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SOVEREIGN: An Autonomous Neural System for Goal-oriented Mobile Robot Navigation 

Abstract 

Command and control (C2) systems employ autonomous platforms for such tasks as force 
protection, surveillance, and search and rescue. The result is a growing need for adaptive control 
systems to focus data collection efforts, and reduce operator workloads, while addressing 
navigational demands. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, 
Emotion, Intelligent, Goal oriented Navigation) neural model embodies these capabilities, and is 
tested in a simplified 3D virtual reality environment. SOVEREIGN includes several interacting 
subsystems which model complementary properties of cortical What and Where processing 
streams. As a mobile robot, or animat, explores an environment, visual inputs are processed by 
networks that are sensitive to visual form and motion in the What and Where streams, 
respectively. Position-invariant and size invariant recognition categories are learned by real-time 
incremental learning in the What stream. Estimates of target position relative to the animat are 
computed in the Where stream, and can activate approach movements toward the target. Motion 
cues from animat locomotion can elicit head-orienting movements to bring a new target into 
view. Movement and visual category sequences are stored in working memories which can 
trigger learning of sensory and motor sequence categories, or plans. Rewarded plans effect a 
transition to efficient goal-oriented planned control. 

Keywords: Adaptive Resonance Theory, Animat, Goal-oriented Behavior, Mobile Robot, 
Navigation, Neural networks, Self-organization, What and Where processing 

1. Introduction 

1.1. Three Basic Design Themes. 

This article describes the SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, 
Emotion, Intelligent, Goal-oriented Navigation) neural model to clarify how an animal, or 
animat, can learn to reach valued goal objects through planned sequences of navigational 
movements. The SOVEREIGN model embodies a self-organizing control system that attempts to 
learn and perform such behaviors autonomously. As the name SOVEREIGN indicates, this 
control system unifies visual, recognition, cognitive, cognitive-emotional, and motor 
competences. We believe that this is the first neural model that embodies and coordinates such a 
wide range of behavioral competences in an autonomous self-organizing control system that can 
operate in real time. Such capabilities represent key unsolved problems in mobile robotics, 
including tasking related to Command and Control (C2). These results have been briefly reported 
in Gnadt and Grossberg (2005a, 2005b, 2006) and reported in detail in Gnadt (2007). 

SOVEREIGN contributes to three large themes about how the brain works. The first 
theme concerns how brains learn to balance between reactive and planned behaviors. During 
initial exploration of a novel environment, many reactive movements occur in response to 
unexpected and unfamiliar environmental cues (Leonard and McNaughton, 1990). These 
movements may initially appear to be locally random, as an animal orients toward and 
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approaches many local stimuli. As such an animal becomes familiar with its surroundings, it 
learns to discriminate between objects likely to yield a reward and those that lead to punishment. 
Such approach-avoidance behavior is often learned via a perception-cognition-emotion-action 
cycle in which an action and its consequences elicit sensory cues that are associated with them. 
Rewards and punishments affect the likelihood that the same actions will be repeated in the 
future. When objects are out of direct sensory range, multiple reactive exploratory movements 
may be needed to reach them. Eventually, reactive exploratory behaviors are replaced by more 
efficient planned sequential trajectories within a familiar environment. One of the main goals of 
SOVEREIGN is to explain how erratic reactive exploratory behaviors can give rise to organized 
planned behaviors, and how both reactive and planned behaviors may remain balanced so that 
planned behaviors can be carried out where appropriate, without losing the ability to respond 
quickly to novel reactive challenges.  

The second design theme illustrates the hypothesis that advanced brains are organized 
into parallel processing streams with complementary properties (Grossberg, 2000a). Each 
stream’s properties are related to those of a complementary stream much as a lock fits its key, or 
two pieces of a puzzle fit together. The mechanisms that enable each stream to compute one set 
of properties prevent it from computing a complementary set of properties. As a result, each of 
these streams exhibits complementary strengths and weaknesses. How, then, do these 
complementary properties get synthesized into a consistent behavioral experience? It is proposed 
how interactions between these processing streams overcome their complementary deficiencies 
and generate behavioral properties that realize the unity of conscious experiences. In this sense, 
pairs of complementary streams are the functional units because only through their interactions 
can key behavioral properties be competently computed. SOVEREIGN clarifies how these 
complementary properties interact together to control goal-orienting sequences of navigational 
behaviors. For example, it is well-known that there are What and Where (or Where/How) cortical 
processing streams (Goodale and Milner, 1992; Mishkin, Ungerleider and Macko, 1983; 
Ungerleider and Mishkin, 1982). In particular, key properties of the What and Where cortical 
processing streams seem to be complementary. 

A third design theme underlying the SOVEREIGN model is that brains use homologous 
circuits to compute navigational and hand/arm movements. In other words, movements of the 
body and of the hand/arms are controlled by circuits that share many properties. This proposed 
homology clarifies how navigational and arm movements can be coordinated when a body moves 
with respect to a goal object with the intention of grasping or otherwise manipulating it using the 
hand/arm system. 

A considerable body of neural modeling of arm movement trajectory control (e.g., the 
VITE model: Bullock and Grossberg, 1988; Bullock, Cisek, and Grossberg, 1998) suggests that 
cortical arm movement control circuits compute a representation of where the arm wants to move 
(i.e., a target position) and compare this with an outflow representation of where the arm is now 
(i.e., the present position) by computing a difference vector between target position and present 
position representations. The difference vector represents the direction and distance that the arm 
needs to move to realize its goal position. Basal ganglia volitional signals of various kinds, such 
as a GO signal, translate the difference vector into a motor trajectory of variable speed. 
Additional cortical, spinal, and cerebellar circuitry is needed to ensure that the brain generates the 
forces that are needed to actually carry out such a commanded trajectory (e.g., the FLETE model: 
Bullock and Grossberg, 1991; Contreras-Vidal, Grossberg, and Bullock, 1997).  

A key difference between navigation and hand/arm movement control concerns how 
present position is calculated. Because the arm is attached to the body, present position of the arm 
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can be directly computed using outflow, or corollary discharge, movement commands that 
explicitly code the commanded arm position. In contrast, when a body moves with respect to the 
world, no such immediately available present position command is available. This difference 
requires more elaborate brain machinery to compute present position of the body in the world 
during navigational movements. The brain needs to use a variety of sensory cues, both 
proprioceptive and visual, to create a representation of present position that can be compared with 
representations of target position, so that a difference vector and volitional commands can move 
the body towards desired goal objects. In summary, both navigational movement in the world and 
movement of limbs with respect to the body use a difference vector computational strategy. 

1.2. What SOVEREIGN Does. 

SOVEREIGN’s perceptual competences include on-line, albeit simplified, visual representations 
of a 3D virtual reality environment in which the model controls navigation. SOVEREIGN 
computes, in parallel, both visual form and motion information about the world. As in the brain, 
the visual form of objects is computed within the What cortical processing stream, whereas visual 
motion is computed within the Where cortical processing stream. In this way, the brain can 
process both what objects are and where and how to track and act upon them.  

