

13TH ICCRTS
“C2 for Complex Endeavours”

Computability Issues of Efficiency and Effectiveness of

Organisational Models

Topics: 6

Author: Richard Taylor

Defence Science & Technology Organisation

Defence Establishment Fairbairn

24 Fairbairn Avenue
Canberra, ACT

Australia

Telephone: +61 2 612 86487

E-Mail: Richard.Taylor@dsto.defence.gov.au

mailto:Richard.Taylor@dsto.defence.gov.au

Computability Issues of Efficiency and Effectiveness of
Organisational Models

Richard Taylor

Abstract

Building on methods from computability theory we show that any useful question
about the efficiency or effectiveness of computational organisational models can have
no solution method, algorithm, or program that generates correct answers for all such
models and their inputs. Bounds on the extent to which a given method can generate
correct answers are also provided. One way to ensure computable methods apply is to
define an organisational question the resolution of which limits the operation of an
organisational model to a finite time. In this case however we show that there is no
way in general of speeding up the analysis apart from simply running the
organisation, or a model of it, for the specified time.

1 Introduction
This paper addresses the fundamental limitations of what can be said about the
performance of organisations in terms of understanding and analysing models of their
processes and procedures. This is not to deny that organisational performance also
depends crucially on various human factors including social, cultural, political, and
psychological, and that these factors may be problematic to capture in a model.
Notwithstanding this, efforts to quantitatively model organisations is an important
activity that continues to receive considerable research effort. For example the NATO
SAS-050 report “Exploring New Command and Control Concepts and Capabilities”
identifies over 300 variables that effect command and control, while a dedicated
journal, “Computational and Mathematical Organisation Theory”, has recently been
formed. In this context, our motivation is to understand the limits of quantitative
computational analysis as a means of providing insights into organisational model
evaluation.

There are relatively straightforward ways of evaluating the efficiency and
effectiveness of basic functions or outputs at the bottom of an organisation. They fail
to take account however of the complex processes and interactions that may be
occurring at all organisational levels, or to take account of the potential gains that new
ways of doing business might deliver. It is desirable therefore to develop evaluation
methods that can engage with an organisation as a system that may display, for
example, complex non-linear interactions, emergent behaviour, and localised
optimums.

Consider an organisational model as a number of networked processing units
(individuals or groups of individuals) each with a capability of processing inputs and
producing outputs according to certain rules. Outputs produced by a unit are directed
to other units as inputs. A unit may change its function over time, so that for example,

a unit may pass an output to itself and perform a different function. In this sense an
organisational model is a computational system.

With this perspective important results and methods from computing theory can be
brought to bear on questions of the systematic analysis of organisational models. We
show that any useful question about the efficiency or effectiveness of organisational
models can have no method, algorithm, or program that generates correct answers for
all organisational models. Bounds on the extent to which a given method can generate
correct answers are also provided. The means, pros and cons of limiting the scope of
questions in order for useful general methods to exist are also discussed.

2 The Halting Problem and Rices Theorem
Two fundamental results from computing theory shall be referred to in the body of
this paper. We shall use informal statements of these results for brevity, simplicity,
and to convey their meaning to a wider audience. However it is important to note that
these results have been mathematically formalised in the relevant references.

The Halting Problem can be stated informally as:

Given a computer program and a finite input, determine whether or not the program,
when fed the input, terminates or loops (runs) forever.

A. Turing [14] proved that:

Halting Theorem There is no universal method or program that solves the halting
problem for all program-input pairs.

A theorem of H. G. Rice [10] that generalises the Halting Theorem can be stated
informally as:

Rices Theorem There is no universal method or program that determines any non-
trivial1 functional behaviour of computer programs.

An example of a functional question for which Rices Theorem applies is “does a
computer program with input 1 produce any outputs?” A non-functional question for
which Rices Theorem does not apply is one that refers to the operation of the
computer program such as “does a computer program with input 0 produce an output
within 1000 steps?”

