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Abstract 
 

Building on methods from computability theory we show that any useful question 
about the efficiency or effectiveness of computational organisational models can have 
no solution method, algorithm, or program that generates correct answers for all such 
models and their inputs. Bounds on the extent to which a given method can generate 
correct answers are also provided. One way to ensure computable methods apply is to 
define an organisational question the resolution of which limits the operation of an 
organisational model to a finite time. In this case however we show that there is no 
way in general of speeding up the analysis apart from simply running the 
organisation, or a model of it, for the specified time. 
 

1 Introduction 
This paper addresses the fundamental limitations of what can be said about the 
performance of organisations in terms of understanding and analysing models of their 
processes and procedures. This is not to deny that organisational performance also 
depends crucially on various human factors including social, cultural, political, and 
psychological, and that these factors may be problematic to capture in a model. 
Notwithstanding this, efforts to quantitatively model organisations is an important 
activity that continues to receive considerable research effort. For example the NATO 
SAS-050 report “Exploring New Command and Control Concepts and Capabilities” 
identifies over 300 variables that effect command and control, while a dedicated 
journal, “Computational and Mathematical Organisation Theory”, has recently been 
formed. In this context, our motivation is to understand the limits of quantitative 
computational analysis as a means of providing insights into organisational model 
evaluation.  
 
There are relatively straightforward ways of evaluating the efficiency and 
effectiveness of basic functions or outputs at the bottom of an organisation. They fail 
to take account however of the complex processes and interactions that may be 
occurring at all organisational levels, or to take account of the potential gains that new 
ways of doing business might deliver. It is desirable therefore to develop evaluation 
methods that can engage with an organisation as a system that may display, for 
example, complex non-linear interactions, emergent behaviour, and localised 
optimums.  
 
Consider an organisational model as a number of networked processing units 
(individuals or groups of individuals) each with a capability of processing inputs and 
producing outputs according to certain rules. Outputs produced by a unit are directed 
to other units as inputs. A unit may change its function over time, so that for example, 



a unit may pass an output to itself and perform a different function. In this sense an 
organisational model is a computational system. 
 
With this perspective important results and methods from computing theory can be 
brought to bear on questions of the systematic analysis of organisational models. We 
show that any useful question about the efficiency or effectiveness of organisational 
models can have no method, algorithm, or program that generates correct answers for 
all organisational models. Bounds on the extent to which a given method can generate 
correct answers are also provided. The means, pros and cons of limiting the scope of 
questions in order for useful general methods to exist are also discussed. 
 

2 The Halting Problem and Rices Theorem 
Two fundamental results from computing theory shall be referred to in the body of 
this paper. We shall use informal statements of these results for brevity, simplicity, 
and to convey their meaning to a wider audience. However it is important to note that 
these results have been mathematically formalised in the relevant references.  
 
The Halting Problem can be stated informally as: 
 
Given a computer program and a finite input, determine whether or not the program, 
when fed the input, terminates or loops (runs) forever. 
 
A. Turing [14] proved that: 
 
Halting Theorem There is no universal method or program that solves the halting 
problem for all program-input pairs. 
 
A theorem of H. G. Rice [10] that generalises the Halting Theorem can be stated 
informally as: 
 
Rices Theorem There is no universal method or program that determines any non-
trivial1 functional behaviour of computer programs. 
 
An example of a functional question for which Rices Theorem applies is “does a 
computer program with input 1 produce any outputs?” A non-functional question for 
which Rices Theorem does not apply is one that refers to the operation of the 
computer program such as “does a computer program with input 0 produce an output 
within 1000 steps?” 
 
We note that there has been considerable interest in recent years about computing 
paradigms other than the classical Turing machine, including in particular the 
Quantum Computer [9]. However quantum computers, or any other computing 
paradigm known to the author, can only solve problems that a Turing machine can 
solve – perhaps faster in some cases. Thus all the results in this paper concerning 
computability (Sections 1-4) apply to both Turing machines and Quantum computers. 