SOVEREIGN uses the visual form information to incrementally learn spatially-invariant 
and size-invariant object recognition categories to recognize visually perceived objects in the 
world. These recognition categories, in turn, learn to read out top-down attentive expectations of 
the visual objects that they code. Object categories in the What stream are spatially-invariant and 
size-invariant to prevent a combinatorial explosion from occurring in which each position and 
size of an object would need its own representation. The Where stream represents the spatial 
locations of these objects. In particular, visual motion information is used to guide reactive 
orienting movements and attention shifts to locations at which changes occur in SOVEREIGN’s 
visual world. What-Where inter-stream interactions are needed to enable both recognition and 
acquisition of desired goal objects. These parallel streams help SOVEREIGN to balance between 
reactive and planned behaviors, in a manner that is further discussed below. 

SOVEREIGN also includes cognitive processes, notably mechanisms to temporarily store 
sequences of events in working memory, and to learn sequential plans, or chunks, of these 
sequences with which to predict and control future planned behaviors. Parallel object and spatial 
working memories and sequential chunking networks are modeled. The object working memory 
and chunking network are in the model’s What stream, and the spatial working memory and 
chunking network are in its Where stream. SOVEREIGN clarifies how these parallel cognitive 
processes cooperate to acquire desired goal objects that can only be reached through a sequence 
of actions, and to disambiguate sequential navigational decisions in contexts where only one of 
them would be insufficient. 

Cognitive-emotional mechanisms include the role of rewards and punishments in shaping 
goal-oriented behaviors. In particular, reinforcement learning can influence which learned 
cognitive chunks will be attended and selected to elicit behaviors that acquire desired goals 
within a familiar environment. Learned interactions between cognitive and emotional 
representations, notably motivationally-mediated attention, play an important role in this context-
sensitive selection process. 

The SOVEREIGN model thus contributes solutions to three key problems: (1) How an 
animal, or animat that embodies biologically-inspired designs, learns to balance between reactive 
and planned behaviors in a task-appropriate way. (2) How plans are learned during erratic 
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reactive behaviors in such a way that, after learning, they can be read out fluently at the correct 
times and in the correct spatial contexts. (3) How, in particular, an animat coordinates its reactive 
and planned behaviors so that its perception-cognition-emotion-action cycles of exploration, real-
time vision, learned recognition, sequential working memory storage, learning of sequential 
plans, reinforcement learning, and planned action sequences are activated when needed as the 
animat navigates novel and familiar environments. 

2. SOVEREIGN Model 

2.1. Approach-Orienting Navigation and Learning in a 3D Virtual Reality Environment. 

The SOVEREIGN model simulates these processes for an animat that experiences a 3D visual 
world in a virtual reality environment. This world is the relatively simple spatial format of a plus-
maze (Munn, 1950). Although simple, this environment tests in a clear way many of the critical 
competences that the animat needs to achieve. Much of the problem’s difficulty arises because an 
animat may navigate the maze in different ways, including different speeds and directions of 
movement, on successive learning trials. Despite this variability of each experience of the maze, 
the animal can learn to navigate the maze to achieve valued goals in an efficient way. For our 
purposes, it is sufficient to assume that a learning trial starts after placing the animat in the maze, 
at the end of one arm. The goal location, in one of the other three arms, is baited with a cue that 
the animal finds rewarding. By shrouding the top of the maze, only route-based visual and motor 
cues can be used for navigation (O’Keefe and Nadel, 1978). Thus the model does not attempt to 
explain how spatial navigation, as supported by hippocampal place cells, is achieved. Only one 
visual cue is assumed to be visible at a time, at the end of each maze arm, from any location 
within the maze. A schematic diagram of the experimental setup appears in Figure 1a. 

A sequence of images from the 3D virtual reality simulation during reactive approach 
toward a visual cue appears in Figure 1b. As the animat approaches the choice point, a 
competitive struggle occurs between the salience of form and motion signals. Suppose that the 
form signals have led to previous object category learning and have led to positive reinforcement 
that increases their motivational salience. Such motivational salience enhances the strength of the 
form representation through attentional feedback. Then the form signals may more effectively 
compete with the motion signals to determine the animat’s momentary behavior. If the form cues 
win the competition, then the animat can continue to carry out an approach movement that is 
consistent with its recognition. If the motion signals win the competition, then they may trigger a 
reactive head-orienting movement to the right or left at a choice point, revealing another source 
of form signals at the end of an adjacent corridor. The outcome of this form-motion competition 
is sensitive to navigational variations that change from trial to trial. The sequence of visual scenes 
that are processed during a typical head-orienting behavior is illustrated in Figure 1c. An 
alternation of approach and orienting movements is characteristic of the animat’s exploration of a 
novel environment. 
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(a) 

 
(b) 

 
(c) 

Figure 1. (a) The 3D graphical simulation generates perspective-views from any location within the plus-maze. (b) 
Snapshots from the 3D virtual reality simulation depict changes in the scene during reactive homing toward the 
triangle cue. (c) During reactive approach to the triangle cue, visual motion signals trigger a reactive head orienting 
movement to bring the star cue into view. 
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2.2. Parallel Visual and Motor Working Memory and Chunking Networks. 

The animat’s control system is split into a number of subsystems shown in the macrocircuit of 
Figure 2. The primary input is via the visual system. The Visual Form and Motion System 
processes visual cues within the What and Where cortical streams, respectively. The What 
cortical stream learns position-invariant and size-invariant object categories via on-line 
incremental learning. The Where stream computes measures of the relative location of visual 
cues from the animat. In particular, the distance and direction of the animat from a prescribed 
visual cue are used to cause approach movements towards that visual cue, or from memory. 
Motion cues result from the animat’s self-motion, and determine whether the animat will make a 
left or right turn, and how big a turn, instead of continuing to approach a target cue.  

These visual form and motion signals compete for control of the animat’s approach-
orienting behaviors within the Visual Form and Motion System. Learned visual categories can be 
amplified in strength, and thereby more probably attended, by feedback from motivational 
centers, called Drive Representations, through learned reinforcement-motivational feedback 
loops that embody their value as events that predict desired rewards. For this to happen, the 
invariant object categories are amplified by motivational signals that draw attention to them, and 
amplify, in turn, the approach commands corresponding to that object’s position relative to the 
animat. Such a motivational amplification requires What-Where inter-stream interactions 
between position-invariant and position-variant information. 

When a motivationally-modulated form cue wins, approach persists. When a motion cue 
wins, an orienting movement often begins. When motion cues are balanced in strength relative to 
the present gaze direction, the net left vs. right orienting signal is zero, after opponent 
competition between the opposite directions takes place. A form cue can then win with high 
probability. However, a suitably strong left/right motion cue difference can win the form-motion 
competition and direct the Motor Approach and Orienting System to initiate a head-orienting 
movement in the favored direction. Target position information for approach behaviors, and 
motion information for head-orienting behaviors, is relayed from the Visual Form and Motion 
System to the Motor Approach and Orienting System (Figure 2), where they direct body-
approach movements or head-and-body orienting movements.  

How does the animat know where a target cue is with respect to its current position? As 
noted in Figure 2, proprioceptive and vestibular signals provide the ground truth upon which the 
animat’s location is estimated relative to its starting point, and with respect to targets in its 
environment. Proprioceptive and vestibular cues are capable of guiding animat navigation in a 
familiar environment even in the dark, and can modify movements quickly to cope with uneven 
or slippery terrains. Visual cues are also used during navigation to estimate body and head 
position and displacement relative to the animat. These visual signals are associated with, and 
adaptively calibrated with respect to, the representations that are activated by proprioceptive and 
vestibular motor signals. These multiple sources of information work together to more accurately 
guide movements under varying conditions than any one source of positional signals could. 

