of 
mine-like contacts in the area is composed of mines found, mines remaining, non-mine 
mine-like contacts, and non-mine mine-like contacts not yet found. The dotted lined 
circle at the top of the graphic represents information that is known with certainty. The 
information that is known by operational forces includes mines found, non-mine mine-
like contacts found, a fraction of undetectable mines that have been missed (usually 
estimated), and non-mine non-mine-like contacts that have been found. As might be 
expected, information that is known with certainty is influential in determining estimates 
for uncertain information external to this circle within the sample space.  
 
Calculation of the MIW mission objectives can be calculated within the context of this 
diagram. Percent Clearance is typically a driver in the MCM effort and is calculated as 
the estimated fraction of mines removed. It is important to note that this probability can 
be calculated based on a guess the number of mines that will be cleared through MCM 
effort. The primary MOE of Risk, or Probability of Damage to a Ship Transitor, is 
calculated by using information in the highlighted circle on the left, to include both 
assumed prior information and new information gained throughout the mission. In Figure 
5, the determination of Percent Clearance (shaded in gray), based on knowledge of MCM 
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effort applied in the area, is the common measure utilized by MCM forces to address the 
MCM problem.   
 

 
Figure 5: Relationship to MIW MOEs 

 
Similar to the calculation of Risk, the set of information represented by the circle on the 
right in the above diagram can be utilized to calculate an expectation of the time 
remaining to complete the operation to the desired level of clearance. For example, the 
number of false alarms will drive the MCM timeline, if not directly impact the Risk 
MOE.  In the following section, a methodology is described for calculating an 
expectation for the time remaining in the MCM operation. Upper and lower bounds are 
provided to qualify a range of uncertainty around this estimate.  
 
As the mission progresses, the set of information that is certain will become 
proportionally greater compared to the overall sample space representing ground truth. 
As this circle of certainty expands throughout the mission, the amount of uncertainty 
surrounding progress towards the mission objectives is correspondingly reduced. This 
research will present a methodology for calculating an information score associated with 
both MOEs described above. This information score methodology could serve as a useful 
tool for conducting the ongoing trade-off analysis between MOEs, using uncertainty as 
the negotiating factor. 
 
Estimated Risk (Probability of Damage) 
 
A significant amount of work in MIW research as been focused on the determination of 
Estimated Risk, defined as the probability of damage to a transiting ship caused by a 
naval mine. The current approach to calculating risk will be discussed, followed by 
extensions to this work to elaborate upon the presentation of uncertainty information.  
 
It can be observed that the concept of risk, and its calculation as a probabilistic measure, 
carries with it an inherent association with the notion of uncertainty. The attempt of this 
research is to communicate to the operational commander an understanding of risk and its 
associated uncertainty, which is more rich than simply providing a single risk value. This 
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approach attempts to account for complexities found in a real operational situation, such 
as the uncertainty associated with known data, accumulation of additional information, 
and the sensitivity of the metric to assumptions.  
 
From an operational perspective, there are two important points associated with utilizing 
the current approach. The first point is that there must be some information known about 
the presence of mines within the area in order to conduct the calculation. This 
information may be either information known with certainty (preferable) or else a guess 
may constitute that necessary information. The second point is the sensitivity of this 
metric to the total number of mines assumed in the area. The number of mines assumed 
in the area becomes a driver of the metric, although it should be noted that this sensitivity 
is less as the number of total mines is increased.   
 
To address the second point, the discussion of the presentation of this risk metric to the 
operation user has been raised, to enable the accurate communication of the metric and its 
sensitive to the assumptions by the operator. For this reason, it is useful to calculate 
Uncertainty Bounds around the expectation of Risk. 
 
Literature Review: Calculating the Estimated Risk 
The research in this arena of calculating the Estimated Risk to a transiting ship follows a 
Bayesian approach of determining the a priori distribution of mines and determining the 
likelihood function according to known information as to the number of mines found and 
clearance operations conducted in the area of interest. This Bayesian approach to 
calculating risk is described in detail in both the Decision Aid for Risk Evaluation 
(DARE) algorithm description document (Bryan, 2006) and a recent article published in 
Military Operations Research by Wagner Associates (Baker and Monach, 2006). 
Normalization is achieved by dividing by the sample space of all possibilities of the total 
number of mines in the area. The posterior distribution of mines remaining in the area is 
therefore determined from the number of total mines estimated.   
 
The variables that are required to determine the probability of the number of total mines 
in the area, given known information about the number of mines found and the fraction of 
mines removed are provided below: 

 n= total mines in the area in ground truth 
 m= mines found 
 p=percent clearance 
 r= mines remaining.  