                                                 
1 A property of partial functions is trivial if it holds for all partial computable functions or for none. 



3 Efficiency and Effectiveness of Models 
In broad terms we understand efficiency to mean a measure of the resources required 
to complete a process, while effectiveness refers to the accuracy or optimality of the 
outputs produced. In the following we shall define precise computing terms that relate 
to these concepts. In particular we shall use time as the key resource when considering 
efficiency. We stress that the details of the following models of efficiency and 
effectiveness are particular approaches or examples among many variations. We 
assert however that corresponding variations to the Theorems of this section 
(Theorems 1 and 2) would still apply. 
 
The definitions of efficiency and effectiveness provided in this section shall be 
relative rather than absolute in nature. Thus organisational models shall be considered 
effective or efficient in as much as they perform well in comparison with other 
organisational models performing the same role. Importantly we shall consider 
questions of efficiency and effectiveness of an organisational model to be a property 
pertaining to all possible inputs to that model. In this sense we are considering non 
trivial structural insights of models, rather than observations pertaining to a limited 
number of inputs. 
 
We denote a family of computer programs P, called organisational models, each with 
a corresponding countably infinite collection of inputs I, and outputs O.  
Organisational models shall also be limited in that they must halt on all inputs (among 
other considerations this allows us to be clear about defining efficiency). Denote 
output[p,i]∈O as the output of the program p∈P when fed the input i∈I. We shall 
consider all inputs and outputs to be binary strings. Also let time[p,i] denote the time 
taken (number of elementary operations) for the program p to complete processing on 
input i. In the following ε is some fixed small positive constant (less than 1). As we 
have noted the discussion and proofs are informal in nature. The formal counterparts 
of the following computational complexity results would reference a particular 
Universal Turing Machine [14] (see also the modern discussion in [1]). In the 
following len[i] refers to the length of the input i in bits.  
 
Definition 1 Let p be an organisational model, with inputs I and outputs O. Let f be 
some growth function. Then p is said to be f-efficient if for any other organisational 
model q with identical inputs and outputs, so that 
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In words p completes in at most f(len[i]) of the time of any other organisational model 
that performs the same task. 
 
Definition 2 The function f is non-trivial if for some positive ε>0 
 

mmf ∀+≥ ε1)(  
 

Theorem 1 There is no universal method or program to determine whether an 
organisational model is f-efficient for non-trivial f. 



 
Proof Let I and O be the set of finite bit strings. Let k be some integer much greater 
than 1/ε. Given any computer program r construct an organisational model p as 
follows: 
 
 
 

k - integer  
b - binary variable 

 a: run/continue r for one time step 
      //do not print any outputs of r// 
  if r has not halted { 
   If not EOF { 
     read b 

For j=1 to k {print b} 
    Go to a 

} 
   Else {exit p} 
   } 
  Else 

{ 
   //r halts// 
   While not EOF { 

wait 10 time steps 
    read b     
     print b} 
   } 
 
Observe that p reads a bit string and outputs k copies of each bit, while running r 
alternately for one step. This is done efficiently while r runs, but inefficiently after r 
halts. Thus the organisational model p is f-efficient if and only if the program r does 
not halt. Since there is no method or program to determine whether or not a general 
program halts it follows that there is no method or program to determine whether an 
organisational model is f-efficient. � 
 
In order to consider the matter of effectiveness we need some notion of the best 
possible output that an organisational model can generate. One way to do this is to 
consider a family of problems R and goodness measures as follows. Each problem in 
R consists of a countably infinite collection of input-output pairs (i,o). In words 
(i,o)∈r, indicates that o is a legitimate, though not necessarily optimal, solution to the 
problem r with input i. For each r∈R, and (i,o)∈r we have a goodness measure 
m[r,i,o] between 0 and 1. This represents the goodness of o as a solution to the 
problem r with input i, with m[r,i,o] =1 meaning that o is an ideal solution to problem 
r with input i. In general we shall not assume that each problem input pair r,i has 
some output o for which m[r,i,o]=1. Thus we cannot always readily recognise best 
possible solutions. We can now proceed to define an effective organisational model. 
 