Estimates of spatial displacement compute the NET body displacement and head rotation 
from a starting point. Sequences of such approach-orienting displacements represent a path that 
can command an animat to move from a starting location to a goal location in a maze. 
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Figure 2. The key interactions between components of the SOVEREIGN model are shown in this flow diagram. See 
text for details. 

The Visual Working Memory and Planning System temporarily stores sequences of visual object 
categories in short-term working memory. It also categorizes, or chunks, sequences of stored 
object categories. Chunks are learned that are sensitive to object sequences of variable lengths. 
These visual list chunks can learn to activate motor commands in the Motor Approach and 
Orienting System via top-down learning. The motor commands encode approach-orient 
movements. The Visual Working Memory and Planning System operates in parallel with a Motor 
Working Memory and Planning System that temporarily stores sequences of motor commands in 
working memory. It also categorizes, or chunks, sequences of stored motor commands. These 
motor list chunks can also learn to activate approach-orient commands within the Motor 
Approach and Orienting System.  

Why are visual and motor list chunks both needed? Together these parallel visual and 
motor working memories can disambiguate decisions that only one of them, acting alone, may 
find ambiguous. For example, the sequences of approach distances and head turns in two 
different environments may be the same, but their sequence of visual cues may be different. In a 
different environment, the sequence of visual cues may be the same, but their sequences of motor 
actions may differ. The visual and motor working memories induce the learning of list chunks, or 
sequential planning cells, that are sensitive to their respective object and action sequences, and 
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can read out a prediction of the next motor command. The sequence that can disambiguate two 
different environments will typically win over one that cannot.  

Rewards and punishments can modulate animat learning and determine what visual 
representations are attended and what motor plans are executed. Upon receiving reward, the 
active chunks are associated with active drives and actions. Drive inputs represent the animat’s 
internal motivational state, and reward inputs represent valued inputs from the external 
environment. Both types of inputs combine in Drive Representations, which are most highly 
activated when a drive input representing a strong internal need combines with either a primary 
reward or a conditioned reinforcer input from the Visual Form and Motion System (Figure 2). 
After such a combination of cognitive and emotional learning occurs, when the animat sees a 
familiar sensory cue under a prescribed motivational state, it can recall a motivationally-
compatible plan to reach the site of previous reward. Repeated, random exploration of the 
environment hereby effects a gradual transition from reactive to more efficient, planned control 
that leads the animat to its various motivated goals. Due to the selective role of motivational 
feedback, the animat is capable of learning to carry out different plans to satisfy different 
motivational goals even in response to the same sensory cues. 

Visual and motor list chunks may learn to activate different approach-orient commands 
under different motivational states. How can a single chunk give rise to multiple responses? How 
this occurs can be seen by noting that emotional centers are often organized into opponent 
affective processes, such as fear and relief, and that oppositely valenced rewards can be 
conditioned to these opponent channels (Grossberg, 1984b, 2000b). These opponent-processing 
emotional circuits are called gated dipoles. In such a circuit, habituative transmitters “gate”, or 
multiply, signal processing in each of the channels of the opponent “dipole.” The response 
amplitude and sensitivity to external reinforcing inputs and internal drive inputs of these 
opponent-processing emotional circuits are calibrated by an arousal level and chemical 
transmitters that slowly inactivate, or habituate, in an activity-dependent way.  

Sensory and cognitive representations, no less than emotional representations, can be 
organized into opponent channels with habituative ON and OFF cells. Unexpected events can 
trigger a burst, or sudden increment, of nonspecific arousal. When such an arousal burst is 
received on top of the baseline tonic arousal input of a normal dipole, it can cause an antagonistic 
rebound of activity in the OFF channel. In other words, the sensory, cognitive, or emotional 
hypothesis that is represented in a dipole’s activity can be disconfirmed by an unexpected event. 
An unexpected event can hereby reset ongoing processing and lead to a shift of attention. 
SOVEREIGN expands the gated dipole mechanism into a gated multipole, which can select 
between multiple opponent drive channels. Each channel, whether representing an exploratory or 
consummatory drive state, can be associated with a particular learned response. 

SOVEREIGN embodies a system synthesis and further development of biologically-
derived neural networks that have been mathematically and computationally characterized 
elsewhere. These include LAMINART and FORMOTION models for form and motion 
processing (Berzhanskaya, Grossberg, and Mingolla, 2007; Cao and Grossberg, 2005; Grossberg, 
Mingolla, and Viswanathan, 2001; Grossberg and Yazdanbakhsh, 2005; Raizada and Grossberg, 
2003), ART fast incremental learning classifiers (Carpenter, et. al., 1992), STORE working 
memories (Bradski, Carpenter, and Grossberg, 1994), Masking Field sequence chunking 
networks (Cohen and Grossberg, 1986, 1987; Grossberg and Myers, 2000; Grossberg and 
Pearson, 2007), Gated Dipole opponent processes (Grossberg, 1980, 1984a; Grossberg and 
Seidman, 2006), CogEM cognitive-emotional circuits for reinforcement learning (Grossberg and 
Merrill, 1992, 1996; Grossberg, 2000), Spectral Timing circuits for adaptively timed learning 
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(Grossberg and Merrill, 1992; Fiala, Bullock, and Grossberg, 1996), and volitional (GO) and 
endogenous (ERG, Endogenous Random Generator) gates to release consummatory and 
exploratory behaviors, respectively (Bullock and Grossberg, 1988; Gaudiano and Grossberg, 
1991; Pribe, Grossberg, and Cohen, 1997). We are not aware of any other autonomous agent that 
has yet integrated this range of self-organizing biological competences. 

2.3. Reactive Exploration. 

The following sequence illustrates the functional flow of the visual input system during reactive 
exploration in the plus–maze of Figure 1. North designates the vertical direction, with South, East 
and West following accordingly. For definiteness, assume that the animat is placed into the maze 
and that all extra–maze cues are suppressed. Furthermore, the animat is motivated under both an 
exploratory and a hunger drive. The drive and reward inputs to the Drive Representation and then 
into the Visual and Motor Working Memory and Planning Systems are shown in Figure 2. The 
exploratory drive is assumed to be excited by an Endogenous Random Generator, or ERG, which 
is an internal arousal source. Such a source is active when the animat is placed into a new 
environment. The exploratory drive is inhibited by consummatory drive activity that can support 
realization of a valued goal. The animat receives a reward (e.g., food) upon reaching the goal 
location, which is located at the end of the West arm. We show how reactive visual signals during 
exploration eventually lead the animat toward the goal location, and reinforcement signals 
strengthen the association between stored plan items and the current motivational state. A step-
by-step description of the model under reactive visual guidance follows. 

Suppose that, by chance, the animat starts the maze shifted to the left of the corridor, with 
its head facing slightly to the right of the visual cue (Figure 3a). The left shift reduces the 
distance to motion cues on the left side of the maze. Because of this positional bias, motion 
signals within the Visual Form and Motion System (Figure 2) will receive a strong leftward bias. 
These assumptions are used to demonstrate an exploratory trial which ensures that the animat 
makes its first head-orienting movement toward the goal location. During the experimental trial, 
the animat moves forward (Figure 3b), turns left (Figure 3c) and approaches the goal location 
(Figure 3d) under reactive control.  

