

13th ICCRTS: C2 for Complex Endeavors

“High Productivity Computing Systems for Command and Control”

Topic: C2 Architectures

Authors: Scott Spetka, SUNYIT and ITT Corp

Authors: Christopher Flynn, Air Force Research Laboratory

Point of Contact: Scott Spetka

Name of Organization: SUNYIT and ITT Corp.

Complete Address: Computer Science Department, SUNYIT, Route 12 North, Utica,
NY, 13504-3050

Telephone: 315-792-7354

E-mail Address: scott@cs.sunyit.edu

13th ICCRTS: C2 for Complex Endeavors

High Productivity Computing Systems for Command and Control

Abstract

The most significant issue underlying all future command and control (C2) architectures
is the ability to develop software that can harness the next generation of processors.
Multicore processors, scaling into thousands of processors per chip will soon be prevalent
in all C2 systems. The success of C2 systems will depend on our ability to adapt to the
new processor technology. Existing C2 systems that implement scientific codes for image
processing and many other applications have been a dominant user of high performance
computers (HPCs) for several decades. However, increasingly diverse C2 applications are
now also being adapted to HPCs, due to dropping prices and increased availability.

The goal of the DARPA High Productivity Computing Systems (HPCS) program is to
develop high performance computers that are substantially easier to program, thereby
reducing software development cost and time to solution. We employ a
publication/subscription information management (PSIM) system in a case study to
compare new HPCS approaches to parallel code implementation with existing
techniques. The PSIM system requires intensive CPU cycles and communications
bandwidth, for brokering XML information objects between publishers and
corresponding subscribers. The study compares two new HPCS languages, Chapel (Cray)
and X10 (IBM), with the Message Passing Interface (MPI) standard.

Keywords: pub/sub, chapel, X10, MPI, HPCS

Introduction

This paper describes an experimental implementation of a prototype
publication/subscription (pub/sub) information management system (PSIM) that is being
used as an example to compare implementation approaches for the two new high
productivity computing systems (HPCS) languages, Chapel and X10, with a legacy
Message Passing Interface (MPI) approach to parallel computing. The HPCS languages
and their implementations are still evolving and improving at a rapid pace. Some changes
to the features discussed in this paper can be expected. Pub/sub technologies have been
shown to be important to net-centric warfare, for command and control [1], making a
pub/sub system an especially relevant choice for a language comparison in the context of
command and control. The pub/sub model system being implemented is shown in the
diagram below (figure 1).

The first section describes the model that will be implemented in each of the three
languages. The next section describes the two main requirements for a parallel
implementation of pub/sub that we will study. Then, in the next three sections, we focus
on the HPCS languages and MPI, comparing them and contrasting them, in the context of
our pub/sub model, and presenting some of the highlights of our implementation for each
approach. In conclusion, we make observations from our experience working with the

1

13th ICCRTS: C2 for Complex Endeavors

three languages and discuss the significance of the work for command and control
applications.

Figure 1 - Pub/Sub Model

The Pub/Sub Model

The main characteristic of the pub/sub system, shown in Figure 1 above, is the
decoupling of publishers from subscribers. Publishers do not need to know who is
subscribing and subscribers do not need to know who is publishing [2]. In place of static
network connections, brokers work to match publications with their subscribers. Pub/sub
systems are ideally suited to C2 systems where units may enter a battlefield during the
course of an ongoing battle and may also be abruptly removed from a battlefield. Such a
system would be extremely difficult to build upon a point-to-point connection-oriented
model.

Subscribers use XPATH expressions to specify the contents of XML documents [3] that
they are interested in and that may be published. Brokers must evaluate the XPATH
predicates for each document received, to determine which subscribers should receive the
document and then disseminate the document to the interested subscribers. The pub/sub
model is very robust and may be designed to accommodate system failures in parallel and
distributed systems. The notion of routing data, based on content provides a lot of
flexibility for implementing parallel support for pub/sub systems. High performance
computers are used to implement brokering functions for scalable systems, to prevent
performance degradation when brokering loads are high. This makes brokering
documents an excellent target for experimentation with new languages for high
performance computing.

2

13th ICCRTS: C2 for Complex Endeavors

In the pub/sub model, publishers send XML documents (publications) into the system
via “pubcatchers” (see Figure 1). Pubcatchers insert the documents into a globally visible
queue, where brokers can access them. Brokers have access to subscriptions, which are
expressed as XPATH predicates. The predicates are used to determine which subscribers
should receive each document that is brokered. In the diagram, the dotted lines for
publishers and subscribers indicate that there may be many publishers and many
subscribers. Each brokered document is delivered to a subset of subscribers.

