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Abstract 
A new type of mathematical model for studying synchronisation of interacting C2 
processes across complex networks is proposed. The approach surrenders the requirement 
to distinguish the various products of individual C2 processes (for example planning, 
execution of strategic, campaign or tactical activities to name a few), but does distinguish 
the time-scales of and interactions between individual processes. This enables 
representation of interacting C2-processes from across the strategic-operational-tactical 
spectrum of command within a mathematically elegant and compact model. More 
specifically, C2-processes within a given system must be self-synchronised while C2-
processes for two adversaries must seek to outpace each other, as in Boyd’s original 
OODA loop for air combat. It is argued that for C2-systems undertaking genuine 
Complex Endeavours this is an appropriate and manageable approach to modelling. The 
paper discusses how standard mathematical analysis enables the study of self-
synchronisation and stability within the friendly C2-system in this approach. This will 
then enable assessment of different network structures and dynamical requirements for 
possible C2-systems of the future. 
 
 
Strategy is the art of making use of time and space. I am less chary of the latter than the 
former. Space we can recover, time never. … I may lose a battle, but I shall never lose a 
minute.  

Napoleon Bonaparte 
 
 
Introduction 
 
This paper formulates a theoretical framework for studying the interactions between 
various loops within and across military Command and Control (C2) systems that operate 
over disparate time-scales and across different networks but which need, at times, to be 
synchronised.  
 
There is little doubt that Command and Control (C2) is about cycles in time: those of the 
enemy and one’s own. C2 is about many more things too – technology, good leadership, 
clarity of concepts, appropriate management of people and resources, and so on. But at 
the core remain the cycles which technology facilitates the traversal of with greater 
speeds, within which communication is undertaken, assessment of the facts performed, 
decisions are made, promulgated and implemented. Boyd [1987] recognised this in 
formulating his classic C2 decision cycle: the Observe-Orient-Decide-Act (OODA) loop. 
Drawn from his experiences as a fighter pilot, the OODA loop remains the simplest 
paradigm for conceptualising adversarial – blue-against-red – C2 interactions: all things 
being equal, those who can outpace the adversary’s OODA loop win the battle. However, 
within a blue C2 network there occur isomorphic decision cycles. Within a C2-system, 
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decision cycles need to synchronise so that the outputs of one node become the timely 
inputs of another or that interdependent decision processes track one another 
appropriately. A classic example is the way Strategic, Operational and Tactical levels of 
command may go about planning. At the broadest level, each undertakes something akin 
to the Military Appreciation Process (MAP) with a sequence of Scoping → Mission 
Analysis → Course of Action Development → Course of Action Analysis → Decision → 
Execute. However, inputs and outputs at each MAP step would be at different levels of 
aggregation and time-scales depending on the Command Level at which the MAP is 
conducted. Such a distribution of MAPs across levels, at which different time-scales 
apply depending on political/social/adversarial/environmental constraints, nevertheless 
needs to be synchronised.  
 
Considering that both the MAP and OODA loop can be mapped onto a continuous, 
circular decision loop, the finer detail of discrete milestones – or even subloops – in this 
cycle can be regarded as irrelevant. In fact, regardless of the object of decision-making – 
be it in relation to planning or execution or other activities – this paper posits that in C2-
modelling for Complex Endeavours [Alberts & Hayes, 2007]: 
 

• The cyclic nature of C2 processes is universal. 
• The intrinsic timescale of these cycles is deeply dependent on the 

strategic/operational/tactical environment in which the C2-node acts. 
• The structure of blue-blue and blue-red interactions plays a pivotal role in the 

ability of blue to synchronise within itself and to outpace red. 
 
This supports an approach to C2-modelling in which, on the one hand, the specific goals 
of C2-processes do not need to be distinguished, but, on the other hand, the 
interconnectedness of C2-processes and their timescales becomes the important feature to 
model. This enables simultaneous representation of C2 at the tactical interface – where 
the object is the range of kinetic and non-kinetic effects in the battlespace – as well as C2 
at the strategic level – where the timescales of negotiations of government and other 
civilian agencies are often justifiably different and intrinsically unavoidable. By stepping 
back in the fidelity of specific C2-goals being represented, one can legitimately model 
across the entire C2-spectrum, from strategic to tactical. 
 