Movement is organized into orienting and approach movements. In particular, a visually-
activated motor command from the Visual Form and Motion System triggers a Motor Outflow 
command (Figure 2) that specifies a head-orienting angle to align the head with the triangle 
target. The resulting signals activate the Motor Plant (Figure 2), which converts the movement 
command into a physical displacement. A head-orienting movement towards the triangle target is 
thereby initiated. The head turn continues until the NET head-orienting displacement equals the 
commanded displacement angle. 

When the animat faces the triangle cue, a Motor Outflow command from the Visual Form 
and Motion System activates the Motor Plant (Figure 2) to initiate an approach movement toward 
the triangle cue. When the Motor Plant converts the commanded approach movement into a 
physical displacement, the animat’s body is passively aligned with the head during an approach 
movement to maintain a stable posture. Such dynamic stability control is assumed to be present, 
but is beyond the scope of this work.  

During the approach movement, the Motor Approach and Orienting System continues to 
compute the NET head and body displacement toward the visual target cue. In the absence of 
competing cues, the body-approach movement could continue until the animat reaches the cue. 
However, the Visual Form and Motion System processes both form and motion signals while the 
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animat continues to move. A sufficiently strong motion signal in the model’s visual periphery can 
win a competition between Parvo form target locations and Magno motion cues. If a motion cue 
wins, then it can terminate the approach movement and trigger a reactive head-orienting 
movement away from the visual target cue. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) Animat position and head direction facing the triangle cue at the start of the trial. Perspective-views of 
the 3D virtual reality scene at key locations within the maze are shown by a dashed line. (b) Animat position and 
head direction while approaching the triangle cue and nearing the choice point. (c) Animat position and head 
direction after a head orienting turn toward the square cue. (d) Animat position and head direction after reaching the 
goal location at the square cue. 
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As noted above, when the animat starts in a position that is shifted to the left side of the corridor, 
as in Figure 3a, motion signals in the left visual hemifield are stronger than those in the right 
hemifield. Left vs. right motion signals accumulate in the Visual Form and Motion System. 
When the left motion signal is sufficiently strong relative to the right motion cue and the form 
signal, a reactive head-orienting command is sent to the Motor Approach and Orienting System. 

As the animat carries out these movements, it learns an invariant object category, or 
chunk, for the triangle visual cue. Top-down signals from the Visual Working Memory and 
Planning System (Figure 2) corresponding to the Triangle chunk learn the NET body approach 
and orienting movements computed by the Motor Approach and Orienting System. The triangle 
cue hereby learns to predict the Forward-Left body movement. The Forward-Left body 
movements are also stored in the Motor Working Memory and Planning System. 

After the animat turns left, invariant preprocessing and learned ART categorization within 
the Visual Form and Motion System encode a 3D representation of the square cue. This 3D 
representation is stored in the Visual Working Memory and Planning System (Figure 2), while 
the NET body displacement in the Motor Approach and Orienting System is reset to prepare for 
the next movement. Then the cycle of computing the NET head and body displacements begin 
again, as the animat navigates toward the square cue.  

The square cue is at the rewarded location. When the animat reaches this location, it 
receives a reward, such as food. The active hunger drive representation is then associated with the 
currently active plan chunks stored in both the Visual Working Memory and Planning System 
and the Motor Working Memory and Planning System (Figure 2). In particular, the visual 
Triangle-Square list chunk is learned and associated with the hunger drive representation. In 
addition, signals from the Triangle-Square chunk learn the NET body orienting and approach 
movement computed by the Motor Approach and Orienting System, and thereby learns to predict 
the Forward body movement that brings the animat to the square cue after it turns left in the West 
arm of the maze. Figure 4 summarizes this sequence of events. 

 
Figure 4. An initial maze trial in which the animat is under reactive visual guidance is shown in this diagram. An 
approach movement toward the triangle cue is interrupted by motion signals to the left. After a reactive head 
orienting movement, the square cue comes into view. After approaching the square cue, the rewarded location is 
reached and adaptive weights are adjusted to strengthen the association between the forward-left-forward sequence 
and the current motivational state. The arrows and symbols (F1,L) and (F1,S), along with the triangle and triangle-
square symbols in the dotted ellipses, summarize that a forward-left movement sequence with a forward distance of 
F1 is associated with the Triangle list category, and a forward-straight movement also with a forward distance of F1 is 
associated with the Triangle-Square list category. 
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One additional point should be made: All animat behaviors are motivated by some Drive 
Representation (Figure 2). During initial exploratory activities, an exploratory drive is active. As 
learning occurs, the exploratory drive is supplanted by the consummatory motivational sources 
that correspond to the reward; e.g., the hunger drive when the animat is rewarded by food. These 
processes are now described in greater detail. 

2.4. Visual Form and Motion System. 

The Visual Form and Motion System processes signals from the What Parvo cortical processing 
stream and the Where Magno cortical processing stream (Figure 5). This separation of 
functionality endows the animat with three major capabilities. First, the animat can utilize target 
object recognition and cognitive-emotional conditioning circuitry to learn, choose, and execute 
motivationally–compatible movements within an overall plan. Second, the animat can use form 
information to localize visual references, or beacons, to measure its progress over varying terrain. 
Finally, the animat can process motion boundaries generated during movement toward a choice 
point within a maze. As the animat nears a choice point, its field–of–view and the intensity of 
boundary-derived motion signals increase, which can trigger a reactive head–orienting 
movement. The visual system also drives several important control signals within the model, as 
described below. 

 
Figure 5. The Visual Form and Motion System flow diagram depicts the stages of visual processing in the model. 
See text for details. 
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The visual environment is simulated in a virtual reality environment by rendering 3D chromatic 
scenes as 2D “snapshots” at regular intervals during head-orienting and body-approach 
movements. As indicated in Figure 1, the visual environment is simplified in SOVEREIGN, 
which focuses on the various learning and navigational aspects of sequential goal-oriented 
navigation. A visual target object is separated from the background by a two-stage Figure-
Ground Separation module that is within the Parvo stream (Figure 5, left stream). At present, the 
first processing stage is accomplished in a simple way by using visual targets that are yellow 
(Figure 1), or have the grayscale corresponding to yellow, and are thereby selected from the 
background. The second processing stage selects object boundaries via convolution with a 2D 
Laplacian-of-Gaussian filter. Future model developments will include more sophisticated neural 
models for 3D vision and figure-ground separation (Cao and Grossberg, 2005; Fang and 
Grossberg, 2007; Grossberg and Yazdanbakhsh, 2005; Kelly and Grossberg, 2000).  

When an object falls within the visual field and it is separated from its background, the 
coordinates of its centroid, in the 2D image plane, are computed (cf., Russell, 1932) and passed 
to the Reactive Visual TPV module (Figure 5). The Reactive Visual TPV module converts the 
centroid from image plane coordinates to head-centered spatial coordinates by using the 
perspective transformation (Schilling, 1990). The Body Spatial Coordinates module computes the 
angle between the head and body, before combining this information with the target coordinates 
in the Reactive Visual TPV module to compute the body-centered distance and angle coordinates 
of the visual target. The Reactive Visual TPV module updates the Reactive Visual TPV Storage 
module until the volitional Approach and Orienting GO signal (GOP) releases a head-orienting or 
body-approach movement (Figure 5). The head-orienting movement brings the visual target to 
the center of gaze. Such a transformation into body–centered coordinates can be learned by using 
a more elaborate network (Greve et. al., 1993; Grossberg et. al., 1993; Guenther et al., 1994). 