 
The inputs into the calculation include Pr(n) for the prior distribution, Pr(m|n,p) as the 
likelihood function, and Pr(n|m,p) as the posterior distribution. 1

                                                 
1 A research focus for the mine warfare research community has been to determine the appropriate a prior 
distribution to use for the probability mass function of mines assumed in the area. Karna Bryan and Wagner 
Associates have improved upon solutions for calculating the prior, including implementation of a Dirchelet 
approach to the prior that is considered superior to a straight multinomial prior. The discussion surrounding 
the appropriate prior has revolved around the importance that the ‘learned’ information of the likelihood 
function should play within the Bayesian update. Because this area is not the focus of this research and for 
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that is often made in practice for the number of mines found m is to adjust upwards to 
m+1 to error on the conservative side.) The normalization function in the denominator is 
determined by determining the total probability (sum) for all possible values of n. 
Pr(r|m,p) can be inferred directly from the posterior given r= n-m. 
 
Once Pr(r|m,p) is derived, the expected number of mines remaining in the area is the 
expectation for r given m mines are found and p percent clearance achieved. 
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Risk can be calculated for each transitor given the expected number of mines. The 
required information for this calculation is the probability of mission abort for each 
transitor. Probability of Damage can therefore be calculated for multiple mine types and 
area segments, in addition to multiple transitors.  
 
 Pr( ) E[Pr( | )]D D r=  (0.3) 
 
Probability of Damage, or Estimated Risk, is therefore the expected value of the 
probability of damage given a certain number of mines remain in the area. 
 
Expounding on Uncertainty 
Uncertainty bounds can be determined on the posterior using a standard Bayesian 
credibility interval approach. Error can be given as an input ε to calculate the range 
values for the integral for the posterior probability determined above for Pr(r|m,p), 
represented here as the function f(r| m,p) where r represents a realization of the random 
variable R in the sample space Ω. R can be interpreted as the set of all possible outcomes 
for the number of mines remaining in the area. Note that a Bayesian Uncertainty Bound is 
analogous to a Confidence Interval in traditional statistics   
 

 
( , )

| ,
( , )

Pr( ( , ) ( , ) | , ) ( | , ) 1
b m p

R m p
a m p

a m p R b m p m p f r m p dn ε< < = = −∫  (0.4) 

 

                                                                                                                                                 
the purposes of simplicity, a uniform prior distribution is utilized throughout this research. Therefore, Pr(n) 
assumes mines are distributed randomly across the entire operational area.  
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By drawing a range around the Probability of Damage (Risk) MOE, the uncertainty 
associated with this metric can be communicated to the operational user. Additionally, 
the objective then becomes the reduction of uncertainty around the MOE. As uncertainty 
is reduced, the bounds can be narrowed around the Risk MOE metric, thereby 
communicating to the user a level of “confidence” in that information.    
 
Expected Time Remaining 
 
Expected Time Remaining to accomplish the mission is an important parameter for MIW 
operations. Inputs into this expectation must include the number of non-mine MILCOs in 
addition to the number of actual mines in the area of interest. Expected time is defined as 
the long-term average time required to identify every remaining MILCO in the area as 
either a mine or a non-mine. 
 
A similar methodology that has been used in determining the number of mines remaining 
in an area can be applied to determine the number of detectable mine-like contacts in a 
given area. As described before, the number of detectable MILCOs can be an important 
consideration in an operation, even if it does not directly impact the calculation of Risk 
MOE or the fraction of mines removed (Percent Clearance). The reason for its 
importance is because the number of MILCOs in an operational area is a tremendous 
driver in both the timeline to accomplish the mission objectives and the systems that 
should be utilized to counter the mine threat.  
 
A short discussion on Percent Clearance is warranted here to provide some context to the 
above: 
 
Literature Review: Percent Clearance 
A measure of success in removing the mines in an area, Percent Clearance p is the 
average cumulative probability that a mine located at any given point within the area has 
been removed. (Removal implies that the mine must be first detected as a contact, then 
classified as a MILCO, identified as a mine, reacaquired for purposes of neutralization, 
and finally, neutralized.) Before the first mine is found, Percent Clearance is estimated 
according to a level of confidence using a straight-forward negative binomial approach. 
Once the first mine has been discovered, the determination of Percent Clearance changes 
to account for effort applied towards reducing the number of mines in the area. 
Cumulative effort of Percent Clearance pcum towards removing the mines includes the 
probability of success in using the two kinds of MCM techniques, mine-hunting phunt and 
mine-sweeping psweep. This can be determined by 1 (1 )(1 )cum hunt sweepp p p= − − − . 
 