We note that there has been considerable interest in recent years about computing
paradigms other than the classical Turing machine, including in particular the
Quantum Computer [9]. However quantum computers, or any other computing
paradigm known to the author, can only solve problems that a Turing machine can
solve – perhaps faster in some cases. Thus all the results in this paper concerning
computability (Sections 1-4) apply to both Turing machines and Quantum computers.

1 A property of partial functions is trivial if it holds for all partial computable functions or for none.

3 Efficiency and Effectiveness of Models
In broad terms we understand efficiency to mean a measure of the resources required
to complete a process, while effectiveness refers to the accuracy or optimality of the
outputs produced. In the following we shall define precise computing terms that relate
to these concepts. In particular we shall use time as the key resource when considering
efficiency. We stress that the details of the following models of efficiency and
effectiveness are particular approaches or examples among many variations. We
assert however that corresponding variations to the Theorems of this section
(Theorems 1 and 2) would still apply.

The definitions of efficiency and effectiveness provided in this section shall be
relative rather than absolute in nature. Thus organisational models shall be considered
effective or efficient in as much as they perform well in comparison with other
organisational models performing the same role. Importantly we shall consider
questions of efficiency and effectiveness of an organisational model to be a property
pertaining to all possible inputs to that model. In this sense we are considering non
trivial structural insights of models, rather than observations pertaining to a limited
number of inputs.

We denote a family of computer programs P, called organisational models, each with
a corresponding countably infinite collection of inputs I, and outputs O.
Organisational models shall also be limited in that they must halt on all inputs (among
other considerations this allows us to be clear about defining efficiency). Denote
output[p,i]∈O as the output of the program p∈P when fed the input i∈I. We shall
consider all inputs and outputs to be binary strings. Also let time[p,i] denote the time
taken (number of elementary operations) for the program p to complete processing on
input i. In the following ε is some fixed small positive constant (less than 1). As we
have noted the discussion and proofs are informal in nature. The formal counterparts
of the following computational complexity results would reference a particular
Universal Turing Machine [14] (see also the modern discussion in [1]). In the
following len[i] refers to the length of the input i in bits.

Definition 1 Let p be an organisational model, with inputs I and outputs O. Let f be
some growth function. Then p is said to be f-efficient if for any other organisational
model q with identical inputs and outputs, so that

,],,[],[Iiiqouputipoutput ∈∀=
then

.],,[])[(],[Iiiqtimeilenfiptime ∈∀≤

In words p completes in at most f(len[i]) of the time of any other organisational model
that performs the same task.

Definition 2 The function f is non-trivial if for some positive ε>0

mmf ∀+≥ ε1)(

Theorem 1 There is no universal method or program to determine whether an
organisational model is f-efficient for non-trivial f.

Proof Let I and O be the set of finite bit strings. Let k be some integer much greater
than 1/ε. Given any computer program r construct an organisational model p as
follows:

k - integer
b - binary variable

 a: run/continue r for one time step
 //do not print any outputs of r//
 if r has not halted {
 If not EOF {
 read b

For j=1 to k {print b}
 Go to a

}
 Else {exit p}
 }
 Else

{
 //r halts//
 While not EOF {

wait 10 time steps
 read b
 print b}
 }

Observe that p reads a bit string and outputs k copies of each bit, while running r
alternately for one step. This is done efficiently while r runs, but inefficiently after r
halts. Thus the organisational model p is f-efficient if and only if the program r does
not halt. Since there is no method or program to determine whether or not a general
program halts it follows that there is no method or program to determine whether an
organisational model is f-efficient. �

In order to consider the matter of effectiveness we need some notion of the best
possible output that an organisational model can generate. One way to do this is to
consider a family of problems R and goodness measures as follows. Each problem in
R consists of a countably infinite collection of input-output pairs (i,o). In words
(i,o)∈r, indicates that o is a legitimate, though not necessarily optimal, solution to the
problem r with input i. For each r∈R, and (i,o)∈r we have a goodness measure
m[r,i,o] between 0 and 1. This represents the goodness of o as a solution to the
problem r with input i, with m[r,i,o] =1 meaning that o is an ideal solution to problem
r with input i. In general we shall not assume that each problem input pair r,i has
some output o for which m[r,i,o]=1. Thus we cannot always readily recognise best
possible solutions. We can now proceed to define an effective organisational model.