At the core of this approach are networks and at the nodes of these networks are entities – 
oscillators – which undertake a cyclic change of state, or loop. The rate of progress 
through this loop of one oscillator at a particular node depends on the point in the loop of 
another oscillator at a connected node. On this basis, then, adversarial C2-systems can be 
represented by two complex networks1 within each of which adjacent (node-to-node, 
according to hierarchy or network connectivity) loop cycles must locally synchronise, but 
across networks loops must seek to outpace the other, in classic Boydian terms. A 
mathematical dynamical model for this framework is presented herein. Within a C2-
system, the intra-node interaction is described by a model used successfully for studying 

                                                 
1 Note that the networks here are patterns of interaction and not just communication (as in NCW 
communication networks). 
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synchronisation in a diversity of physical, chemical and biological systems: the Kuramoto 
model [Kuramoto, 1984]. Here, the loop cycles of oscillators at each node complete on a 
time-scale determined by a distribution of frequencies. It is well-known [Strogatz, 2000] 
that, for a critical value of the coupling strength across the network, loop cycles 
synchronise without the intervention of any master controller: the behaviour is self-
synchronisation. For adversarial interactions, a similar mathematical model is proposed 
whose entities seek to “get inside the opponent’s OODA loop”.  
 
A framework for analytical and simulation study of such a model is described below. The 
aim of such a program is to explore how the network structure of a C2-system figures in 
the C2 dynamics to enable self-synchronisation, stability, and fulfilment of the true aim 
of military C2: the defeat of the enemy.  
 
This paper presents a high-level mathematical formulation of the model (sufficient for the 
non-mathematical experts), explains its relevance to military-strategic/operational C2-
systems and provides analytical approaches to solving the system.  
 
Mathematical model for self-synchronisation on a network 
 
The literature on self-synchronisation in mathematically encoded cooperative systems is 
vast, going back to Wiener [1961] and Winfree [1967] and scattered across mathematical, 
physical, biological and computational scientific journals. The basic idea of such models 
is that linking up nodes which separately undergo cyclic behaviour can lead a mass effect 
whereby a large part of the system locks itself into a collective cyclic behaviour. This can 
be truly called self-synchronisation since it is a consequence of interactions and not the 
manipulation of the system by a master-controller. It was Kuramoto [1984] who 
succeeded in distilling the bare essentials of such models with the first order differential 
equation: 
 

∑
=

−+=
N

j
ijii

1

)sin( θθσωθ& . (1) 

Here iθ represents a time-dependent phase associated with node i of a complete network 
of N nodes, is the derivative of the phase with respect to time t,iθ& iω represents a 
“natural” or “intrinsic” frequency” and σ is a coupling constant. The role of iθ  as a phase 
is seen when it is reinserted in the complex variable 

iiei
θχ = . (2) 

With the coupling switched off, 0=σ , solutions are straightforward: tii ωθ =  so that each 
node undergoes a rotation seen through the complex variable iχ through the angle 2π 
radians (or 360°) in time-period iωπ /2 or correspondingly there will be πω 2/i rotations 
of the unit circle per unit time. The values of these frequencies in this context are usually 
selected from some statistical distribution. Assumptions about the shape of this 
distribution – for example, symmetry about some single mean value at which the 
distribution peaks (“uni-modal”) – lead to interesting results that are discussed below.  
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With the coupling switched on matters become more complicated – and perhaps even 
complex. For small coupling over short periods of time one can intuitively see that each 
node seeks to continue its separate motion about the circle – at its own pace, governed by 

iω  – however over longer periods of time the coupling will begin to distort this 
behaviour. For example, for small differences between phases the angular speed is 
modified by the perturbation  

)( ij θθσ − . 
Thus if node i lags behind node j, ij θθ > , the correction is positive and there will be an 
angular speed up. Correspondingly if i is ahead of j the correction is negative and there is 
a slow down. So locally the interaction is such that nodes seek to synchronise. What is 
not clear is what should happen globally: how does the overall system behave? Another 
feature of the model is the periodicity of the interaction: if one node out-laps another by 
an entire cycle then the interaction resets back to zero.  
 