The calculation of the probability of success in utilizing mine-sweeping techniques 
assume all mines found are neutralized and also accounts for the reliability of the 
sweeping system, indicated by Pr(s) (according to a conditional survivor function). Note 
that mu is the fraction of undetectables mines. Percent Clearance for sweeping systems 
psweep is therefore shown by (1 )*Pr( )sweepp mu s= − . 
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The calculation of the probability of success in utilizing mine-hunting techniques also 
includes the fraction of undetectables mines mu, the probability of correctly classifying a 
mine as a mine-like object Pr(c), the reliability of the hunting system Pr(h), and the 
probability of identification and removal techniques succeeding once the mine has been 
identified as a mine-like contact Bn. For purposes of this discussion, Bn described here 
will be decomposed into Probability of Identification Pr(id), Probability of Reacquisition 
of the MILCO Pr(reacq), and Probability of Neutralization Pr(neut). Therefore, 
calculation of Percent Clearance for mine hunting systems phunt is 

(1 )*Pr( )*Pr( )*Pr( )*Pr( )*Pr( )huntp mu h c id reaq neut= − . 
 
There has been much discussion as to the information that should be updated to calculate 
Percent Clearance in the event of replanning and updating p to incorporate new 
information obtained throughout the operation.  The update of p and the potential 
inclusion of conditional probabilities within the stages of MCM effort is an area of future 
research.  
 
Calculating Expected Time Remaining 
To the previous question on calculation of the Expected Time to conduct MCM effort 
such that every contact in the area is identified as a mine or a non-mine, it is first 
necessary to determine the Probability of the number of total detectable MILCOs in the 
operational area. This can be determined according to a Bayesian approach similar to that 
used to determine the number of total mines in the area. The difference here is that the 
likelihood is determined according to a multinomial distribution. 
  
The information that is required to determine the (posterior) probability of the number of 
total detectable MILCOs in the area, given nMIL number of MILCOs found, is as 
follows: 

 fa= number of false alarms (or MILCOs confirmed not to be mines) 
 m=number of mines found and confirmed as mines 
 rMIL= number of detectable non-mine MILCOs remaining 
 r=number of mines remaining to be found  
 q=Percent Confirmed 

 
Depicted in Figure 6, Percent Confirmed is a new term and will be described here. 
Similar to Percent Clearance describing the fraction of mines removed, Percent 
Confirmed is the fraction of detectable MILCOs that have been confirmed either as mines 
or non-mines (false alarms). It is useful in determining the number of detectable non-
mine MILCOs that will most likely be found in the area, thereby affecting the overall 
time expected to confirm every detectable MILCO in the area as either a mine or a false 
alarm. 
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Figure 6: MIW Tactical Contact States 

 
Pr(fa,m,r|nMIL,q) is the likelihood function and describes the probability of false alarms 
given that there are nMIL total detectable MILCOs in the area and there can be estimated 
a probability of encountering a false alarm. The likelihood is more complex this time as 
there is now a multivariate distribution (analogue to the binomial distribution used 
before). Probabilities for fa, m, rMIL, and r can be determined by dividing each by nMIL, 
or the estimated total detectable MILCOs in the area. The probabilities will be referred to 
as Pfa, Pm, PrMIL, and Pr. Percent Confirmed is the joint probability of Pfa and Pm and 
therefore, further defined as q= Pfa * Pm since the probabilities are independent.  
 
The multinomial distribution for the likelihood is provided below. 
 

(1 )!Pr( , , | , ) (1 )
! ! !(1 )!

fa m r fa m r
fa m r fa m r

nMILfa m r nMIL q P P P P P P
fa m r fa m r

− − −= −
− − −

− −  (0.5) 

 
The prior Pr(nMIL) describes the probability of the number of detectable total MILCOs 
in the area. Again, a uniform prior is chosen for simplicity. 
 
The posterior Pr(nMIL|fa,q) provides the probability of the number of total detectable 
MILCOs given some information about the probability of false alarms and the number of 
false alarms already found .  
 

 

1 1 1 1

Pr( , , | , )*Pr( )Pr( | , , , )
Pr( , , | , )*Pr( )

z fa y rk nMIL x m

k z y x

fa m r nMIL q nMILnMIL fa m r q
fa m r nMIL q nMIL

= == =

= = = =

=

∑ ∑∑∑
 (0.6) 

 
The normalization is accomplished by summing over all possible combinations for the 
number of detectable nMILCOs in the area, the number of false alarms found, the number 
of mines found, and the number of mines remaining.  Pr(rMIL|fa,m,r,q) can be inferred 
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directly from the posterior given rMIL= nMIL-m-fa-r where the number of mines 
remaining r can be estimated. Additionally, uncertainty bounds can be then calculated 
around the Pr(rMIL|fa,m,r,q) according to the same process described for the Pr(r|n,P).  
 