The left path of the Parvo stream in Figure 5 is devoted to learning a size-invariant and 
position-invariant object category representation of a visual target within the Invariant Visual 
Target Map. In order to accomplish this, the figure-ground-separated visual target undergoes a 
log-polar transformation followed by Gaussian coarse-coding (Baloch and Waxman, 1991; 
Bradski and Grossberg, 1995). The log-polar transform computes a representation of the visual 
target object that is size-invariant and position-invariant. This invariant map representation of the 
target is then transformed into an object category, leading to further compression and invariance 
under modest changes in object shape, by using unsupervised incremental learning by a Fuzzy 
ART classifier (Carpenter et al., 1991). The Fuzzy ART classifier and Reactive Visual TPV 
Storage modules comprise What and Where cortical representations of visual target objects.  

The Fuzzy ART classifier can be generalized in a future version of SOVEREIGN to 
enable learning of 3D target objects from one of multiple views. This requires additional 
processing stages to learn individual view categories which can be associatively linked to a view-
invariant object category (Baloch and Waxman, 1991; Bradski and Grossberg, 1995; Fazl, 
Grossberg, and Mingolla, 2007). 

2.5 Motor Approach and Orienting System. 

As noted above, the Motor Approach and Orienting System directs body-approach and head-
orienting movements (Figure 2). Cumulative estimates of each approach-orienting movement that 
is processed within the Motor Approach and Orienting System are stored in the Motor Working 
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Memory and Planning System (Figure 2). This section summarizes how these estimates are 
computed. 

The Motor Approach and Orienting System flow diagram is shown in Figure 6. Target 
position information originates from one of two sources. First, it can be received from the body-
centered distance and angle coordinates of the visual target object computed in the Reactive 
Visual TPV module (Figure 5). Second, it can be received from learned top–down signals from 
the processing stage that computes Motivated WHAT and WHERE Decisions (Figure 6). These 
decisions comprise responses from the animat’s learned experience which are compatible with 
the current motivational state. An approximate measure of head-orienting and body displacement 
is computed by the NET module (Figure 6). Target position information flows from the Reactive 
Visual TPV to the Reactive Visual TPV Storage module. The NET activity is subtracted from the 
Stored TPV via learned weights to compute the Reactive Difference Vector, or DV, which 
represents the angle and distance to move. The learned weights from the NET activity are 
necessary to calibrate the DV activity. Similarly, learned top-down commands from the 
Motivated WHAT and WHERE Decisions activate the Planned DV, where NET movement 
signals are subtracted, yielding a planned angle and distance to move. Calibration of planned 
commands is accomplished entirely by the top-down adaptive weights. The Reactive DV and 
Planned DV are the first motor control stages which can elicit head-orienting and body-approach 
movements. 
 

 
Figure 6. The Motor Approach and Orienting System flow diagram depicts the control hierarchy which generates 
motor outflow commands. See text for details. 

The NET estimates of head-orienting and body-approach displacement requires multiple stages of 
processing to be computed (Figure 6). NET estimates during navigation replace the outflow 
present position estimates that are computed during hand/arm movements. The NETS module 
(Figure 6) calculates this displacement using target positions computed by the Visual Form and 
Motion System (Figure 5). Body–centered spatial coordinates are denoted by an “s” subscript. 
The NETS field activity encodes the net body movement toward a target in spatial coordinates by 
subtracting the Reactive Visual TPV activity from the Reactive Visual TPV Storage module 
activity.  
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Initially, target position information flows from the Reactive Visual TPV to the Reactive 
Visual TPV Storage module and a short burst of learning zeros the difference at the NETS 
module. As the animat moves toward a target, updates to the Reactive Visual TPV Storage 
module cease and the Reactive Visual TPV decreases, thereby allowing the NETS module 
activity to grow. Vestibular and proprioceptive feedback signals are integrated into distances by 
the NETMV module (Figure 6). 

Learning at the output of the NETMV module calibrates the vestibulo-motor signals 
relative to the visual signals at the S-MV Mismatch module. This adaptive process uses a slow 
learning rate while visual signals are available from the Visual Form and Motion System (Figure 
5). The resulting activity at the S-MV Mismatch module serves as a correction factor which can 
account for the animat’s progress either without visual feedback (e.g., in the dark) or over uneven 
(e.g., slippery) terrain. When the NETS and NETMV module activity are identical, then the 
correction factor is zero and the S-MV Mismatch module activity is also zero.  

The NET module combines signals from the NETS and S-MV Mismatch modules into a 
robust sensory-motor representation of body displacement. The NETS module is only active when 
Parvo signals are present in the Invariant Visual Target Map module (Figure 5). Learned weights 
from the NET module inhibit activity of the Reactive DV (Figure 6). When the animat has 
reached the target under visual guidance, the Reactive Visual TPV reaches zero and these 
adaptive weights are updated, thereby inhibiting the Reactive DV, and stopping the movement. 
On future trials, the Reactive DV module can be driven to zero by a calibrated level of activity in 
the NET module, regardless of whether visual input is available. 

While under reactive control, visual target coordinates flow into the Reactive Visual TPV 
Storage module and activate the Reactive DV module, which initiates head and body movements. 
The Approach or Orienting GOP control signals are activated when the Reactive or Planned DV 
command is released under volitional control. The activation of the Approach or Orienting GOP 
allows the DV signals to initiate a head-orienting or body-approach movement. Updates to the 
Reactive Visual TPV Storage module (Figure 6) continue until the Approach or Orienting GOP is 
activated. However, under planned control, Motivated WHAT and WHERE Decisions (Figure 6) 
learn to read out planned head-orienting and body-approach movements. Top-down commands 
are computed in the Planned DV module, which can initiate head and body movements in 
response to motivationally-compatible plan items. As then plan unfolds, NET increases until the 
Planned DV approaches zero, thus terminating a planned movement. The Top-down Readout 
Mismatch module compares the activity of the learned top-down command and the NET module. 
A sufficiently large discrepancy between these fields can elicit a control signal to select a 
different top-down signal from the Motivated WHAT and WHERE Decisions. For instance, the 
control signal is released when a planned response is interrupted by a strong motion signal which 
activates the Head-Orienting Movement module (Figure 5) and the animat turns away from the 
planned response direction. 

3. A Key End-to-end SOVEREIGN Simulation 

In the Motivated Choice Experiment, the animat learns the route to two different goal locations 
under two different motivational states. The simulation summary contains the following types of 
information: (1) Explanation of the experimental setup; (2) movement trajectories; (3) a step-by-
step description of model dynamics; (4) snapshots of visual input at key moments; (5) multi-trial 
learning; and (6) summary of the model properties demonstrated. 
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3.1 Motivated Choice Experiment. 

In this classic example of spatial learning, the animat learns the route to two different goal 
locations under two different motivational states. Specifically, the Forward-Left-Forward 
sequence when hungry leads to a food reward, whereas the Forward-Right-Forward sequence 
leads to a water reward when thirsty. Upon reaching the end of the goal arm, the animat is 
rewarded and long-term memory weights are updated using a slow learning rate. For the first five 
training trials of this sequence, the animat has a high hunger drive and is rewarded with food at 
the end of each trial. For the next five trials, the animat is thirsty and is rewarded with water at 
the end of each trial. The eleventh and final trial retests the response under the hunger drive to 
demonstrate that learning under each drive is preserved. 