An interpretation of these features in terms of C2 concepts is given below. Here we 
review the analysis by Kuramoto which exposes its key behaviours.  
 
It is useful to introduce an order parameter: a quantity which shows markedly different 
behaviour in one dynamical regime compared to another, so that the two distinct 
behaviours can be thought of as separate “phases”. Kuramoto considered: 
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Figure 1 Geometrical interpretation of Kuramoto’s order parameter. For case (a) with individual phases 
(solid blobs) distributed uniformly about the circle the centre of gravity (open circle) is at the origin and 

 while for case (b) with phases clustered closely (oval blob) the centre of gravity is close to the circle 
circumference and 

0≈r
1≈r  with φ the phase of the centre of gravity.  

 
Geometrically, the left hand side of Eq.(3) can be regarded as giving the radius and angle, 
with respect to the unit circle, of the centre of gravity  (technically, the centroid) of the 
collection of points on the unit circle representing the individual positions of the phases. 
The one extreme of completely unsynchronised individualised behaviour (Figure 1(a)) 
will have points distributed uniformly about the circle. Thus, the centre of gravity will be 
at the origin and so r will be approximately zero. At the other extreme, with all phases 
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locking and moving in synchrony, the points will be concentrated in a cluster (Figure 
1(b)) at angle φ  and the variable r is approximately 1. Thus r is the order parameter 
distinguishing two main modes of behaviour: incoherence 0≈r and synchrony 1≈r . So 
there are at least two phases. Does the transition from one to the other represent a phase-
transition, like the ice-water transition? 
 
Kuramoto exploited the simplicity of the complete network coupling to demonstrate a 
transition for the case of  with symmetric, uni-modal distribution ∞→N )(ωf of 
frequencies about a mean value ω , and a coupling that scales with the number of nodes, 

NK /=σ . Firstly, at a critical value of the coupling Kc the system dramatically changes 
its behaviour from incoherence (K< Kc ) to synchrony (K> Kc). Let  be the equilibrium 
value of . Then, in the synchronous regime, the nodes whose frequencies satisfy the 
bound 

∞r
)(tr

∞<− Kri || ωω  lock into collective mode while nodes for which 
∞>− Kri || ωω randomly drift with respect to the cluster. Finally, and most remarkably, 

Kuramoto determined analytically the value of the critical coupling: 

)(
2

ωπfKc = . 

Despite the artificiality of the assumptions, in particular the infinite size of the network in 
Kuramoto’s case, the basic property that the change of behaviour from incoherence to 
synchrony at some critical coupling is akin to a phase-transition has been observed in 
numerical simulations. How this differs when the network is no longer complete is 
discussed below. It suffices to mention at this stage that, whereas for the complete 
network a single locked cluster emerges, for complex networks typically many clusters of 
locally locked oscillators can occur and one can speak of “partial synchronisation”.  
 
 
Interpretation in terms of Command and Control 
 
It is worthwhile at this stage clarifying how the various quantities and behaviours in the 
Kuramoto model can be reinterpreted in the context of Command and Control.  
 
The key variable of the model, iθ , represents progress in time through a continuous 
decision cycle. Certainly, the discrete steps of Boyd’s OODA loop or the MAP are not at 
odds with the continuous nature of the human decision making and execution process. 
Indeed, the steps merely mark significant milestones in the process, which may also be 
points of reference for others in negotiating their own decision cycles.  
 
The coupling constant has a slightly less direct interpretation. At one level it can be seen 
as the degree of responsiveness required of one node’s decision progress to the behaviour 
of another. For example, this can be understood as the degree of Mission Command [van 
Creveld, 1985]: how closely should neighbouring C2-agents track their progress in 
making decisions, what degree of autonomy is permitted in the system? Of course, in the 
Kuramoto model this constant is assumed to be uniform across the complete network. 
This strong assumption is retained in discussing other networks below, but it may also be 
a function of where in the command chain (seen as a hierarchy) the node resides, or even 
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as a function of time subject to certain dynamical conditions as in Adaptive Control 
[Stewart, 2006]. Mathematically, all these possibilities are easily modelled but become 
the realm of simulation models and thus beyond the scope of this initial study.  
 