Similar to the analysis for the MOE of Risk, Uncertainty Bounds can be calculated 
around the probability of the number of detectable non-mine MILCOs remaining in the 
area.  Error can be given as an input ε to calculate the range values for the integral for the 
posterior probability Pr(rMILCOs|fa,m,r,q), shown here as the function f(rMILCOs| 
fa,m,r,q) where rMILCOs represents a realization of the random variable RMILCOs in 
the sample space Ω. RMILCOs can be interpreted as the set of all possible outcomes for 
the number of detectable non-mine minelike contacts remaining in the area. 
 

( , , , )

| , , ,
( , , , )

Pr( ( , , , ) ( , , , ) | , , , ) ( | , , , ) 1
b fa m r q

RMILCOs fa m r q
a fa m r q

a fa m r q RMILCOs b fa m r q fa m r q f rMILCOs fa m r q dn ε< < = =∫ −

  (0.7)  
The sum of the expected time to address all remaining mines and detectable MILCOs can 
also be used to determine a value for the Time expected to complete the mission to a 
certain level of Risk. The calculation of this expectation is explained below. 
 
The expectation of the time remaining to conduct MCM effort, or to identify every 
MILCO as either a mine or a non-mine, is based on both the expected number of mines 
remaining and the expected number of detectable non-mine MILCOs remaining in the 
area. The overall expectation is determined by multiplying the expected time to 
accomplish each task in the MCM sequence by the number of times that each task must 
be completed for each mine or detectable non-mine MILCO. For every MILCO that is 
found (either a remaining mine r or a detectable non-mine MILCO rMILCO), the MCM 
tasks of Detection, Classification, and Identification must be accomplished. Once a 
MILCO is positively identified as a mine, the MCM tasks of reacquisition and 
neutralization most be completed. The times for each MCM task are specifically Average 
Time for detection T(det), Average Time for Classification T(class), Average Time for 
Identification T(id), Average Time for Reacquisition T(reaq), and Average Time for 
Neutralization T(neut). 
 

The expected mines remaining E(r) can be found by 
0

E( ) Pr( | , )
r

R r r m p
∞

=

= ∗∑ . The 

expected detectable non-mine MILCOs E(rMILCOs) can be found similarly by the 
following equation. 

0
E( ) Pr( | , , , )

r
rMILCOs rMILCOs rMILCOs fa m r q

∞

=

= ∗∑  (0.8) 

 
The calculation to determine the expectation for the time remaining for both the expected 
mines remaining E[Time_Remaining_r] and the expected number of detectable non-mine 
MILCOS remaining E[Time_Remaining_rMILCOs] can be found where 

[ _ _ ] E[ ]*[ ( ) ( ) ( )]E Time Remaining rMILCOs rMILCOs T det T class T id= + +  and 
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[ _ _ ] E[ ]*[ ( ) ( ) ( ) ( ( ) ( )]E Time Remaining r r T d T class T id T reaq T neut= + + + + . 
 
The calculation to determine the total time remaining to conduct the MCM mission 
Total_Time_Remaining can therefore be found from the expectation, where Pr(rMILCOs) 
Pr(r) can be found from the fraction of total tactical contacts anticipated. The total 
expected time remaining to complete the MCM mission is given below. 
  

[ _ _ ] E[ _ _ ]*Pr(
E[ _ _ ]*Pr( )

E Total Time Remaining Time Remaining rMILCOs r )MILCOs
Time Remaining r r

=
+

. (0.9) 

 
The advantage of this determination of the expected time remaining by the average time 
to complete each MCM task for all remaining MILCOs in the area is that the timelines 
include the additional time to consider false alarms within an area, in addition to the 
actual mines. The role of the environment, and particularly a high-clutter environment 
with many false alarms, is shown to directly influence the MCM MOE of Time.  
 
 
Relationship between Estimated Risk and Expected Time Remaining  
 
A MIW Commander (MIWC) must consider the relationship between the probability of 
damage (Estimated Risk) and the Expected Time Remaining to achieve a certain level of 
risk. The timeframe for an operation may not allow for the identification of every 
detectable MILCO in the area as either a mine or a false alarm. The MIWC must 
therefore look to employ the optimum number of assets to achieve a level of risk, often 
within a given limit of time.  
 