Definition 3 Let r be a problem and p an organisational model, with inputs I and 
outputs O. Then p is said to be f-effective (as a method of solving r), if for any other 
organisational model q with inputs I and outputs O with 
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In words p is within 1/ f(len[i]) of the effectiveness of any other organisational model 
at solving r. 
 
Theorem 2 There is no universal method or program to determine whether an 
organisational model is f-effective for non-trivial f. 
 
Proof The proof is similar to that of Theorem 1, with an organisational model p being 
constructed that is f-effective if and only if a program r does not halt. � 
 

4 Bad families 
The Halting Theorem, Rices Theorem and Theorems 1 and 2 indicate that any 
prospective universal method will fail for some “bad” program/input pair. We 
demonstrate a lower bound on the number of such pairs. 
 
We show the argument for the halting problem, however it generalises readily to 
Rices Theorem and Theorems 1 and 2. Use the notation p←i to denote the computer 
program p operating on input i. We shall also need a definition. 
 
Definition 4 Let a prospective halting detector A be any computer program that halts 
for all inputs after outputting a 0 or 1 with the following interpretation. For a 
program/input pair (p,i), A←(p,i) outputs 0 to signify that  p←i halts, and 1 to signify 
that p←i does not halt. Let A “succeed” for the program/input pair (p,i) if: 
 
  a/ A←(p,i) outputs 0 and  p←i halts, or 
  b/ A←(p,i) outputs 1 but p←i does not halt. 
 
Similarly let A “fail” for the program/input pairs (p,i) if: 
 
  a/ A←(p,i) outputs 0 and p←i does not halt, or 
  b/ A←(p,i) outputs 1 and p←i halts. 
 
Let fail_A(n) be the number of program/input pairs (p,i) of total length at most n for 
which A fails. Note that N the total number of program/input pairs (p,i) of length at 
most n  is 2n+1-1. 
 
 
 
 



Theorem 3 For some function g(n)→1 from below as n→∞, 
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Proof The body of the proof uses a variation of the classical diagonal argument to 
generate families of failing pairs (p,i).  We shall associate every program with a string 
that describes it. In this way a program can also be an input to another program. Let 
Sm be the set of all binary strings of length m. Let F be the set of all bijections from Sm 
to Sm. We note that each f∈F can be represented by a string of length m2m, 
corresponding to the length of the concatenation f(0)f(1)...f(2m). Also there are (2m)! 
elements of F. Let S be the set of all finite binary strings. Extend each function f∈F to 
a function from S to S by defining f(s)=s for all s∉Sm. Given any input string i we 
construct a program T which acts on f(i) as follows: 
 
If A←(i,f(i)) outputs 0 then T←f(i) loops forever, 
If A←(i,f(i)) outputs 1 then T←f(i)  halts. 
 
This construction is well defined for all input strings since f is bijective. Now the 
program T corresponds to some string t. Furthermore the length of t would appear to 
satisfy 
 

len[t]≤m2m +c, 
 
for some constant c, dependent on A, but independent of f (defining t requires us only 
to use the definitions of f and A with a small fixed amount of extra logic). 
 
Now A must fail for the program/input pair (T,f(t)). For if A←(T,f(t)) outputs 0 then 
T←f(t) loops forever by the definition of T, while if A succeeds for the program/input 
pair (T,f(t)) then T←f(t) halts. Similarly if A←(T,f(t)) outputs 1 then T←f(t) halts by 
the definition of T, while if A succeeds for the program/input pair (t,f(t)), then T←f(t) 
loops. 
 
Also we have as many such pairs as elements in F. Thus  
 

fail_A(n)≥ (2m)! (1) 
 

If n=len[(t,f(t))] we can combine the bounds on the lengths of t and F to obtain 
 

n≤m2m+1 +c.   (2) 
 
By Stirling’s approximation [6] we have 
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Also by (2) 
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Combining (1) and (3), 
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Finally since 2n≥N and 2c+1=N(c+1)/log2N  we can extend (4) to obtain, 
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This completes the proof. � 
 
We do not know what the best possible result is for the bound on fail_A(n).  
 