Next we come to the specific nature of the interaction. There is actually some freedom 
here in representing how one node outputs its information about its progress in the cycle 
to an adjacent node. The Kuramoto model as given above is consistent with complete 
transparency amongst adjacent C2 agents in their progress through the decision and 
execution process. This is a strong assumption with implications that any agent can adjust 
continuously within its own process. However the other extreme is also artificial, that 
only at certain milestones – say “Decision” or “Act” – can one agent determine the state 
of progress of another agent and adjust accordingly. How such interactions can be 
modelled I shall treat later in representing Boyd’s adversarial OODA interaction. 
However, within a C2-system the reality lies somewhere in between, where, within 
certain echelons of human organisations, one person can readily know of another’s 
progress with respect to shared products or processes through formal update briefs, 
technologically enhanced communication and collaboration media and/or less tangible 
social/informal interactions. In this respect, much of an analyst’s labour in capturing 
informal networks in military organisations can be subsumed into the degree of 
transparency between nodes of the actual formal command structure or process. The 
periodicity of the interaction term, encoded as the sine of the phase differences, is also 
sensible in light of the diminishing relevance of “stale” information. A C2 agent who has 
dropped out of a particular decision cycle must typically adjust to the state of adjacent 
partners within the current cycle.  
 
The two types of behaviour seen in synchronisation, locking and drifting, have their 
counterparts within given military C2 systems, although it is hard to make a direct 
comparison based on the complete network. Recall the brief comment concluding the 
previous section on clustered behaviour. A typical military C2 system will have many 
localised hubs of activity integrating several specialist products, especially in the world 
of Joint Operations. For example, a team within, say, the J5 planning function whether at 
strategic, operational or tactical levels must be able to mutually lock into a common cycle 
when focussed on a particular operation. But there are other teams corresponding to the 
various functions, for example, the intelligence J2, logistics J4 or communications 
systems J6 functions. Each of these teams needs to be able to internally synchronise. This 
is also why more complex networks are required. For example, a Joint Task Force may 
not directly interact with specific J-functions in an operational headquarters. 
Contrastingly, within the headquarters a Chief of Staff (COS) must be able to respond to 
the progress of the J-function teams in order to integrate them into an overall Joint 
Concept of Operations (CONOPS). The ability to “drift” from one team to another is vital 
to the COS being able to herd the separate clusters into one collective cycle. While the 
term “drifter” is pejorative in the military C2 context, the point being made is that it is not 
necessarily consistent with the mission of a military C2 system that all nodes lock into 
the one collective. But the system ideally should be designed so that those who need to 
lock are enabled to do so, and those who must oversee multiple clusters of locked activity 
are not dynamically driven exclusively into the orbit of one or another cluster. 
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The dynamical linking of cycles overcomes some of the criticisms levelled at the original 
Boyd OODA loop, namely that because it does not include the effects generated at the 
“Act” stage it cannot represent the delays that every real C2 system encounters [Brehmer, 
2006]. The drive to represent effects in C2 models therefore leads variously to models 
useful for combat or headquarters processes and products with varying levels of fidelity. 
However, it is difficult then to link such representations in reasonably computable 
models: the data representing kinetic effects, non-kinetic effects (EBO) and internal 
headquarters processes that direct and respond to such battlespace activity are extremely 
disparate in nature. We argue that what is important in the space of effects is the 
timescales of decision cycles associated with them and not the detailed products that they 
generate. By focussing less on the specific products – be they effects in the battlespace, 
incident reports in a tactical headquarters, planning documents in an operational 
headquarters or broad guidance at the strategic level – and by focussing more on the 
time-scales within which these products are used or created, one is able to integrate into a 
single description the C2 activity of all – from a tactical commander or subordinate up to 
senior commanders and the elected political authority to whom they must answer. 
Therefore this paradigm enables C2 across all its levels to be brought together into a 
unified description. 
 
