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High Productivity Computing Systems for Command and Control 

Abstract 

The most significant issue underlying all future command and control (C2) architectures 
is the ability to develop software that can harness the next generation of processors. 
Multicore processors, scaling into thousands of processors per chip will soon be prevalent 
in all C2 systems. The success of C2 systems will depend on our ability to adapt to the 
new processor technology. Existing C2 systems that implement scientific codes for image 
processing and many other applications have been a dominant user of high performance 
computers (HPCs) for several decades. However, increasingly diverse C2 applications are 
now also being adapted to HPCs, due to dropping prices and increased availability. 

The goal of the DARPA High Productivity Computing Systems (HPCS) program is to 
develop high performance computers that are substantially easier to program, thereby 
reducing software development cost and time to solution. We employ a 
publication/subscription information management (PSIM) system in a case study to 
compare new HPCS approaches to parallel code implementation with existing 
techniques. The PSIM system requires intensive CPU cycles and communications 
bandwidth, for brokering XML information objects between publishers and 
corresponding subscribers. The study compares two new HPCS languages, Chapel (Cray) 
and X10 (IBM), with the Message Passing Interface (MPI) standard. 

Keywords: pub/sub, chapel, X10, MPI, HPCS 

Introduction 

This paper describes an experimental implementation of a prototype 
publication/subscription (pub/sub) information management system (PSIM) that is being 
used as an example to compare implementation approaches for the two new high 
productivity computing systems (HPCS) languages, Chapel and X10, with a legacy 
Message Passing Interface (MPI) approach to parallel computing.  The HPCS languages 
and their implementations are still evolving and improving at a rapid pace. Some changes 
to the features discussed in this paper can be expected. Pub/sub technologies have been 
shown to be important to net-centric warfare, for command and control [1], making a 
pub/sub system an especially relevant choice for a language comparison in the context of 
command and control. The pub/sub model system being implemented is shown in the 
diagram below (figure 1).  

The first section describes the model that will be implemented in each of the three 
languages.  The next section describes the two main requirements for a parallel 
implementation of pub/sub that we will study. Then, in the next three sections, we focus 
on the HPCS languages and MPI, comparing them and contrasting them, in the context of 
our pub/sub model, and presenting some of the highlights of our implementation for each 
approach. In conclusion, we make observations from our experience working with the 
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three languages and discuss the significance of the work for command and control 
applications. 

 

 

Figure 1 - Pub/Sub Model

The Pub/Sub Model 

The main characteristic of the pub/sub system, shown in Figure 1 above, is the 
decoupling of publishers from subscribers. Publishers do not need to know who is 
subscribing and subscribers do not need to know who is publishing [2]. In place of static 
network connections, brokers work to match publications with their subscribers. Pub/sub 
systems are ideally suited to C2 systems where units may enter a battlefield during the 
course of an ongoing battle and may also be abruptly removed from a battlefield. Such a 
system would be extremely difficult to build upon a point-to-point connection-oriented 
model. 

Subscribers use XPATH expressions to specify the contents of XML documents [3] that 
they are interested in and that may be published. Brokers must evaluate the XPATH 
predicates for each document received, to determine which subscribers should receive the 
document and then disseminate the document to the interested subscribers. The pub/sub 
model is very robust and may be designed to accommodate system failures in parallel and 
distributed systems. The notion of routing data, based on content provides a lot of 
flexibility for implementing parallel support for pub/sub systems. High performance 
computers are used to implement brokering functions for scalable systems, to prevent 
performance degradation when brokering loads are high. This makes brokering 
documents an excellent target for experimentation with new languages for high 
performance computing. 
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In the pub/sub model,  publishers send XML documents (publications) into the system 
via “pubcatchers” (see Figure 1). Pubcatchers insert the documents into a globally visible 
queue, where brokers can access them. Brokers have access to subscriptions, which are 
expressed as XPATH predicates. The predicates are used to determine which subscribers 
should receive each document that is brokered. In the diagram, the dotted lines for 
publishers and subscribers indicate that there may be many publishers and many 
subscribers. Each brokered document is delivered to a subset of subscribers. 

Comparing Implementation Approaches 

In figure 1, a global transparent message-processing queue forms the heart of the system. 
The main issue confronting a parallel system designer, for pub/sub systems is to provide 
efficient access to this distributed data structures, in this case the global message queue. 
The two main issues that we consider, in comparing the three approaches to parallel 
implementation of pub/sub, are data distribution and synchronization. They are the key 
aspects of achieving parallelism in most implementations. 

In Chapel and X10, data distributions are defined separate from variable declarations, 
allowing changes to distributions to be made without changing the code that accesses the 
data. All processes see a global partitioned address space (GPAS) that is a single address 
space distributed across processors. In MPI there is a cooperative view of data that is 
partitioned across processors, each processor must know exactly where each element of a 
distributed array is located. 