Definition 3 Let r be a problem and p an organisational model, with inputs I and
outputs O. Then p is said to be f-effective (as a method of solving r), if for any other
organisational model q with inputs I and outputs O with

,,]),[,(,]),[,(Iiriqouputiripoutputi ∈∀∈∈
then,

.]],,[,,[)
])[(

11(]],[,,[Iiiqoutputirm
ilenf

ipoutputirm ∈∀−≥

In words p is within 1/ f(len[i]) of the effectiveness of any other organisational model
at solving r.

Theorem 2 There is no universal method or program to determine whether an
organisational model is f-effective for non-trivial f.

Proof The proof is similar to that of Theorem 1, with an organisational model p being
constructed that is f-effective if and only if a program r does not halt. �

4 Bad families
The Halting Theorem, Rices Theorem and Theorems 1 and 2 indicate that any
prospective universal method will fail for some “bad” program/input pair. We
demonstrate a lower bound on the number of such pairs.

We show the argument for the halting problem, however it generalises readily to
Rices Theorem and Theorems 1 and 2. Use the notation p←i to denote the computer
program p operating on input i. We shall also need a definition.

Definition 4 Let a prospective halting detector A be any computer program that halts
for all inputs after outputting a 0 or 1 with the following interpretation. For a
program/input pair (p,i), A←(p,i) outputs 0 to signify that p←i halts, and 1 to signify
that p←i does not halt. Let A “succeed” for the program/input pair (p,i) if:

 a/ A←(p,i) outputs 0 and p←i halts, or
 b/ A←(p,i) outputs 1 but p←i does not halt.

Similarly let A “fail” for the program/input pairs (p,i) if:

 a/ A←(p,i) outputs 0 and p←i does not halt, or
 b/ A←(p,i) outputs 1 and p←i halts.

Let fail_A(n) be the number of program/input pairs (p,i) of total length at most n for
which A fails. Note that N the total number of program/input pairs (p,i) of length at
most n is 2n+1-1.

Theorem 3 For some function g(n)→1 from below as n→∞,

.)(_
)(ng

NnAfail ≥

Proof The body of the proof uses a variation of the classical diagonal argument to
generate families of failing pairs (p,i). We shall associate every program with a string
that describes it. In this way a program can also be an input to another program. Let
Sm be the set of all binary strings of length m. Let F be the set of all bijections from Sm
to Sm. We note that each f∈F can be represented by a string of length m2m,
corresponding to the length of the concatenation f(0)f(1)...f(2m). Also there are (2m)!
elements of F. Let S be the set of all finite binary strings. Extend each function f∈F to
a function from S to S by defining f(s)=s for all s∉Sm. Given any input string i we
construct a program T which acts on f(i) as follows:

If A←(i,f(i)) outputs 0 then T←f(i) loops forever,
If A←(i,f(i)) outputs 1 then T←f(i) halts.

This construction is well defined for all input strings since f is bijective. Now the
program T corresponds to some string t. Furthermore the length of t would appear to
satisfy

len[t]≤m2m +c,

for some constant c, dependent on A, but independent of f (defining t requires us only
to use the definitions of f and A with a small fixed amount of extra logic).

Now A must fail for the program/input pair (T,f(t)). For if A←(T,f(t)) outputs 0 then
T←f(t) loops forever by the definition of T, while if A succeeds for the program/input
pair (T,f(t)) then T←f(t) halts. Similarly if A←(T,f(t)) outputs 1 then T←f(t) halts by
the definition of T, while if A succeeds for the program/input pair (t,f(t)), then T←f(t)
loops.