Some characteristic time scales are in order. A fighter pilot engaged with an aerial enemy 
has some seconds within which to progress through their decision cycle. On the ground a 
deployed land combat unit engaging with a similarly deployed enemy may have seconds, 
to minutes or even a few hours to formulate and execute decisions. More precise data 
from various sources on engagements in Gulf War I with surface targets and theatre 
ballistic missiles are summarised in [Moon et al., 2002] giving numbers from minutes up 
to a few hours. Of course in these cases the aim is not to synchronise with the enemy but 
to outpace their decision cycle. However, none of these C2 nodes are free to engage with 
the adversary in isolation. The pilot or combat commander may have to synchronise their 
decision through a Task Force Commander (TFC). Pulling the TFC in the other direction 
is their responsiveness to outputs from higher levels of command, for example the issuing 
of a Branch or Sequel to a current CONOPS from a higher level operational headquarters. 
Coyle [1987] has already noted the “vibrational”, namely oscillatory, character of a 
headquarters C2 system. Pertinent is the broader scale of information which a 
headquarters must process. As a consequence, the time-scales over which activity must 
be planned are longer. The experience of the author’s team in work with Australian 
Defence Force higher C2 [Kalloniatis and Wong, 2007, Hanlon et al., 2008] suggests that 
tasks undertaken by operational level J3 staff within execution of an operation may occur 
on the scale of a few hours to a day. But, the J3 function must work within the campaign 
view owned by the J5. The time-scales are longer still for all the same reasons of the 
breadth and depth of information.  
 
As one approaches the pinnacle of the C2 hierarchy in any representative democracy one 
encounters the national strategic level which is characterised both by quite short and long 
time-scales: short because of the rapid time scales of media reporting (“the CNN War”) 
which impact on the political will of the national strategic level; long because of the 
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strategic nature of a government’s view of how a nation’s military should be used. This 
effect is amplified from the tactical up to the national strategic levels by the interagency, 
non-governmental and coalition interactions implicit with modern military operations. 
We argue that it is this diversity of time-scales of decision cycles across disparate 
structures which must still somehow synchronise their activity which gives Complex 
Endeavours [Alberts & Hayes, 2007] that fall within the theme of this conference their 
intrinsically unpredictable character.  
 
It should be clear from this discussion that, however simply it mixes them, the Kuramoto 
model contains the essential elements to be found in military C2 systems. 
 
 
Self-synchronisation on general networks 
 
We now return to the mathematical formulation. A general network is introduced 
straightforwardly using the adjacency matrix which has value one if a link (or edge) 
exists between nodes i and j and is zero otherwise; for simplicity we remain within the 
bounds of undirected graphs, though further generalisations are possible. The governing 
time evolution equation is then: 

ijA
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Kuramoto’s method of analytic solution is no longer available, precisely because the 
adjacency matrix, present now in the evolution equation, is not present in the definition of 
the order parameter r which remains unchanged. The method of Kuramoto’s solution has 
however inspired approximations and mean-field approaches which, consistent with 
numerical simulations, continue to exhibit the characteristic transition behaviour from 
incoherence to synchrony. What these show, as hinted earlier, because of the 
incompleteness and finiteness of the network is an intermediate type of behaviour, is 
partial synchrony: local clusters of locked phases form with their own frequencies 
averaged over the participants in the cluster, while other nodes drift randomly with 
respect to these various hubs. As coupling is increased some networks such as Erdős-
Rényi (a class of random) graphs will transition to total synchrony – namely with a single 
locked core – but only via partial synchrony. Others, such as scale free networks which 
have a spectrum of connectivity from a small number of highly connected hubs to a large 
number of sparsely connected nodes, will transition directly to total synchrony from 
incoherence bypassing the partial state altogether. These results, reported in [Gómez-
Gardeñes, 2007] are intuitive based on the degree of randomness of the respective 
networks. Finite lattices synchronise very poorly [Dekker, 2007]. Small world networks 
(recall the popular notion of “6 degrees of separation”), which can be generated by 
randomly rewiring lattices, tend to synchronise at very low couplings even with small 
rewiring probability [Hong, 2002]. It emerges that the criterion determining whether a 
node will lock or drift with respect to some hub involves a delicate interplay between the 
coupling constant, the difference in natural frequency of the phase oscillator at that node 
from the mean frequency of the potential hub and the degree of the node,  
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Simulations have been useful in enabling study of dependences of key quantities such as 
the critical coupling in terms of an analyst’s favourite network theoretic metric. However, 
they invariably depend strongly on how in a given simulation a particular network has 
been generated and which metric one prefers to see the world in terms of. The average 
degree of a network, clustering coefficient and average distance are three popular choices 
which have seen some attention [Dekker, 2007].  
 