According to the above analysis for each MOE, this trade-off between Time and Risk 
may also include the uncertainty surrounding both MOEs. This uncertainty can be 
determined by the bounds calculated for each MOE. For the purposes of this analysis, 
uncertainty will be shown for risk as that is the primary MOE with which the MIWC is 
concerned. Risk will be calculated as a function of time, in order to support operational 
use of this information. Note that the following analysis could also be used to show the 
uncertainty surrounding the Expected Time remaining as a function of Risk.  
 
In order to show uncertainty around risk as function of time, a Poisson process is set up in 
MATLAB to simulate an MCM operation. At some constant rate, detectable MILCOs are 
found and categorized as either a mine or a false alarm. As each MILCO is discovered 
and appropriately identified, the Probability of Damage and the uncertainty bounds 
around that probability are calculated. Percent Clearance is assumed to constantly 
increasing until Percent Clearance of 1 is achieved. The Expected Time Remaining is 
determined from the expected mines and detectable non-mine MILCOs remaining in the 
area. In order to show this information most intuitively where time is increasing on the 
horizontal axis, the time remaining at each point is subtracted from the maximum time 
remaining that is found. The results of this Simulation #1 are provided in Figure 7.  
 

 14



 
Figure 7: Simulation 1 

 
Assumptions and the data generated as output from Simulation 1 are provided in 
Appendix A. It is important to note when looking at this process that the assumption of 
the a priori distributions for the number of mines remaining and the number of detectable 
MILCOs remaining are not updated throughout the simulation. The distributions remain 
constant in order to show graphically the uncertainty bounds in relationship to the 
expected time remaining.  
 
Throughout a true operation, however, it would be more realistic to update the assumed 
prior distributions and consequently updated the expected time remaining in the 
operation. This is possible to do using the developed Poisson process, but the output does 
not lend itself to an easy graphical representation due to the changing values for the 
expected time remaining.2   
 
As would be expected, Risk, or Probability of Damage, decreases over time as a larger 
proportion of the detectable MILCOs are discovered and identified as either mines or 
false alarms. The Uncertainty Bounds move closer towards the Probability of Damage 
estimate, thereby decreasing the uncertainty around the Risk MOE as effort is conducted 
and information is gathered on the MILCOs encountered in the area.  
 
The error ε around the uncertainty bounds is an important input to generate the output in 
this simulation. Figure 8 shows the output from a second run of the simulation using the 
same assumptions as inputs, except for where error ε is .05.  
 

                                                 
2 This update on the uncertainty bounds and the expected time remaining would be most useful in a 
replanning, or “running estimate” situation, where the a priori distributions are updated and held constant 
over the expected time remaining, for any given point in time.  
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Figure 8: Simulation 2 
 
Due to the random generation of mines or false alarms in the simulation engine, the Risk 
results are not exactly the same in this second simulation. The effect of the changed error 
input, however, is very discernable as the uncertainty bounds are now much farther away 
from the determined Probability of Damage output.  The generated data for Simulation 2 
is provided in Appendix B.  
 
Information Scoring 
 
Once the framework as been established for conducting the trade-off between Time and 
Risk MOEs, the question can be posed as to how to most efficiently reduce uncertainty 
around Risk as a function of Time. The method that is proposed is to determine an overall 
information score that incorporates both Risk and Time as a mechanism to determine 
those data inputs that are most important to effect an improvement in the overall 
information score. The information score is a mechanism for capturing the uncertainty 
inherent within the joint probability distribution of these two MOEs and in the 
uncertainty bounds around that probability. This scoring technique would be a useful tool 
by which to compare the relative information contribution of multiple variable inputs. 
The results of a sensitivity analysis of multiple data inputs on this overall information 
score will not be conducted within this paper but is intended as an area of follow-on 
research. The intent is to propose a mechanism that can be directly applied to convey 
both the data requirements to most directly reduce uncertainty and the importance of 
assumptions on the final answer. By utilizing this methodology discussed at a 
foundational level within this paper, it is proposed that uncertainty can be most efficiently 
reduced through the gathering of information throughout the operation.   
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Finding the Joint Probability 
 
In order to determine uncertainty at the mission level, it is necessary to determine a 
probabilistic statement that encompasses both MOEs and anticipates the remaining MCM 
effort over which there exists the uncertainty. This can be accomplished by finding the 
joint probability for all tactical contacts remaining in the operational area. An illustration 
of this joint probability is shown in Figure 9. 

 
Figure 9: Joint Probability of MCM Effort 

 
This uncertainty of the shaded area can be determined by multiplying Pr(rMIL|fa,m,r,q) 
and Pr(r|m,p) to find the joint probability of the number of mines remaining and the 
number of detectable MILCOs remaining and subtracting the covariance to account for 
the fact that these two probabilities are not independent. p is again the Percent Clearance 
and q is the Percent Confirmed.  
 