Also we have as many such pairs as elements in F. Thus

fail_A(n)≥ (2m)! (1)

If n=len[(t,f(t))] we can combine the bounds on the lengths of t and F to obtain

n≤m2m+1 +c. (2)

By Stirling’s approximation [6] we have

.4 using,2222!2 2)2(

2

2

≤≥≥ − e
e

m

m

m

m
m

mm π

Also by (2)

(3)).2
2
1)((

)2
2
1(2

2.22.2)2(

1

m
cn

m
m

mm

m

mmm

−−≥

−=

−=−

+

Combining (1) and (3),

[] (4)
2
222)(_ .

2
2
1

1

12
2
1)2

2
1)((

m

c

n

mcnm
cn

nAfail

−

+

+
−−−−

⎥⎦

⎤
⎢⎣

⎡==≥

Finally since 2n≥N and 2c+1=N(c+1)/log2N we can extend (4) to obtain,

.)(_ 22222 log
)1(4

log
141log

)1(2
log2

12
2
1

2
2
1

log
11

Nm
c

NmNm
c

Nm
m

N
c

NNNnAfail
+

+−−
+

+−−
−+

−

==⎥
⎦

⎤
⎢
⎣

⎡
≥

This completes the proof. �

We do not know what the best possible result is for the bound on fail_A(n).

5 No Speed-up Results
The results of Section 4 tell us what is not possible. One way to pose questions about
the functional behaviour of computer programs that leads to computable problems
however is to add an explicit time bounding clause to the question. Thus the question
“Given any computer program p, input i, and time t, will p given input i halt within
time t”? is clearly computable. Simply run p with input i and wait till time t. Compare
with what may go on in an organisation of people working to solve some problem.
There is a limit on the time available to devote to a given task, or the number of
repetitions or revisions of a sub-task a person is prepared to do.

Though time constraints can lead to computable problems we show however that
there can be no general speed up method regarding this question. From this point we
shall consider all program inputs and outputs to be bit strings.

Define a function timehalt with arguments p, i, and t:

timehalt(p,i,t)=0 if p←i halts within time t,
timehalt(p,i,t)=1 if p←i does not halt within time t.

In the following a program is said to solve a function if it has identical input and
output properties. For inputs (p,i,t) there is an obvious program that solves timehalt

within time t by simply running p←i and waiting time t. The following result shows
that this cannot, in general, be significantly sped up.

Theorem 4 There is no program ptimehalt(p,i,t) that always solves timehalt(p,i,t) in
time t-δ (where δ is some small constant).

Proof Assume on the contrary that ptimehalt(p,i,t) always solves timehalt(p,i,t) in
time t-δ. Consider t as fixed. We use ptimehalt to define a computer program prog
with input any p as follows,

prog: run ptimehalt←(p,p,t) and wait until time t-δ. If an output 1 is produced then
prog stops. If however an output 0 is produced then prog loops forever.

Now the few simple steps in the operation of prog apart from the running of
ptimehalt←(p,p,t) should take at most some small fixed number of steps, which we
denote δ (in a rigorous formulation δ is a property of the particular universal turing
machine used). It follows that prog must halt within time t or not at all.

Consider now the nature of this program when fed a copy of itself. If prog←prog
halts then ptimehalt←(p,p,t) must have outputed a 1. Since ptimehalt solves timehalt
it follows that timehalt(prog,prog, t)=1. This in turn means that prog←prog does not
halt within time t (see comments above). By the nature of prog however if it does not
halt within time t then it loops forever and so does not halt. This contradicts our
assumption that prog←prog halts.