The valuable role played by simulations is being supplemented by the insight of analytic 
approaches, which has been the focus of our own research into dynamical processes on 
networks. This author is seeking to make progress on this front by using an ansatz2 for 
the solution to the dynamical equations in the synchronised regime  

)()()( ttst ii ηθ += &&  (6) 
where represents a collective component contributing to part of the underlying 
behaviour at every node while 

)(ts
)(tiη is a “noise” function [Reichl, 1998]. Structure is 

encoded in the noise, and is controlled by a minimal number of parameters whose values 
are determined by the localised interactions of the system. The ansatz is then inserted in 
the equations; an average taken over the noise functions and consistency constraints on 
the parameters extracted such that the ansatz solution is in fact a true solution. The 
method should recover firstly that the steady state behaviour of the collective mode 
corresponds to the average frequency: 

ω→s& . 
The Holy Grail is the extraction of a relationship between the key properties attributed to 
a node i: 

• The difference between its frequency and the mean frequency, ii ωωδω −= ; 
• The coupling constant, σ ; 
• The parameters characterising the noise at the node; 
• The connectivity between i and its adjacent partners, j; 
• The difference between initial conditions (t=0) for the oscillator at the node i and 

that at a connected node j, )0()0()0( ijji θθδθ −= . 
Currently the author is exploring different structures for noise in order to derive such a 
fundamental relationship. 
 
To summarise the main point of this section, we have seen that more complex networks – 
as are appropriate for military C2 – can be analysed within the framework of the 
Kuramoto model to expose the conditions for synchronisation. Simulation and analysis 
are powerful methods working hand in hand to quantify the structural and dynamical 
relationships such that a network overall synchronises and that a particular node, given its 
intrinsic properties and its connection to its neighbourhood, can participate in the 
collective behaviour or drift independently. Using such results in application to C2, 
networks can be constructed or enhanced according to whether a particular C2 node 
                                                 
2 An ansatz can be thought of as an initial informed guess to the solution of an equation which is then 
refined or constrained such that a true solution is arrived at. 
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needs to be able to lock or drift according to its military function. When it comes to 
fruition, the approach can be applied to analyse existing networks as they are encountered 
in the military C2 world.  
 
 
Generalisation of Kuramoto’s model to Boyd’s context 
 
Thus far, interactions between decision cycles within a C2 system have been discussed. 
We now turn to the case of blue-on-red interactions, the regime of Boyd’s original 
OODA concept. Instead of iθ , we now use iβ and iρ to represent the phases of oscillators 
at nodes of blue and red networks, with intrinsic frequencies iω  and iν  respectively. Let 

and represent the adjacency matrices of the decoupled blue and red networks, of 
size  and  respectively. The interactions between blue and red systems will be 
represented by the adjacency matrix  with 

ijB ijR

BN RN

ijM RBBR NNN +<  nodes. Finally let 

BRB ςσσ  , , and Rς represent coupling constants for intra-blue, intra-red, blue-to-red and 
red-to-blue interactions. The model can now be given in terms of the coupled differential 
equations: 
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What has not been specified is the output function  for the blue-red interaction. If we 
were to follow the Kuramoto model, these could also be sine functions; the adversarial 
nature of the interaction would be reflected in the different coupling constants and formal 
distinction between blue and red networks. In other words, a blue node connected to a red 
node must also, in the first instance, seek to synchronise with the adversary in order to 
defeat them. However, this requires some modification. The assumption of complete 
transparency justifying the sine function for intra-C2 interactions is inapplicable here. 
Intelligence may expose some of the inner workings of the adversarial decision process, 
but it is likely to be noisy (which can also be modelled). The simplest alternative is that 
one can only take the “Act” step in the adversary’s OODA loop as input. Let that point in 
the cycle correspond to a phase angle

f

κ , some point on the unit circle arguably in the 
fourth quadrant (Figure 2).  