Comparing Implementation Approaches

In figure 1, a global transparent message-processing queue forms the heart of the system.
The main issue confronting a parallel system designer, for pub/sub systems is to provide
efficient access to this distributed data structures, in this case the global message queue.
The two main issues that we consider, in comparing the three approaches to parallel
implementation of pub/sub, are data distribution and synchronization. They are the key
aspects of achieving parallelism in most implementations.

In Chapel and X10, data distributions are defined separate from variable declarations,
allowing changes to distributions to be made without changing the code that accesses the
data. All processes see a global partitioned address space (GPAS) that is a single address
space distributed across processors. In MPI there is a cooperative view of data that is
partitioned across processors, each processor must know exactly where each element of a
distributed array is located.

Synchronization is the other major feature of any parallel programming language that has
the most impact on programmer productivity. Easy access to a globally visible array
makes synchronization among processes more critical. It makes it more likely that remote
and local accesses will conflict, simply because writing code that accesses remote objects
is transparent and therefore easier. In Chapel and X10, modification of data can be
accomplished transparently, simply by specifying a loop that accesses the program data
elements, the pub/sub message queue in our example. In MPI, modification of data on
remote systems must be accomplished via explicit messages. In most cases, code has to
be written for both senders and receivers for data exchange among MPI processes.

In addition to comparing language features, with respect to support for synchronization
and data distribution, other aspects of the programming environments supported for each
approach should be considered, especially when evaluating new technologies, like Chapel
and X10. Some HPCS language features were either not available or were not fully
implemented in the early releases used in this study. Figure 2 also compares Chapel, X10
and MPI in terms of documentation, object-oriented paradigm, running the codes and
sharing data among processes. The next three sections focus on each of the three
languages.

3

13th ICCRTS: C2 for Complex Endeavors

Issue Chapel X10 MPI

Documentation/Help
Ongoing email
group. Some
examples.

Newsgroups. A
lot of examples. Mature Documentation

Data Distribution

Define data
distributions separate
from variable
declarations

Define data
distributions
separate from
variable
declarations

Collections are built from
local component data

Object-Oriented

Inheriting from
multiple base
classes, with
restrictions (true
multiple inheritance
is not yet supported)

Interfaces (Java
approach to
multiple
inheritance)

Used Mpich2.0 not OO
(OOMPI or MPI C++ also
possible)

Synchronization

”Sync” variables and
“atomic” statement
(atomic not yet
supported)

”async” and
“finish”
operations on
remote data.

”barriers” and
“communicators” for
brokers and publishers.

Running the Code

Type the compiled
executable name.
Stdin/stdout
supported

Use “testScript”,
find output in
log and error
files.

Use Mpich2 scripts to
start mpd and mpiexec
codes.

Sharing Data
Transparent Global
Partitioned Address
Space (GPAS)

Transparent
Global
Partitioned
Address Space
(GPAS)

Single reader “broadcasts”
data to workers nodes.
Workers share data by
“send”, “receive” and
“broadcast”.

Figure 2 – Language Comparison

Chapel

The Chapel language [4][5] is being developed by Cray Inc. [6] under the DARPA High
Productivity Computing Systems (HPCS) program. The Chapel distribution includes a set
of example programs. The Chapel producer/consumer example program was used as a
starting point for the Chapel pub/sub model implementation. We experimented with
Chapel language features that support methods for partitioning and distributing data.

4

13th ICCRTS: C2 for Complex Endeavors

Although true distribution across remote “locales” was not supported in the early release
of the language that we used in this study, we were able to define distributions that were
mapped to local data storage. We also focused on synchronization, using Chapel sync
variables [7]. Sync variables can be used to control concurrency and avoid conflicting
updates on shared variables. Reading a sync variable essentially block all other readers
until a write takes place, which releases the lock that is granted exclusively to a single
reader.

In the initial implementation, we are implementing a queue of publications. Pubcatchers
insert the publications into sequential locations in the queue. The queue is cyclic
distributed so that incoming publications will be distributed across systems to evenly
distribute the brokering load while allowing both brokers and pubcatchers to operate
primarily on their local segment of the queue. In this implementation, we wanted to use
Chapel sync variables to enforce a strict brokering order. We are using sync variables to
control an alternating pattern of execution, with the pubcatchers and brokers
synchronizing their accesses independently based on independent sync variables.