If on the other hand prog←prog does not halt then ptimehalt←(p,p,t) must have
outputted a 0. Since ptimehalt solves timehalt it follows that timehalt(prog,prog,t)=0.
This in turn means that prog←prog halts within time t. This contradicts our
assumption that prog←prog does not halt.

This completes the proof by contradiction. �

Just as Rices Theorem generalises the Halting Theorem we can also generalise
Theorem 3 to apply to non-trivial functional properties. This is illustrated with a
simple example.

Define an “output bit counting” function timesum with arguments p,i and t:

timesum(p,i,t)=n iff p←i outputs n output bits within time t.

Theorem 5 There is no program ptimesum(p,i,t) that always solves timsumt(p,i,t) in
time t-δ.

Proof Assume on the contrary that ptimesum(p,i,t) always solves timesum(p,i,t) in
time t-δ. Given any p,i,t design a program S as follows:

Run p←i and wait until time t. If p←i halts within time t, output the number of output
bits produced to that point. Otherwise do nothing.

Consider now the following method. Run

ptimesum← (S,[p,i,t],t)

and wait until time t-δ to see if any output is produced (here [p,i,t] represents the
concatenation of p, i and t. If so since ptimesum solves timesum then S←[p,i,t]
outputs some n in time t. Thus from the definition of S it follows that p←i halts within
time t.

If on the other hand if no output is produced from

ptimesum←(S,[p,i,t],t)

after time t-δ, then S←[p,i,t] outputs nothing. Thus from the definition of S it follows
that p←i does not halt within time t.

We have just described a t-δ time program that determines whether or not p←i halts
within time t. This contradicts Theorem 4. �

6 What Then Can be Achieved
The results of Section 4 show that any useful question about the efficiency or
effectiveness of organisations, at least in terms of process and procedures, can have no
method, algorithm, or program that generates correct answers for all organisational
models. We stress however that this does not mean that the efficiency or effectiveness
of any particular organisational model cannot be determined. Rather, that whatever
method is used may not succeed when applied to another model (and will not succeed
for some other model). This implies that the analysis of increasingly complex
organisational models ultimately requires new analysis methods, and this process of
extending the analysis methods for novel models has no end.

It follows that useful methods that analyse questions of efficiency and effectiveness in
organisational models must in some way be limited in scope. One approach to this
limitation is to restrict the structures allowable when considering organisational
models so that analytic methods apply. This approach has been applied to the Halting
Problem by the development of Termination Analysis (see for example [4]). It is
worth noting however that the basic building blocks of a computing machine are
surprisingly simple [1], and to place restrictions at this level is, we believe, likely to
greatly reduce the design diversity beyond what is desirable.

Furthermore structures that may appear at first sight to be significantly constrained or
limited may not turn out to be so. Famously the question as to whether an algorithm
exists that can determine whether polynomial equations over the integers have integer
solutions, was open for many years until finally resolved in the negative [7]. Even
today this question is unresolved when the polynomial equations have anywhere
between 2 and 10 variables [12].

One way to ensure computable methods apply is to define an organisational question
the resolution of which can clearly be obtained within finite time. This implies finding
a finite number of inputs or scenarios that are in some way representative of the

operation of the organisational model for all possible inputs. If there are very many or
infinitely many possible inputs, this could be difficult. Even with this approach
however, there is no way in general of speeding up the analysis apart from simply
running the organisational model for the specified time (see Theorem 5). Again we
stress that this does not mean that the analysis of any particular organisational model
cannot be sped up, but that whatever method is used may not speed the analysis of
another model (and will not speed up the analysis of some other model).