5 No Speed-up Results 
The results of Section 4 tell us what is not possible. One way to pose questions about 
the functional behaviour of computer programs that leads to computable problems 
however is to add an explicit time bounding clause to the question. Thus the question 
“Given any computer program p, input i, and time t, will p given input i halt within 
time t”? is clearly computable. Simply run p with input i and wait till time t. Compare 
with what may go on in an organisation of people working to solve some problem. 
There is a limit on the time available to devote to a given task, or the number of 
repetitions or revisions of a sub-task a person is prepared to do.  
 
Though time constraints can lead to computable problems we show however that 
there can be no general speed up method regarding this question. From this point we 
shall consider all program inputs and outputs to be bit strings. 
 
Define a function timehalt with arguments p, i, and t: 
 

timehalt(p,i,t)=0 if p←i halts within time t, 
timehalt(p,i,t)=1 if p←i does not halt within time t. 
 

In the following a program is said to solve a function if it has identical input and 
output properties. For inputs (p,i,t) there is an obvious program that solves timehalt 



within time t by simply running p←i and waiting time t. The following result shows 
that this cannot, in general, be significantly sped up. 
 
Theorem 4 There is no program ptimehalt(p,i,t) that always solves timehalt(p,i,t) in 
time t-δ (where δ is some small constant). 
 
Proof Assume on the contrary that ptimehalt(p,i,t) always solves  timehalt(p,i,t) in 
time t-δ. Consider t as fixed. We use ptimehalt to define a computer program prog 
with input any p as follows, 
 
prog: run ptimehalt←(p,p,t) and wait until time t-δ. If an output 1 is produced then 
prog stops. If however an output 0 is produced then prog loops forever.  
 
Now the few simple steps in the operation of prog apart from the running of 
ptimehalt←(p,p,t) should take at most some small fixed number of steps, which we 
denote δ (in a rigorous formulation δ is a property of the particular universal turing 
machine used). It follows that prog must halt within time t or not at all. 
 
Consider now the nature of this program when fed a copy of itself. If prog←prog 
halts then ptimehalt←(p,p,t) must have outputed a 1. Since ptimehalt solves timehalt 
it follows that timehalt(prog,prog, t)=1. This in turn means that prog←prog does not 
halt within time t (see comments above). By the nature of prog however if it does not 
halt within time t then it loops forever and so does not halt. This contradicts our 
assumption that prog←prog halts. 
 
If on the other hand prog←prog does not halt then ptimehalt←(p,p,t) must have 
outputted a 0. Since ptimehalt solves timehalt it follows that timehalt(prog,prog,t)=0. 
This in turn means that prog←prog halts within time t. This contradicts our 
assumption that prog←prog does not halt. 
 
This completes the proof by contradiction. � 
 
Just as Rices Theorem generalises the Halting Theorem we can also generalise 
Theorem 3 to apply to non-trivial functional properties. This is illustrated with a 
simple example. 
 
Define an “output bit counting” function timesum with arguments p,i and t: 

timesum(p,i,t)=n iff p←i outputs n output bits within time t. 
 

Theorem 5 There is no program ptimesum(p,i,t) that always solves timsumt(p,i,t) in 
time t-δ. 
 
Proof Assume on the contrary that ptimesum(p,i,t) always solves timesum(p,i,t) in 
time t-δ. Given any p,i,t design a program S as follows: 
 
Run p←i and wait until time t. If p←i halts within time t, output the number of output 
bits produced to that point. Otherwise do nothing. 
 
Consider now the following method. Run  



 
ptimesum← (S,[p,i,t],t) 

 
and wait until time t-δ to see if any output is produced (here [p,i,t] represents the 
concatenation of p, i and t. If so since ptimesum solves timesum then S←[p,i,t] 
outputs some n in time t. Thus from the definition of S it follows that p←i halts within 
time t.  
 