The joint probability will be referred to as the Probability of Effort to conduct MCM  
Pr(MCM Effort) and is given below: 
 

 Pr( _ ) [Pr( | , , , )*Pr( | , )] Cov( , )MCM Effort rMIL fa m r q r m q rMIL r= −  (4.1) 
 
The covariance can be determined by considering the dependency between 
Pr(rMIL|fa,m,r,q) and Pr(r|m,p). The covariance can be determined for rMIL) and r by  
 

Cov( , ) [( )( )]rMIL r E rMIL v r w= − −        (4.2)  
 
where v and w are the expected values for rMIL and r, respectively. 
 
Information Scoring Approach 
The Relative Information Scoring methodology described here is derived from a 
Classical Expert Judgment Model for determining the informativeness of multiple experts 
providing input on a subject. This Relative Information Scoring approach is described in 
detail within Probabilistic Risk Analysis (Bedford and Cooke, 2001). This situation is 
analogous to multiple information sources providing input to the overall mission, to 
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include the Risk and Time MOEs. Note that the information scoring technique is related 
to the method for calculating entropy, or the amount of uncertainty associated with a 
random variable.  
 
The scoring approach is to compare the results from multiple data inputs against an 
empirical background measure. The realizations are found from the previously defined 
lower-bound, the actual point estimate, and the upper bound for the Probability of 
Damage, which together specify a 4-bin multinomial distribution. The probabilities for 
these bins can be determined by applying the previously defined error ε that was used to 
calculate the range values for the uncertainty bounds around the Probability of Damage. 
For example, if the previously defined error was 30%, then the 15%, 50%, and 85% 
percentiles would be specified and the multinomial bins would be distributed as pi= (p1, 
p2, p3, p4) =(0.15, 0.35, 0.35, 0.15). Because there are 4 multinomial bins, then the 
number of random variables n is 4. The variable outcome v is the result (realization) of 
the multinomial experiment with probability distribution pi, Let qi(e) denote input e‘s i 
percentile where v is  
 
v1 [Interval 1]  is [ql(e), q15(e)] with probability p1
v2 [Interval 2] is [q15(e), q50(e)] with probability p2
v3 [Interval 3] is [q50(e), q 85(e)] with probability p3
v4 [Interval 4] is [q85(e), qh(e)] with probability p4
 
The lower bound l for Interval 1 and the upper bound for Interval 4 are found where l= 
min{q15(1)…q15(m),v} and h=max{q85(1)….q85(m), v} where m are the number of inputs 
considered. Therefore, q1(e) = 1-k(h-l) and qh(e) = h+k(h-l), where k is a specified 
overshoot percentage. (k is 10% for this example.) Note that for cases where ql(e) is 
found to be less than zero, the value for ql(e) is constrained at zero.  
 
Relative Information I is therefore   

 
4

1

( , ) ( / )
n

i i i
i

I s p s Ln s p
=

=

= ∑  (4.3) 

Assuming independence, (p1, p2, p3, p4) is the probability for each multinomial bin and 
(s1, s2, s3, s4) is the empirical distribution, and (v1,v2,v3,v4) is the realization of the 
average joint probability of the two MOEs in the corresponding intervals. si is the number 
of variables in interval i divided by the empirical estimate for pi. 
 
It is worth to note that in using this methodology to calculate the informativeness for 
every variable input into the joint probability of the MOEs, all information scores are 
determined against the same uniform empirical estimate and are therefore calculated 
relative to the other scores determined with respect to a common background measure.   
 
Using this approach, both Percent Clearance and Percent Confirmed are influential in 
effecting the overall Information score through employing MCM effort. If this same 
information scoring technique was conducted using only Risk as a driver, with Percent 
Clearance as the sole motivation for MCM effort, the expected number of detectable non-
mine MILCOs in the area would have no impact on the overall information score.  This 
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result would therefore be counter-intuitive as one would expect the information score to 
improve as information, even contextual information, is discovered.  
 
The usefulness of this Information Scoring methodology is to provide a way of 
quantitatively evaluating operational courses of action, based on their respective ability to 
collect additional information, and of then presenting these options as recommendation(s) 
to the decision-maker. A quantitative approach allows an automated tactical decision aid 
to interpret the informational value of potential courses of action and provide 
recommendations as to how to improve situational awareness, even if this is not in direct 
support to the primary MOEs. An interesting consideration is where the collection of 
information itself can be a course of action and should be considered as a viable option. 
A simple example is that a mine warfare commander will often survey an area to gather 
information, before proceeding to further tactical operations. An experienced commander 
knows intuitively that gathering information is an important first step in the operation. 
This Information Scoring approach provides a computer-understandable methodology to 
arrive at a comparable conclusion and to present this possible course of action to a 
commander within an automated tactical decision aid. Potential options of operational 
“next steps” within an automated system would be based on the anticipated value of 
gathering new information, in addition to options to directly impact the operational 
MOEs.  
 