The Chapel data distribution features [8] have a major impact on developer productivity.
Using the Chapel built-in cyclic distribution made this approach easy to implement and
saved a considerable programming effort that would have been needed for an MPI
implementation. We are currently building an MPI implementation, but implementing a
distributed queue in MPI will require global synchronization among processors using
only “barriers”. MPI barriers require all cooperating processes to arrive at the barrier
before any of them can continue executing, thereby assuring that the data protected by the
barrier has been updated by all processes before execution continues. Also, in Chapel,
access to the local array elements is transparent to the user and efficiently compiled. In
MPI, expensive runtime evaluation of user-defined data types may be required to move
date for communication.

The initial Chapel implementation of the pub/sub model has two brokers and two
pubcatchers. Pubcatchers use a shared counter variable to access the publication queue.
There are also two brokers that share a counter for access to the publication queue.
Synchronization worked well and was also easy to use. We implemented critical sections
by using sync variables. This approach can be easily extended to handle more than two
publishers and two brokers. Atomic blocks, another Chapel language feature for
synchronization could also be used, but it is not yet implemented.

Initiating parallel computations in Chapel is made easy through the use of “cobegin”. A
cobegin block automatically launches one process each for each function specified in a
code block, designated by: “cobegin { [list of function calls] }”. For the pub/sub model,
we used a cobegin inside a loop to start the desired number of publishers and subscribers
for each run. Cobegin can launch arbitrary statements, including compound/block
statements. The cobegin language feature of Chapel, along with its flexible data
distribution mechanism provide independence from the requirement to use a fixed
number of processors throught an execution, even when the processing requirements may
increase or decrease. Eight of the Chapel language features, illustrated by our
implementation, and Chapel specific language issues are described in figure 3.

5

13th ICCRTS: C2 for Complex Endeavors

1) Offers a variety of mechanisms that can assure cooperating processes are synchronized.

2) Sync variables were used to synchronize producers and consumers. Sync and single
variables are easy to use and an interesting feature of the Chapel language.

3) Could not use Chapel "atomic" sections because they are not yet implemented.

4) Time related functions, like sleep, are supported through a Time module. External
function call mechanism also supported.

5) Added synchronization for multiple brokers.

6) Easy to extend synchronization for more complex pub/sub model.

7) Easy to extend pub/sub example code to experiment with other built-in data distributions.

Figure 3 – Chapel Language Experience

X10

The X10 programming language [9][10] has many concepts that are similar to Chapel. It
supports a global partitioned address space (GPAS), provides mechanisms for creating
data distributions that are independent of access, and provides synchronization
mechanisms that aim to simplify the task of developers and make them more productive.
It was easy to create new distributions at all “places” or at a subset of processes involved
in the computation. Like Chapel, definition of places for data distribution and the
distribution algorithm, like block cyclic distribution, are orthogonal to the code
implemented to access the distributed data, allowing flexibility to change distributions
without rewriting the processing algorithm. X10 makes it is easy to define new
distributions by using inheritance to extend existing distributions.

For the pub/sub model, we created a distribution, where the publication processing array
is block distributed across all places (default is 4 places). Then we created two brokers
and two pubcatchers. Pubcatchers listen for publications from publishers, currently
simulated by reading them from a file, and insert them into the global publication
processing queue to be brokered. Declaring the queue to be "atomic" causes X10 to
synchronize pubcatcher access to the publication processing queue with other
pubcatchers and brokers. We can create as many brokers as are necessary to keep up with
the publication rate. Using an "atomic" queue make it easy for brokers to remove
publications from the publication processing queue and to automatically synchronize with
other brokers and pubcatchers. X10 also allows transparent access to remote elements in
a distribution through “async” and “final” function call modifiers that can be used to
control synchronized access to the remote elements

Our X10 implementation of the pub/sub model is based on an example from the X10
code distribution [9]: “Building arrays distributed across places using the union-of-

6

13th ICCRTS: C2 for Complex Endeavors

distribution approach”. It illustrates, in principle, an approach that would meet the
requirements of our pub/sub system. Experiments with X10 and experience using the
X10 programming environment is summarized in figure 4.

1) This study was unable to get Eclipse set up yet to work with the X10 code. A new set of
tools for working with X10 has been integrated into Eclipse [11], IBM’s IDE, but their
installation and configuration on Linux was tedious.