If on the other hand if no output is produced from 
 

ptimesum←(S,[p,i,t],t) 
 

after time t-δ, then S←[p,i,t] outputs nothing. Thus from the definition of S it follows 
that p←i does not halt within time t.  
 
We have just described a t-δ time program that determines whether or not p←i halts 
within time t. This contradicts Theorem 4. � 
 

6 What Then Can be Achieved 
The results of Section 4 show that any useful question about the efficiency or 
effectiveness of organisations, at least in terms of process and procedures, can have no 
method, algorithm, or program that generates correct answers for all organisational 
models. We stress however that this does not mean that the efficiency or effectiveness 
of any particular organisational model cannot be determined. Rather, that whatever 
method is used may not succeed when applied to another model (and will not succeed 
for some other model). This implies that the analysis of increasingly complex 
organisational models ultimately requires new analysis methods, and this process of 
extending the analysis methods for novel models has no end.  
 
It follows that useful methods that analyse questions of efficiency and effectiveness in 
organisational models must in some way be limited in scope. One approach to this 
limitation is to restrict the structures allowable when considering organisational 
models so that analytic methods apply. This approach has been applied to the Halting 
Problem by the development of Termination Analysis (see for example [4]). It is 
worth noting however that the basic building blocks of a computing machine are 
surprisingly simple [1], and to place restrictions at this level is, we believe, likely to 
greatly reduce the design diversity beyond what is desirable.  
 
Furthermore structures that may appear at first sight to be significantly constrained or 
limited may not turn out to be so. Famously the question as to whether an algorithm 
exists that can determine whether polynomial equations over the integers have integer 
solutions, was open for many years until finally resolved in the negative [7]. Even 
today this question is unresolved when the polynomial equations have anywhere 
between 2 and 10 variables [12]. 
 
One way to ensure computable methods apply is to define an organisational question 
the resolution of which can clearly be obtained within finite time. This implies finding 
a finite number of inputs or scenarios that are in some way representative of the 



operation of the organisational model for all possible inputs. If there are very many or 
infinitely many possible inputs, this could be difficult.  Even with this approach 
however, there is no way in general of speeding up the analysis apart from simply 
running the organisational model for the specified time (see Theorem 5). Again we 
stress that this does not mean that the analysis of any particular organisational model 
cannot be sped up, but that whatever method is used may not speed the analysis of 
another model (and will not speed up the analysis of some other model). 
 

7 Particular Models 
An organisational model explicitly refers to a particular problem solving engine but 
also implicitly to a problem defined by its inputs and outputs. In the latter sense the 
efficiency and effectiveness of particular mathematical problems have been studied 
for many years. Thus the fastest algorithm is sought that generates certain specified 
outputs from certain inputs. A large collection of such problems can be found in [3]. 
Typically it is clear how to obtain solutions given sufficient time, so they are mostly 
computable. In general it is not known what the most efficient possible methods are 
for their solution. This is not to say that many ingeniously efficient algorithms have 
not been developed, rather that methods that rule out the existence of even better 
algorithms do not seem to exist as yet. We note that what has been achieved is the 
classification of most mathematical problems as having algorithms of broadly similar 
(though unknown) efficiency [3]. This highlights the pervasive significance of the key 
unresolved matter in this field (as to whether P=NP).  
 
Results about effectiveness are varied in character, many being in the form of 
understanding the trade-off between efficiency and effectiveness (see the discussion 
on performance guarantees for approximation algorithms in [3]). Most results of this 
kind are either not known to be best possible, or provisional upon the resolution of 
P=NP.  
 

8 Variety 
An interesting perspective that sums up the results of this paper in a wider context is 
that of variety. The variety within a collection of organisational models and inputs to 
those models is intimately linked to the efficiency and effectiveness that it is possible 
to obtain by any fixed method. This is illustrated by the table below. 
 