Building a Probabilistic Data Model 
 
Once the MOEs, their respective uncertainty bounds, and the overall information score 
has been determined, this metadata can be incorporated into the data model for the 
mission. As with the MIW Contact Data Model previously discussed, an abstract data 
model for the overall MIW mission can now be developed. Utilizing the state information 
captured into the lower level of the data structure (tactical contact level), probabilistic 
information can now be derived and aggregated at the higher level (mission level). Figure 
9 shows a representative MIW Mission Data Model where “State” is included as a type of 
metadata, in addition to more traditional metadata types. State is now defined as a 
random variable for the number of contacts in the area for the previously identified states 
at the tactical contact level. The states at this more aggregated level are now: 
 

 Number of contacts that are mines that are detectable/not detectable 
 Number of contacts that have been found/have not been found 
 Number of contacts that are mine-like/not mine-like 
 Number of contacts that are mines/not mines 

 

 19



 
Figure 10: MIW Mission Data Model 

 
Probability has now been added as a metadata type for this mission level data model. 
Uncertainty information is provided in several ways through the addition of this 
probabilistic metadata. The first way in which uncertainty information is conveyed is 
through the probability itself, which inherently conveys a level of uncertainty. The 
sensitivity of this metric to the underlying assumption of the number of contacts in the 
area is also communicated through the uncertainty bounds for both MOEs of Estimated 
Risk and the Expected Time to complete the MCM effort. Finally, an information score is 
provided to show the level of informativeness known with respect to the primary metric 
of the Estimated Risk to a transiting ship.  
 
The utility of this probabilistic data model is illustrated in Figure 10. As the mission is 
conducted and additional information is collected, the data model can enable the 
recalculation of probabilities to show progress towards the mission objectives and the 
corresponding reduction in uncertainty over time.  
 

 
Figure 10: Utilizing a Probabilistic Data Model 
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This probabilistic information can also be incorporated using other methods beyond 
direct connection to a data model construct. With the move towards information-centric 
architectures, however, the incorporation of probabilistic information into semantic data 
models offers a flexible, robust, and scalable option for managing uncertainty within a 
net-centric and service-oriented operational environment   
 
Conclusion 
 
This research uses the mine warfare example to examine the importance of uncertainty in 
assessing Command and Control measures of effectiveness. A method is shown for 
determining uncertainty bounds for risk, a primary metric for this mission area. To show 
the trade-off between time and risk, a method is developed for determining the expected 
time remaining to conduct MCM effort. An information scoring technique is developed 
to assess the overall uncertainty associated with the mission. This overall information 
score is potentially useful in generating courses of action to increase understanding of 
risk within the constraints presented by a limited timeframe to conduct MCM operations. 
Of note, Percent Confirmed is a driver of contributing information to the MIW mission, 
in addition to the traditional MCM metric of Percent Clearance.  
 
To support the determination of uncertainty within a net-centric C2 architecture, a 
strategy is presented to manage this additional information by expanding a semantic data 
model construct to include probabilistic information. This data-focused construct offers a 
simple and scalable approach to providing the context of uncertainty within an 
information-rich environment wherein multiple applications and services might be 
drawing upon common information.  
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Appendix A: Simulation 1 Assumptions and Data 
 
I. Simulation 1 Assumptions
 

Assumption Description Assumption Vale Comment 

Average Detection Time AvgDetT= 30 Average Time for all MCM systems 
Average Classification Time AvgClasT= 5 Average Time for all MCM systems 
Average Time to conduct Identification AvgIDT=1 Average Time for all MCM systems 
Average Time to conudct Reacquisition AvgReacT=1 Average Time for all MCM systems 
Average Time to conduct Neutralization AvgNeuT= 2 Average Time for all MCM systems 
Uncertainty Bound Error  ε= .99   

Percent Clearance p=.95 Percent Clearance is assumed fully 
achieved 

Number of Mines in the area in Ground Truth n=9 
Number of the assumed number of 
mines in ground truth is not updated 
throughout the simulation 

Number of Detectable MILCOs in Ground Truth 
in the area (including mines)  nMILCOs=40 Number of total detectable MILCOs is 

not updated throughout the simulation 

Number of Mines Initially Found m=1 Process begins after the first mine is 
found 

Ship Damage Distance SD = 60 Ship Damage Distance remains 
constant throughout the simulation 