The diagram shown in Figure 7a shows the position, actions and local views seen by the 
animat during this training trial. Similarly, the diagram in Figure 7b shows the Visual and Motor 
Working Memory and Planning System plan chunks which are stored during this experimental 
trial. This simulation is similar to that presented in earlier examples. However, a summary is 
offered here for completeness. The animat starts this trial shifted to the left within the corridor, 
thereby increasing Magno signals in the left hemifield. The hungry animat learns to categorize 
the triangle cue and updates the Visual Working Memory and Planning System. It approaches the 
triangle cue under reactive control. As it nears the choice point, Magno signals trigger a head-
orienting movement to the left bringing the square cue into view. The Triangle chunk is 
associated with the exploratory drive and can now sample the Forward-Left movement. The 
animat then learns to categorize the square cue. The Visual and Motor Working Memory and 
Planning System are updated and the animat approaches the square cue under reactive control. 
Upon reaching the food reward, all active chunks are associated with the hunger drive and the 
Forward-Left and Triangle-Square chunks sample the Forward-Straight movement command. 
The initial training trial is complete. 

The diagram in Figure 7c shows the learned plan chunks and their associated motor 
responses which are gradually strengthened during training. After several trials, the hungry 
animat starts this trial centered in the corridor, yielding Magno signals which are balanced 
between left and right. After learning to categorize the triangle cue and updating the Visual 
Working Memory and Planning System, the Triangle chunk can read out the command to go 
Forward-Left via top-down signals. The planned command overrides reactive signals and the 
animat moves forward and turns left. Both the approach speed and Parvo gain are increased 
because the previously rewarded plan element has been reactivated. After the turn is complete, 
the Triangle chunk is again associated with the exploratory drive. This learning is triggered by 
the exploratory learning signal in the absence of explicit reward, and is activated after a head turn 
is completed. After learning to categorize the square cue, the Visual and Motor Working Memory 
and Planning System are updated and the Forward-Straight command is directly read out via top-
down Motivated WHAT and WHERE Decision signals. After approaching under planned 
control, the animat is rewarded with food and the active chunks are associated with the hunger 
drive. Finally, the Forward-Left and Triangle-Square chunks can sample the Forward-Straight 
movement command. 
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(a) 

 
(b) 

 
(c)  

Figure 7. (a) Perspective views are shown for selected points during maze exploration toward the goal location in 
the left arm. (b) Each ellipse graphically depicts the short-term memory chunks represented in both the Visual and 
Motor Working Memory and Planning System during exploratory learning. (c) Each ellipse graphically depicts the 
short-term memory chunks and associated motor responses in both the Visual and Motor Working Memory and 
Planning System after exploratory learning. 

The diagram in Figure 8a shows the position, actions and local views seen by the animat during 
the second phase of the maze experiment. Similarly, the diagram in Figure 8b shows the Visual 
and Motor Working Memory and Planning System plan chunks which are stored during this 
experimental trial. After several learning trials, the thirsty animat starts this trial centered in the 
corridor, yielding Magno signals which are balanced between the left and right sides of the visual 
field. After learning to categorize the triangle cue and updating the Visual Working Memory and 
Planning System, the Triangle chunk is able to read out the command to go Forward-Right via 
top-down Motivated WHAT and WHERE Decision signals. The planned command overrides 
reactive signals and the animat moves forward and turns right. Both the approach speed and 
Parvo gain are increased because the previously rewarded plan element has been reactivated. 
After the turn is complete, the Triangle chunk is again associated with the exploratory drive. 
After learning to categorize the star cue, the Visual and Motor Working Memory and Planning 
System are updated and the Forward-Straight command is directly read out via top-down signals. 
After approaching under planned control, the animat is rewarded with water and the active 
chunks are associated with the thirst drive. Finally, the Forward-Right and Triangle-Star chunks 
can sample the Forward-Straight movement command. 
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(a) 

 
(b) 

Figure 8. (a) Perspective views are shown for selected points during maze exploration under planned control. (b) 
Each ellipse graphically depicts the short-term memory chunks and associated motor responses in both the Visual 
and Motor Working Memory and Planning System after exploratory learning. 

Although the long-term memory (LTM) weights rapidly learn the appropriate responses, several 
trials are required for the weights to achieve asymptotic levels. The total level of conditioned 
reinforcement (CR) and incentive motivational learning is shown in the six panels of Figure 9. In 
the upper panel of Figure 9a, the CR adaptive weight from the Visual Working Memory and 
Planning System (Figure 2), denoted “SENSORY”, to the hunger Drive Representation module is 
plotted as a function of training trial. Recall that the first five training trials comprise the 
Forward-Left-Forward movement sequence to receive a food reward while hungry. The next five 
training trials comprise the Forward-Right-Forward movement sequence to receive a water 
reward while thirsty. The eleventh, and final test trial demonstrates no loss of learning of the first 
sequence while hungry. In the middle panel of Figure 9a, the same CR data is shown for the 
Motor Working Memory and Planning System (Figure 2) to the hunger drive. In the bottom panel 
Figure 9a, the total learned CR versus training trial is shown. The CR levels increase and remain 
high as a consequence of the learning law employed by the system. 

The learned CR to the thirst input of the Drive Representation module is similar to the 
hunger drive input, discussed above. In the upper panel of Figure 9b, the learned CR from the 
Visual Working Memory and Planning System (Figure 2), denoted “SENSORY”, to the thirst 
input of the Drive Representation module is plotted as a function of training trial. In the middle 
panel, the same CR data is shown for the Motor Working Memory and Planning System (Figure 
2) to the thirst drive. Finally, in the bottom panel, the total learned CR versus training trial is 
shown. The CR levels only increase after the fifth trial, when the thirst drive is active, and the 
animat receives a water reward for reaching the goal. 

The exploratory drive performs an important role in spatial learning. The exploratory 
drive input to the Drive Representation module is inhibited by consummatory drive activity. 
However, it is never completely inactive, thereby allowing some conditioned reinforcement (CR) 
and incentive motivational learning to it. In the upper panel of Figure 9c, the learned CR from the 
Visual Working Memory and Planning System (Figure 2), denoted “SENSORY”, to the 
exploratory input of the Drive Representation module is plotted as a function of training trial. In 
the middle panel the same CR data is shown for the Motor Working Memory and Planning 
System (Figure 2) to the exploratory drive. Finally, in the bottom panel, the total learned CR 
versus training trial is shown. During the first five trials, the Star chunk and Forward-Left motor 
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sequence were conditioned to the exploratory drive. This resulted in low CR levels for this first 
phase of training and a rapid increase in the CR levels after the fifth trial. The effect seen is that, 
during reactivation of the Star chunk, learned CR contributes to an increase in the Drive 
Representation module activity. This increase, in turn, is sampled by the Visual and Motor 
Working Memory and Planning System modules. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 9. This series of plots show the acquisition of learned conditioned reinforcement and incentive motivation 
over a series of 11 experimental trials navigating to goal locations under either the hunger or thirst drives (see text 
for details). In each panel, the Visual Memory System (sensory), Motor Memory System (motor) and total learned 
associations are plotted vs. trial. (a) Acquisition of sensory and motor conditioned reinforcement to the hunger drive 
vs. trial. (b) Acquisition of sensory and motor conditioned reinforcement to the thirst drive vs. trial. (c) Acquisition 
of sensory and motor conditioned reinforcement to the exploratory drive vs. trial. (d) Acquisition of sensory and 
motor incentive motivation from the Sensory-Drive Heterarchy module exploratory channel vs. trial. (e) Acquisition 
of sensory and motor incentive motivation from the Sensory-Drive Heterarchy module hunger channel vs. trial. (f) 
Acquisition of vision and motor incentive motivation from the Sensory-Drive Heterarchy module thirst channel vs. 
trial. 