2) X10 has a lot of built-in functionality, including most of Java. X10 is implemented as an
extension of the Java language, replacing some of its functionality. A rich set of libraries,
written in Java, are available to programmers. Of course, this approach also inherited all
of the disadvantages of Java for high performance computing, including garbage
collection and lack of pointers.

3) We worked with array distribution code examples and then built a process distribution
version. X10 has a lot of examples to work with. The runtime environment, based on their
test harness was easy to work with, but put all output into a test results file. This is
reasonable for checking to be sure that all test codes work correctly for each build.

4) We started with BlockDistedArray1D.x10 example code.

5) We implemented code to print the processing locations where operations take place.

6) The output from the enhanced code indicated that operations were taking place at each
processor at the correct time.

Figure 4 – X10 Language Experience

MPI

The Message Passing Interface (MPI) [12] is implemented by the MPICH2 software,
which is freely available on the Internet. MPI has been a standard for parallel processing
for many years. Our MPI implementation of the pub/sub model distributed the
publications queue across all processors. A message/cyclic distribution is used so that
sequential access to the queue, for brokering messages, results in a round robin allocation
of brokering of messages by processors. Brokers process messages in the queue when
they are found locally in first-in/first-out order. If no new messages are in the queue,
brokers at all processors are idle.

Each processor also runs a publisher that sends publications to the remote publication site
that currently represents the end of the queue. Publishers must synchronize when adding
publications, to avoid race conditions. Since publishers must synchronize independently
of brokers, a separate "communicator" is used for publishers. Similarly, brokers have to
synchronize among themselves, to maintain a common view of which entry is the next
that needs to be brokered. Brokers, do not, however, communicate among themselves for
other purposes.

7

13th ICCRTS: C2 for Complex Endeavors

We expect that MPI synchronization, based on communication primitives and barriers,
will be less efficient than X10 and Chapel, where synchronization primitives, like sync
variables in Chapel, can be efficiently compiled. The MPI model for the pub/sub
implementation is shown in figure 5.

Figure 5 - MPI Fragmented Memory Model

The principal problem faced by developers writing MPI code, when implementing
systems that are similar to our pub/sub system is that code must be written to explicitly
determine whether data is local or remote, and execute different code accordingly. To
write data into a particular location in a distributed array, the MPI application must
compute which processor would store the component of the array where the data is to be
stored. If the data and array destination location are local, the data can be copied into the
array location. Otherwise, the processor storing the data must send it to a remote process
and the remote process must be waiting to receive the data. This process of coding
software that implements data distribution functions in MPI is tedious and expensive.
Programmer productivity is extremely low, compared to productivity for programmers
using the Chapel and X10 paradigms.

When a publication arrives at a pubcatcher, we check the count to determine where the
publication belongs in the message queue. If it belongs in the local fragment of the
distributed message queue, we copy it to the local data array. If it is remote, we use
MPI_SEND to send it to the remote processor for the component of the message queue
where it is to be stored. Pubcatchers also have to listen for inputs from publishers, in
addition to waiting to receive data from remote processors for storage in the local array
fragment. This requires that asynchronous receives be done for MPI messages from other
processors, making the coding even more difficult.

Future Work

8

13th ICCRTS: C2 for Complex Endeavors

The pub/sub model offers many alternatives to exploit its inherent parallelism. Both
pubcatchers and brokers operate in parallel by processing data that is exchanged through
the shared “queue”, which is actually just a distributed collection that we may want to
access in various ways in future experimentation. We are also interested in exploring in
other directions, based on this initial design and implementation of a Chapel pub/sub
information management system. Approaches that allow out-of-order processing may be
most appropriate, since publications can arrive sporadically. For load balancing,
pubcatchers and brokers may both need to send publications to remote locations or
retrieve publications from them.

While implementing an MPI version of our pub/sub system, it became clear that writing
MPI code is a lot more difficult and time-consuming than writing code in X10 or Chapel,
even for a programmer who is experienced with MPI. We have implemented the Chapel
pub/sub system in a variety of ways, using synchronization mechanisms and data
distributions experimentally. We have also experimented with X10 and written parts of
the pub/sub model in X10. We now intend to converge on a few implementations with
distinct features and compare the implementation effort with an MPI-based
implementation effort for a system with similar features.