 11



κ 

Observe Orient 

Decide Act 

 
Figure 2 Choosing a point in the Act stage of the OODA loop to represent Boyd’s interaction 
mathematically. 
 
Then one could choose, in the spirit of the Kuramoto model, 

))(())()(sin())()(( κρδβρβρ −−=− tttttf jijij  
where we have used a “Dirac delta function” so that the output is sensitive only to the Act 
phase angle at the time that jρ  has reached that point in its OODA loop. This transforms 
the continuous steady Kuramoto interaction into a type of “pulsed” interaction. In this 
manner, left to itself the phase iβ will seek to track the red agent’s “Act”: the interaction 
kicks in only when jρ has progressed to “Act”. However, Boyd’s concept is that blue 
must “get inside” red’s OODA loop. This is easily achieved with an additional correction 
factor λ in the argument of the function: 

))(())()(sin())()(( κρδβλρβρ −−+=− tttttf jijij . (8) 
This ensures that blue seeks to track ahead of red by some constant amount λ . Of course, 
the two parameters κ and λ can be combined into one but there is value in separately 
tuning them in future numerical studies. The delta function in Eq.(8) can also be smeared 
out by Gaussian functions. 
 
The above model Eq.(7) is most likely not exactly soluble even were the networks to be 
taken as complete. But some things can be said, most importantly that the new 
interactions introduce additional instability into the dynamics of the oscillators iβ  due to 
the competing pull by diverse hubs on a node straddling both blue and red networks. In 
combination with self-synchronisation within the blue C2 network this will have the 
effect of demoting some blue nodes from being “locked” to “drifting”. Correspondingly, 
the critical coupling Bσ at which the blue network is able to synchronise will increase. In 
fact, the most likely insightful quantity is the ratio of the two couplings BB ςσ / . 
 
The key quantitative questions which need to be addressed are of a local and global 
nature. Locally: 

• Are nodes which need to cooperate able to dynamically lock? 
• Correspondingly, are nodes which should engage with the adversary free to do so, 

or do they lock into intra-C2 clusters? 
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• With more complex behaviour, is there a regime where nodes can lock for 
appropriate amounts of time, drop out, engage in the adversary OODA loop and 
then return to the original hub? 

• Can λ be tuned to achieve such behaviour? 
While globally some of the questions are: 

• Is there a critical value of BB ςσ / at which synchronisation can occur? 
• What degree of heterogeneity of frequencies is consistent with synchronisation? 
• How do two networks of different structure fare against each other? 

 
These questions may require a combination of analysis and simulation to answer.  
 
 
Final statements 
 
We argue that this approach represents a “new paradigm” because it manages to move 
beyond the study of static network metrics and static diagrammatical “protomorphs” 
[Harré, 1970] of dynamical processes without falling into the trap at the other extreme of 
becoming immersed in the minutiae of computer simulation models. The Kuramoto 
model is simple and elegant, structural and genuinely dynamical and thus speaks to the 
essence of Command and Control. Nevertheless it offers a framework for higher fidelity 
embellishment and simulation studies.  
 
Apart from such work to extract further insights, the process of validation and application 
to real world C2 systems beckons. Validation is most usefully done in the context of a 
given C2 system or organisation with a study of its hierarchy and other networked 
processes and the time-periods associated with them. On the one hand, the model allows 
for mathematical determination of the ideal self-synchronisability of the system and the 
pattern of locked and drifting nodes. On the other hand, this needs to be compared to the 
observations of participants in the given system with respect to questions such as: Do 
their duties require them to synchronise in a team or to oversee many disparate activities? 
Are they able to synchronise or move with sufficient flexibility across their areas of 
responsibility? With success in this respect, the program can move on to generating 
improvements to the system. But the bold prospect which this approach may provide is 
that, armed with the time-period of key C2 processes, appropriate networks can be 
designed ab initio such that their overall mission is achievable and the individuals who 
serve within them are able to achieve their individual mission effectively and efficiently. 
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