Incentive motivational signals aid in the selection of Visual and Motor Memory System output 
channels. These signals are important for enabling a chunk to read out the correct motor 
command under different motivational states. The total learned incentive motivation from the 
exploratory channel of the Sensory-Drive Heterarchy module is shown as a function of trial in 
Figure 9d. The upper, middle and lower panels are as discussed above. The acquisition of learned 
incentive motivation to the hunger and thirst drives is shown in Figures 9e and 9f. The upper, 
middle and lower panels are as above. The initially large incentive motivation signals under the 
hunger drive decrease later in the experiment when learning under the thirst drive. This results 
from the ongoing exploratory learning to the prepotent output channel which weakens its prior 
conditioning to the hunger drive. In summary, this experimental setup demonstrates the capacity 
for the SOVEREIGN model to learn different routes to a goal location under different 
motivational states. 

4. General Discussion and Conclusions 

The model has several notable strengths relative to other available models, including the 
following ones: First, it provides an end-to-end model that includes on-line vision, visual 
recognition learning and categorization, working memory storage of sequences of visual and 
motor categories, learning of sequential cognitive and motor plans, cognitive-emotional 
interactions whereby reinforcement learning can select plans that can attain a currently valued 
goal, and balancing of visually reactive exploratory vs. planned movement decisions, based upon 
the relative salience of bottom-up and top-down information through time. Second, unlike 
various other models (e.g., Barto and Sutton, 1981; Dayan, 1987; Schmajuk, 1990), no explicit 
spatial goal gradient, proportional to the spatial distance from the goal, is required to guide goal-
oriented sequential behavior in SOVEREIGN. Third, list chunks provide a compact context-
sensitive code for learning plans to navigate a large number of different routes. Fourth, reliable, 
single–trial learning of a maze can occur if the animat happens to find the goal location during an 
exploratory trial. Fifth, the animat can respond to the same sequence of visual or motor events in 
different ways to achieve different goals when different drives are prepotent.  

One weakness in the current version of SOVEREIGN is that its navigational behaviors 
are all route-based. The model does not yet include mechanisms of spatial navigation (O’Keefe 
and Dostrovsky, 1971; O’Keefe and Nadel, 1978) such as the role of hippocampal place fields, 
head-direction cells, and the theta rhythm (e.g., Burgess et al., 1995). Such a development would 
require an understanding of how place fields form, notably the role of entorhinal grid cells in 
their formation (e.g., Hafting, Fyhn, Molden, Moser, and Moser, 2005), which other modeling 
research is currently investigating (e.g., Fuhs and Touretzky, 2006; Gorchetchnikov and 
Grossberg, 2007). 



13th ICCRTS: C2 for Complex Endeavors 

 22

References 

Baloch, A. A. and Waxman, A. M. (1991). Visual learning, adaptive expectations, and behavioral 
conditioning of the mobile robot MAVIN. Neural Networks, 4, 271–302. 

Barto, A. G. and Sutton, R. S. (1981). Landmark learning: An illustration of associative search. 
Biological Cybernetics, 42, 1–8. 

Berzhanskaya, J., Grossberg, S. and Mingolla, E. (2007). Laminar cortical dynamics of visual 
form and motion interactions during coherent object motion perception. Spatial Vision, in 
press. 

Bradski, G., Carpenter, G.A., and Grossberg, S. (1994). STORE working memory networks for 
storage and recall of arbitrary temporal sequences. Biological Cybernetics, 71, 469-480. 

Bradski, G. and Grossberg, S. (1995). Fast learning VIEWNET architectures for recognizing 3-D 
objects from multiple 2-D views. Neural Networks, 8, 1053-1080. 

Bullock, D., Cisek, P. and Grossberg, S. (1998). Cortical networks for control of voluntary arm 
movements under variable force conditions. Cerebral Cortex, 8, 48-62. 

Bullock, D. and Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent 
invariants and speed-accuracy properties during trajectory formation. Psychological Review, 
95, 49-90. 

Bullock, D. and Grossberg, S. (1991). Adaptive neural networks for control of movement 
trajectories invariant under speed and force rescaling. Human Movement Science, 10, 3-53. 

Burgess, N., Recce, M., and O’Keefe, J. (1995). Hippocampus – Spatial models. In The 
Handbook of Brain Theory. Bradford Books / MIT Press, Cambridge, MA. 

Cao, Y. and Grossberg, S. (2005). A laminar cortical model of stereopsis and 3D surface 
perception: Closure and da Vinci stereopsis. Spatial Vision, 18, 515-578. 

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B. (1992). Fuzzy 
ARTMAP: A neural network architecture for incremental supervised learning of analog 
multidimensional maps. IEEE Transactions on Neural Networks, 3, 698-713. 

Carpenter, G. A., Grossberg, S., and Rosen, D. B. (1991). Fuzzy ART: Fast stable learning and 
categorization of analog patterns by an adaptive resonance system. Neural Networks, 4, 759–
771. 

Cohen, M.A. and Grossberg, S. (1986). Neural dynamics of speech and language coding: 
Developmental programs, perceptual grouping, and competition for short-term memory. 
Human Neurobiology, 5, 1-22. 

Cohen, M. A. and Grossberg, S. (1987). Masking fields: A massively parallel neural architecture 
for learning, recognizing, and predicting multiple groupings of patterned data. In Grossberg, 
S. (Ed.), Neural Networks and Natural Intelligence, Chapter 7, pp. 317–367. The MIT Press, 
Cambridge, MA. 

Contreras-Vidal, J.L., Grossberg, S., and Bullock, D. (1997). A neural model of cerebellar 
learning for arm movement control: Cortico-spino-cerebellar dynamics. Learning and 
Memory, 3, 475-502. 

Dayan, P. (1987). Navigating through temporal difference. In Neural Information Processing 
Systems, 3, pp. 464–470. Morgan Kaufmann Publishers, San Mateo, CA. 

Fang, L. and Grossberg, S. (2007). From stereogram to surface: How the brain sees the world in 
depth. Technical Report CAS/CNS TR-06-013, Boston University. Submitted for publication. 

Fazl, A., Grossberg, S., and Mingolla, E. (2007). View-invariant object category learning, 
recognition and search: How spatial and object attention are coordinated using surface-based 



13th ICCRTS: C2 for Complex Endeavors 

 23

attentional shrouds. Technical Report CAS/CNS TR-07-011, Boston University. Submitted to 
Cognitive Psychology, April, 2007. 

Fiala, J.C., Bullock, D., Grossberg, S. (1996). Metabotropic glutamate receptor activation in 
cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye 
blink response. Journal of Neuroscience, 16, 3760-3774. 