Experiments performed so far have provided some confidence that using the new HPCS
languages will allow developers to implement systems faster. Also, because X10 and
Chapel offer a higher level at which parallelism is described, we expect that the
compilers will be able to more effectively optimize the code. The data distribution
features that were used in the examples above demonstrate that tuning data distribution
support to improve performance can be easily done in the HPCS languages, X10 and
Chapel, but would require a major effort for MPI.

Conclusion

Our experience in developing the pub/sub model indicates that synchronization in the
new HPCS languages, Chapel and X10, are easy to understand and use. Compared to
MPI, it is clear that programmer productivity is higher for the HPCS languages. The MPI
libraries have limited features that would allow them to initiate parallel processes. The
MPI “World” is defined at the beginning of execution. The HPCS languages, while
initially not supporting dynamically changing process sets, are designed to offer the
potential to support them in the future. We have discussed several ways in which the new
HPCS languages incorporate features that are not currently available in MPI, allowing
them to support improved programmer productivity.

Future C2 system architectures will depend more heavily on parallel processing and
multiprocessor machines. It is fortunate that DARPA began its HPCS program several
years ago, so that new HPCS languages will be ready for production deployment by the
year 2010. MPI could support many scientific applications where the development costs
and timeline could be tolerated as the only way to solve some problems. The expanded
role of parallel computing in modern C2 systems requires rapid development and reduced

9

13th ICCRTS: C2 for Complex Endeavors

maintenance costs, both in terms of dollars and time. This paper shows that new
languages have proven functionality that will help to meet that demand.

References

[1] 2006 - Spetka, S.E., Ramseyer, G.O., Tucker, S.N., Lok-Kwong, Y., Fitzgerald, D.J., Linderman, R.W.,
 "Net-Centric Pub/Sub Information Management Design for Command and Control", Command
 and Control Research and Technology Symposium, San Diego, CA, June 20-22, 2006.

[2] 2002 - Combs, V., Linderman, M., "A Jini-Based Publish and Subscribe Capability", Proceedings of
 SPIE, Volume 4863, Java/Jini Technologies and High-Performance Pervasive Computing,
 June 2002.

[3] Extended Markup Language (http://www.xml.org).

[4] 2007 - Bradford L. Chamberlain, David Callahan, Hans P. Zima, “Parallel Programmability and the
Chapel Language”, International Journal of High Performance Computing Applications, August
2007, 21(3): 291-312.

[5] Chapel Home Page - http://chapel.cs.washington.edu/

[6] Cray, Inc. - http://www.cray.com

[7] Chapel Specification (version 0.750) - http://chapel.cs.washington.edu/

[8] 2007 - Roxana E. Diaconescu and Hans P. Zima, “An Approach to Data Distributions in Chapel”,
International Journal of High Performance Computing Applications, August 2007, 21(3): 313-
335.

[9] The Experimental Concurrent Programming Language (X10) - http://x10.sourceforge.net

[10] The X10 Programming Language – http://www.research.ibm.com/x10

[11] Eclipse - an open development platform - http://www.eclipse.org/

[12] Message Passing Interface (MPI) - www.mcs.anl.gov/mpi/

.

10

http://www.highproductivity.org/IJHPCA-HPPLM.html
http://www.highproductivity.org/IJHPCA-HPPLM.html
http://www.highproductivity.org/IJHPCA-HPPLM.html
http://www.mcs.anl.gov/mpi/

	High Productivity Computing Systems for Command and Control
	Abstract
	Introduction
	The Pub/Sub Model
	X10
	MPI
	The principal problem faced by developers writing MPI code, when implementing systems that are similar to our pub/sub system is that code must be written to explicitly determine whether data is local or remote, and execute different code accordingly. To write data into a particular location in a distributed array, the MPI application must compute which processor would store the component of the array where the data is to be stored. If the data and array destination location are local, the data can be copied into the array location. Otherwise, the processor storing the data must send it to a remote process and the remote process must be waiting to receive the data. This process of coding software that implements data distribution functions in MPI is tedious and expensive. Programmer productivity is extremely low, compared to productivity for programmers using the Chapel and X10 paradigms.
	Conclusion
	References
	[1] 2006 - Spetka, S.E., Ramseyer, G.O., Tucker, S.N., Lok-Kwong, Y., Fitzgerald, D.J., Linderman, R.W., "Net-Centric Pub/Sub Information Management Design for Command and Control", Command and Control Research and Technology Symposium, San Diego, CA, June 20-22, 2006.