For a finite collection of organisational models and inputs to those models, it is 
possible, at least in principal, to run all the models with all the inputs and to tabulate 
the outputs produced, the time with which they are produced, and their corresponding 
effectiveness (assuming a computable effectiveness measure is available and upper 
bounds on meaningful run times apply). Once produced this table represents a 
complete measure the efficiency and effectiveness of those models with respect to the 
inputs. The table also embodies a highly efficient solution method in its own right, 
since solutions can be simply looked up. Of course in practise, if the number of 
models and inputs is large, this table may not be constructible with realistic memory 
or time resources. In this situation solutions must be obtained based on the application 
of methods, and in this regard needs to treated like an infinite model/input collection. 
 



For infinite collections of organisational models and inputs there is a critical level of 
variety in the structure of models and their inputs within which solutions can always 
be obtained within known efficiency and effectiveness bounds by some method, and 
beyond which no such method exists. In the table we refer to this critical level as 
bounded variety, and it contains particular problems (or finite collections of them) 
referred to in Section 7. For example, by using the “schoolroom method” the 
multiplication of integers can always be obtained within about 2nm steps where n and 
m are the lengths (number of digits) of the two numbers to be multiplied. Through 
the development of more and more sophisticated approaches however, the 
multiplication of integers has been solved with increasing efficiency (see [5], [13], 
[11], and [2]). Finally for infinite collections not of bounded variety, which we call 
unbounded variety, Theorem 3 and its variations apply. 
 
 

Collection of 
Organisational Models & Inputs 

Efficiency and Effectiveness 
Limits 

Finite Completely and accurately assess 
given sufficient time 
 
cf 12 times table 

Infinite – Limited/Bounded Variety Can always successfully assess within 
certain bounds. However the gap 
between lower and upper bounds is 
almost always significant. 
 
cf multiplication 

Infinite – Wide/Unbounded variety Any assessment method must fail for 
some pairs of Organisation/Info 
problem pairs.  

)1(
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O
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cf halting problem, multinomial 
solvability 

 
 

9 Alignment with practice 
In this section we reflect on efforts to measure the efficiency and effectiveness in 
organisations, to see how the limitations highlighted in this paper might be reflected.  
In the military area of Command and Control a significant body of experience is 
distilled in the NATO Code Of Best Practice for C2 Assessment[8]. The following 
quotes are connected where possible to related mathematical results given here. 
 
“C2 issues have long been regarded as difficult to analyse. Many operational analysis 
studies have simply assumed perfect C2 in order to focus on other variables” [page 
5]. “No single measure or methodology exists that satisfactorily assesses the overall 
effectiveness of C2” [page 89]. This is reflected in Theorems 1 and 2. Indeed these 
show that no methodology exists in the strong sense that it can never be found, 
rather than simply being unknown to researchers at this time. 



 
“If done well measures of C2 effectiveness will be scenario independent so one can 
compare C2 effectiveness across a range of missions and circumstances” [page 96]. 
Theorem 2 indicates that this can never be fully achieved (across all possible missions 
and circumstances). The extent to which a method may be scenario independent 
relates to the quantity fail_A(n) (where A(n) is defined to relate to efficiency or 
effectiveness - see remarks at the start of Section 4). While a lower bound is provided 
in Theorem 3 it would be desirable to know how tight this bound might be. In other 
words to find some A* for which fail_A*(n) is as small as possible. 
 

10 Summary remarks 
In summary the results of this paper highlight the limitations of any general methods 
of organisational model analysis – specifically regarding questions of efficiency or 
effectiveness. In particular the variety within the collection of organisational models 
and their inputs, and the capacity to systematically assess those models/inputs can be 
placed in three broad categories. 
 
If the collections are finite then complete and accurate assessments are possible, given 
sufficient time; if the collections are infinite but sufficiently limited, then assessments 
are possible within known bounds; if the collections are infinite and sufficiently wide 
in variety then no systematic assessment method exists. In the last case lower bounds 
on the failure rate of any given method are obtained. 
 
In general the limitations of any given assessment method emphasises the 
indispensability of modelling and simulation.  
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