Fuhs, M.C. and Touretzky, D.S. (2006). A spin glass model of path integration in rat medial 
entorhinal cortex. Journal of Neuroscience, 26, 4266 – 4276. 

Gaudiano P. and Grossberg S. (1991). Vector associative maps: Unsupervised real-time error-
based learning and control of movement trajectories. Neural Networks, 4, 147-183. 

Gnadt, W. (2007). SOVEREIGN: An autonomous neural system for incrementally learning to 
navigate towards a rewarded goal. Ph.D. thesis, Boston University. 

Gnadt, W. and Grossberg, S. (2005a). SOVEREIGN: A Self-Organizing, Vision, Expectation, 
Recognition, Emotion, Intelligent, Goal-oriented Navigation system. In Douglas Blank and 
Lisa Meeden (Eds.), Developmental Robotics: Papers from the 2005 Spring Symposium, 
March 21-23, pp. 106-110. American Association for Artificial Intelligence, Menlo Park, 
California. 

Gnadt, W. and Grossberg S. (2005b). SOVEREIGN: A Self-Organizing, Vision, Expectation, 
Recognition, Emotion, Intelligent, Goal-oriented Navigation system. Dynamical 
Neuroscience XIII: Computational Cognitive Neuroscience satellite symposium of the annual 
Society for Neuroscience meeting, November 10-11, 2005. 

Gnadt, W. and Grossberg S. (2006). SOVEREIGN: A Self-Organizing, Vision, Expectation, 
Recognition, Emotion, Intelligent, Goal-oriented Navigation system. Tenth International 
Conference on Cognitive and Neural Systems, Boston, Massachusetts, May 2006. 

Goodale, M. A. and Milner, D. (1992). Separate visual pathways for perception and action. 
Trends in Neurosciences, 15, 20–25. 

Gorchetchnikov, A. and Grossberg, S. (2007). Space, time, and learning in the hippocampus: 
How fine spatial and temporal scales are expanded into population codes for behavioral 
control. Neural Networks, 20, 182 – 193.  

Greve, D., Grossberg, S., Guenther, F., and Bullock, D. (1993). Neural representations for 
sensory–motor control, I: Head–centered 3–D target positions from opponent eye commands. 
Acta Psychologica, 82, 115–138. 

Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87, 1-51. 
Grossberg, S. (1984a). Some psychophysiological and pharmacological correlates of a 

developmental, cognitive and motivational theory. In R. Karrer, J. Cohen, and P. Tueting 
(Eds.), Brain and information: Event related potentials. New York: New York Academy of 
Sciences, pp.58-142. 

Grossberg, S. (1984b). Some normal and abnormal behavioral syndromes due to transmitter 
gating of opponent processes. Biological Psychiatry, 19, 1075–1118. 

Grossberg, S. (2000a). The complementary brain: Unifying brain dynamics and modularity. 
Trends in Cognitive Sciences, 4, 233-246. 

Grossberg, S. (2000b). The imbalanced brain: From normal behavior to schizophrenia. Biological 
Psychiatry, 48, 81-98. 

Grossberg, S., Guenther, F., Bullock, D., and Greve, D. (1993). Neural representations for 
sensory–motor control, II: Learning a head–centered visuomotor representation of 3–D target 
position. Neural Networks, 6, 43–67. 

Grossberg, S. and Merrill, J.W.L. (1992). A neural network model of adaptively timed 
reinforcement learning and hippocampal dynamics. Cognitive Brain Research, 1, 3-38. 



13th ICCRTS: C2 for Complex Endeavors 

 24

Grossberg, S. and Merrill, J.W.L. (l996). The hippocampus and cerebellum in adaptively timed 
learning, recognition, and movement. Journal of Cognitive Neuroscience, 8, 257-277. 

Grossberg, S., Mingolla, E. and Viswanathan, L. (2001). Neural dynamics of motion integration 
and segmentation within and across apertures. Vision Research, 41, 2521-2553. 

Grossberg, S. and Myers, C.W. (2000). The resonant dynamics of speech perception: Interword 
integration and duration-dependent backward effects. Psychological Review, 107, 735-767. 

Grossberg, S., & Pearson, L. (2007). Laminar cortical dynamics of cognitive and motor working 
memory, sequence learning and performance: Towards a unified theory of how the cerebral 
cortex works. Submitted for publication. 

Grossberg, S. and Seidman, D. (2006). Neural dynamics of autistic behaviors: Cognitive, 
emotional, and timing substrates. Psychological Review, 113, 3, 483-525. 

Grossberg, S. and Yazdanbakhsh, A. (2005). Laminar cortical dynamics of 3D surface 
perception: Stratification, transparency, and neon color spreading. Vision Research, 45, 1725-
1743. 

Guenther, F. H., Bullock, D., Greve, D., and Grossberg, S. (1994). Neural representations for 
sensory–motor control, III: Learning a body–centered representation of 3–D target position. 
Journal of Cognitive Neuroscience, 6, 341 - 358. 

Hafting, T., Fyhn, M., Molden, S., Moser, M.H., and Moser, E.I. (2005). Microstructure of the 
spatial map in the entorhinal cortex, Nature, 436, 801 – 806. 

Kelly, F.J. and Grossberg, S. (2000). Neural dynamics of 3-D surface perception: Figure-ground 
separation and lightness perception. Perception and Psychophysics, 62, 1596-1619. 

Leonard, B. and McNaughton, B. L. (1990). Spatial representation in the rat: Conceptual, 
behavioral, and neurophysiological perspectives. In Kesner, R. P. and Olton, D. S. (Eds.), 
Neurobiology of Comparative Cognition, Chapter 13, pp. 363–422. Lawrence Erlbaum 
Associates, Hillsdale, NJ. 

Mishkin, M., Ungerleider, L. G., and Macko, K. A. (1983). Object vision and spatial vision: Two 
cortical pathways. Trends in Neurosciences, 6, 414–417. 

Munn, N. L. (1950). Handbook of Psychological Research on the Rat. Houghton Mifflin Co., 
Boston, MA. 

O’Keefe, J.M. and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary 
evidence from unit activity in the freely-moving rat. Brain Research, 34, 171 – 175.  

O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford University 
Press, New York, NY. 

Pribe, C., Grossberg, S., and Cohen, M.A. (1997). Neural control of interlimb oscillations, II: 
Biped and quadruped gaits and bifurcations. Biological Cybernetics, 77, 141-152. 

Raizada, R. and Grossberg, S. (2003). Towards a theory of the laminar architecture of cerebral 
cortex: Computational clues from the visual system. Cerebral Cortex, 13, 100-113. 

Russell, J. T. (1932). Depth discrimination in the rat. Journal of Genetic Psychology, 40, 136–
159. 

Schilling, R. J. (1990). Fundamentals of Robotics: Analysis and Control. Prentice Hall, 
Englewood Cliffs, NJ. 

Schmajuk, N. A. (1990). Role of the hippocampus in temporal and spatial navigation: An 
adaptive neural network. Behavioral Brain Research, 39, 205–229. 

Ungerleider, L. G. and Mishkin, M. (1982). Two cortical visual systems: Separation of 
appearance and location of objects. In Ingle, D. L., Goodale, M. A., and Mansfield, R. J. W. 
(Eds.), Analysis of Visual Behavior, pp. 549–586. The MIT Press, Cambridge, MA. 