Channel Width Distance CW = 600 Channel Width Distance remains 
constant throughout the simulation 

Poisson Process for finding mine and non-mine 
tactical contacts 

constant rate 
(λ=1/25) 

rate used for simulation has no bearing 
on the results 
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II. Simulation 1 Data 
 
 

Mines 
Remaining (r) 

Detectable 
non-mine 
minelike 
Contacts 

(rMIL) 

Number of 
mines +/- 
Risk to 

determine 
Probability 

Bounds (int) 

Lower Bound Risk (Probability of 
Damage) Upper Bound 

Estimated 
Time 

Remaining 

8 30 7 0.1 0.5695 0.7941 1051.1

8 29 7 0.1 0.5695 0.7941 982.1

8 28 7 0.1 0.5695 0.7941 916.6

8 27 7 0.1 0.5695 0.7941 855.7

7 27 6 0.1 0.5217 0.7458 696.3

6 27 4 0.19 0.4686 0.6513 570.6

6 26 4 0.19 0.4686 0.6513 508

5 26 3 0.19 0.4095 0.5695 423.8

5 25 3 0.19 0.4095 0.5695 380.8

4 25 2 0.19 0.3439 0.4686 326

3 25 1 0.19 0.271 0.3439 292.8

3 24 1 0.19 0.271 0.3439 261.3

3 23 1 0.19 0.271 0.3439 236.9

3 22 1 0.19 0.271 0.3439 217.4

3 21 1 0.19 0.271 0.3439 201.5

3 20 1 0.19 0.271 0.3439 188.4

3 19 1 0.19 0.271 0.3439 177.4

3 18 1 0.19 0.271 0.3439 168.1

3 17 1 0.19 0.271 0.3439 160.2

3 16 1 0.19 0.271 0.3439 153.4

2 16 1 0.1 0.19 0.271 127.3

2 15 1 0.1 0.19 0.271 119.7

2 14 1 0.1 0.19 0.271 113

2 13 1 0.1 0.19 0.271 107.2

1 13 1 0 0.1 0.19 114.8
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Appendix B: Simulation 2 Assumptions and Data 
 
I. Simulation 2 Assumptions
 
Assumptions remain the same as in Simulation 1, except for the error used to determine 
the Uncertainty Bounds, which is ε= 0.05. 
 
II. Simulation 2 Data 
 

Mines 
Remaining (r 

) 

Detectable 
non-mine 
minelike 
Contacts 

(rMIL) 

Number of 
mines +/- 
Risk to 

determine 
Probability 

Bounds (int) 

Lower Bound Risk (Probability of 
Damage) Upper Bound 

Estimated 
Time 

Remaining 

8 30 23 0 0.5695 0.9618 1051.1
8 29 23 0 0.5695 0.9618 982.1
8 28 23 0 0.5695 0.9618 916.6
8 27 23 0 0.5695 0.9618 855.7
8 26 23 0 0.5695 0.9618 799.5
8 25 23 0 0.5695 0.9618 747.8
8 24 23 0 0.5695 0.9618 700.2

8 23 23 0 0.5695 0.9618 656.4

7 23 24 0 0.5217 0.9618 493.4

7 22 24 0 0.5217 0.9618 460.9

7 21 24 0 0.5217 0.9618 432.9

6 21 25 0 0.4686 0.9618 345

6 20 25 0 0.4686 0.9618 327.4
6 19 25 0 0.4686 0.9618 312.5
6 18 25 0 0.4686 0.9618 299.8
5 18 10 0 0.4095 0.7941 247.7
5 17 10 0 0.4095 0.7941 239.1
5 16 10 0 0.4095 0.7941 231.6
5 15 10 0 0.4095 0.7941 225.2
5 14 10 0 0.4095 0.7941 219.7
5 13 10 0 0.4095 0.7941 214.8
5 12 10 0 0.4095 0.7941 210.7
5 11 10 0 0.4095 0.7941 207.1
5 10 10 0 0.4095 0.7941 203.9
4 10 11 0 0.3439 0.7941 165.2
4 9 11 0 0.3439 0.7941 162.8
3 9 12 0 0.271 0.7941 125.2
2 9 19 0 0.19 0.8906 90.4
2 8 19 0 0.19 0.8906 87.4
2 7 19 0 0.19 0.8906 84.9
2 6 19 0 0.19 0.8906 82.8
2 5 19 0 0.19 0.8906 81
2 4 19 0 0.19 0.8906 79.6
2 3 19 0 0.19 0.8906 78.6
2 2 19 0 0.19 0.8906 77.9
1 2 2 0 0.1 0.271 40.2
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Appendix C: MATLAB models for Simulations 
 
Can be provided upon request 
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