7 Particular Models
An organisational model explicitly refers to a particular problem solving engine but
also implicitly to a problem defined by its inputs and outputs. In the latter sense the
efficiency and effectiveness of particular mathematical problems have been studied
for many years. Thus the fastest algorithm is sought that generates certain specified
outputs from certain inputs. A large collection of such problems can be found in [3].
Typically it is clear how to obtain solutions given sufficient time, so they are mostly
computable. In general it is not known what the most efficient possible methods are
for their solution. This is not to say that many ingeniously efficient algorithms have
not been developed, rather that methods that rule out the existence of even better
algorithms do not seem to exist as yet. We note that what has been achieved is the
classification of most mathematical problems as having algorithms of broadly similar
(though unknown) efficiency [3]. This highlights the pervasive significance of the key
unresolved matter in this field (as to whether P=NP).

Results about effectiveness are varied in character, many being in the form of
understanding the trade-off between efficiency and effectiveness (see the discussion
on performance guarantees for approximation algorithms in [3]). Most results of this
kind are either not known to be best possible, or provisional upon the resolution of
P=NP.

8 Variety
An interesting perspective that sums up the results of this paper in a wider context is
that of variety. The variety within a collection of organisational models and inputs to
those models is intimately linked to the efficiency and effectiveness that it is possible
to obtain by any fixed method. This is illustrated by the table below.

For a finite collection of organisational models and inputs to those models, it is
possible, at least in principal, to run all the models with all the inputs and to tabulate
the outputs produced, the time with which they are produced, and their corresponding
effectiveness (assuming a computable effectiveness measure is available and upper
bounds on meaningful run times apply). Once produced this table represents a
complete measure the efficiency and effectiveness of those models with respect to the
inputs. The table also embodies a highly efficient solution method in its own right,
since solutions can be simply looked up. Of course in practise, if the number of
models and inputs is large, this table may not be constructible with realistic memory
or time resources. In this situation solutions must be obtained based on the application
of methods, and in this regard needs to treated like an infinite model/input collection.

For infinite collections of organisational models and inputs there is a critical level of
variety in the structure of models and their inputs within which solutions can always
be obtained within known efficiency and effectiveness bounds by some method, and
beyond which no such method exists. In the table we refer to this critical level as
bounded variety, and it contains particular problems (or finite collections of them)
referred to in Section 7. For example, by using the “schoolroom method” the
multiplication of integers can always be obtained within about 2nm steps where n and
m are the lengths (number of digits) of the two numbers to be multiplied. Through
the development of more and more sophisticated approaches however, the
multiplication of integers has been solved with increasing efficiency (see [5], [13],
[11], and [2]). Finally for infinite collections not of bounded variety, which we call
unbounded variety, Theorem 3 and its variations apply.

Collection of
Organisational Models & Inputs

Efficiency and Effectiveness
Limits

Finite Completely and accurately assess
given sufficient time

cf 12 times table

Infinite – Limited/Bounded Variety Can always successfully assess within
certain bounds. However the gap
between lower and upper bounds is
almost always significant.

cf multiplication

Infinite – Wide/Unbounded variety Any assessment method must fail for
some pairs of Organisation/Info
problem pairs.

)1(
)(_

O
NnAfail ≥

cf halting problem, multinomial
solvability

9 Alignment with practice
In this section we reflect on efforts to measure the efficiency and effectiveness in
organisations, to see how the limitations highlighted in this paper might be reflected.
In the military area of Command and Control a significant body of experience is
distilled in the NATO Code Of Best Practice for C2 Assessment[8]. The following
quotes are connected where possible to related mathematical results given here.

“C2 issues have long been regarded as difficult to analyse. Many operational analysis
studies have simply assumed perfect C2 in order to focus on other variables” [page
5]. “No single measure or methodology exists that satisfactorily assesses the overall
effectiveness of C2” [page 89]. This is reflected in Theorems 1 and 2. Indeed these
show that no methodology exists in the strong sense that it can never be found,
rather than simply being unknown to researchers at this time.

“If done well measures of C2 effectiveness will be scenario independent so one can
compare C2 effectiveness across a range of missions and circumstances” [page 96].
Theorem 2 indicates that this can never be fully achieved (across all possible missions
and circumstances). The extent to which a method may be scenario independent
relates to the quantity fail_A(n) (where A(n) is defined to relate to efficiency or
effectiveness - see remarks at the start of Section 4). While a lower bound is provided
in Theorem 3 it would be desirable to know how tight this bound might be. In other
words to find some A* for which fail_A*(n) is as small as possible.

10 Summary remarks
In summary the results of this paper highlight the limitations of any general methods
of organisational model analysis – specifically regarding questions of efficiency or
effectiveness. In particular the variety within the collection of organisational models
and their inputs, and the capacity to systematically assess those models/inputs can be
placed in three broad categories.

If the collections are finite then complete and accurate assessments are possible, given
sufficient time; if the collections are infinite but sufficiently limited, then assessments
are possible within known bounds; if the collections are infinite and sufficiently wide
in variety then no systematic assessment method exists. In the last case lower bounds
on the failure rate of any given method are obtained.

In general the limitations of any given assessment method emphasises the
indispensability of modelling and simulation.

11 References
[1] Davis, M. Engines of Logic: Mathematicians and the origin of the Computer
(2000). W. W. Norton & Company, New York.
[2] Furer, M. Fast Integer Multiplication. Proceedings of the 39th ACM Symposium
on the theory of computing, held at SanDiego, California, USA June 11-13, 2007.
[3] Garey, M and Johnson, D. (1979): Computers and Intractability: A guide to
the Theory of NP-Completeness, W. H. Freeman and Co.
[4] Giesl, J. Termination Analysis for Functional Programs using Term Orderings
(1995), Proceedings of the second International Static Analysis Symposium, Glasgow,
Scotland, Springer-Verlag, LNCS 983, pp 154-171.
[5] Karatsuba, A. and Ofman, Y. Multiplication of Multidigit numbers on
automata (1962), Doklady Akedemii Nauk SSSR 145, no. 2, pp 293-294. English
translation in Soviet Physics-Doklady 7, pp 595-596.
[6] Knuth, D. Fundamental Algorithms, Volume 1 of The Art of Computer
Programming, Second edition (1973), Addison-Wesley Publishing, Reading
Massachusetts.
[7] Matiyasevich, Y. Enumerable sets are Diophantine (1970), Doklady Akademii
Nauk SSSR, 191, pp. 279-282. English translation in Soviet Mathematics. Doklady,
vol. 11, no. 2, 1970.
[8] NATO Code Of Best Practice for C2 Assessment, DoD Command and
Control Research Program, October 2002.

[9] Nielson, M. and Chuang, I. Quantum Computation and Quantum Information
(2000), Cambridge: Cambridge University Press. ISBN 0-521-63503-9.
[10] Rice, H. G. Classes of Recursively Enumerable Sets and Their Decision
Problems (1953): Trans. Amer. Math. Soc. 74, no. 2, pp 358-366.
[11] Schonage, A. and Strassen, V. Schnelle Multiplikation grosser Zahlen,
Computing 7 (1971), 281-292.
[12] Sun, Z. W. On Hilberts 10th Problem and Related Topics
(http://math.nju.edu.cn/~zwsun/htp.pdf).
[13] Toom, A. L. The complexity of a scheme of functional elements simulating the
multiplication of integers, Dokl. Akad. Nauk SSSR 150 (1963), 496-498. English
translation in Soviet Mathematics 3, 714-716, 1963.
[14] Turing, A. On Computable Numbers, with an application to the
Entscheidungsproblem (1936), Proceedings of the London Mathematical Society,
Series 2, 42, pp 230-265.

http://math.nju.edu.cn/%7Ezwsun/htp.pdf

	1 Introduction
	2 The Halting Problem and Rices Theorem
	3 Efficiency and Effectiveness of Models
	4 Bad families
	5 No Speed-up Results
	6 What Then Can be Achieved
	7 Particular Models
	8 Variety
	9 Alignment with practice
	10 Summary remarks
	11 References