Synchronization is the other major feature of any parallel programming language that has 
the most impact on programmer productivity. Easy access to a globally visible array 
makes synchronization among processes more critical. It makes it more likely that remote 
and local accesses will conflict, simply because writing code that accesses remote objects 
is transparent and therefore easier. In Chapel and X10, modification of data can be 
accomplished transparently, simply by specifying a loop that accesses the program data 
elements, the pub/sub message queue in our example. In MPI, modification of data on 
remote systems must be accomplished via explicit messages. In most cases, code has to 
be written for both senders and receivers for data exchange among MPI processes. 

In addition to comparing language features, with respect to support for synchronization 
and data distribution, other aspects of the programming environments supported for each 
approach should be considered, especially when evaluating new technologies, like Chapel 
and X10. Some HPCS language features were either not available or were not fully 
implemented in the early releases used in this study. Figure 2 also compares Chapel, X10 
and MPI in terms of documentation, object-oriented paradigm, running the codes and 
sharing data among processes. The next three sections focus on each of the three 
languages.  
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Issue Chapel X10 MPI 

Documentation/Help 
Ongoing email 
group. Some 
examples. 

Newsgroups. A 
lot of examples. Mature Documentation 

Data Distribution 

Define data 
distributions separate 
from variable 
declarations 

Define data 
distributions 
separate from 
variable 
declarations 

Collections are built from 
local component data 

Object-Oriented 

Inheriting from 
multiple base 
classes, with 
restrictions (true 
multiple inheritance 
is not yet supported) 

Interfaces (Java 
approach to 
multiple 
inheritance) 

Used Mpich2.0 not OO 
(OOMPI or MPI C++ also 
possible) 

Synchronization 

”Sync” variables and 
“atomic” statement 
(atomic not yet 
supported) 

”async” and 
“finish” 
operations on 
remote data. 

”barriers” and 
“communicators” for 
brokers and publishers. 

Running the Code 

Type the compiled 
executable name. 
Stdin/stdout 
supported 

Use “testScript”, 
find output in  
log and error 
files. 

Use Mpich2 scripts to 
start mpd and mpiexec 
codes.  

Sharing Data 
Transparent Global 
Partitioned Address 
Space (GPAS) 

Transparent 
Global 
Partitioned 
Address Space 
(GPAS) 

Single reader “broadcasts” 
data to workers nodes. 
Workers share data by 
“send”, “receive” and 
“broadcast”. 

Figure 2 – Language Comparison 

 

Chapel 

The Chapel language [4][5] is being developed by Cray Inc. [6] under the DARPA High 
Productivity Computing Systems (HPCS) program. The Chapel distribution includes a set 
of example programs. The Chapel producer/consumer example program was used as a 
starting point for the Chapel pub/sub model implementation. We experimented with 
Chapel language features that support methods for partitioning and distributing data. 
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Although true distribution across remote “locales” was not supported in the early release 
of the language that we used in this study, we were able to define distributions that were 
mapped to local data storage. We also focused on synchronization, using Chapel sync 
variables [7]. Sync variables can be used to control concurrency and avoid conflicting 
updates on shared variables. Reading a sync variable essentially block all other readers 
until a write takes place, which releases the lock that is granted exclusively to a single 
reader. 

In the initial implementation, we are implementing a queue of publications. Pubcatchers 
insert the publications into sequential locations in the queue. The queue is cyclic 
distributed so that incoming publications will be distributed across systems to evenly 
distribute the brokering load while allowing both brokers and pubcatchers to operate 
primarily on their local segment of the queue. In this implementation, we wanted to use 
Chapel sync variables to enforce a strict brokering order. We are using sync variables to 
control an alternating pattern of execution, with the pubcatchers and brokers 
synchronizing their accesses independently based on independent sync variables. 

The Chapel data distribution features [8] have a major impact on developer productivity. 
Using the Chapel built-in cyclic distribution made this approach easy to implement and 
saved a considerable programming effort that would have been needed for an MPI 
implementation. We are currently building an MPI implementation, but implementing a 
distributed queue in MPI will require global synchronization among processors using 
only “barriers”. MPI barriers require all cooperating processes to arrive at the barrier 
before any of them can continue executing, thereby assuring that the data protected by the 
barrier has been updated by all processes before execution continues. Also, in Chapel, 
access to the local array elements is transparent to the user and efficiently compiled. In 
MPI, expensive runtime evaluation of user-defined data types may be required to move 
date for communication. 

The initial Chapel implementation of the pub/sub model has two brokers and two 
pubcatchers.  Pubcatchers use a shared counter variable to access the publication queue. 
There are also two brokers that share a counter for access to the publication queue. 
Synchronization worked well and was also easy to use.  We implemented critical sections 
by using sync variables. This approach can be easily extended to handle more than two 
publishers and two brokers. Atomic blocks, another Chapel language feature for 
synchronization could also be used, but it is not yet implemented. 

Initiating parallel computations in Chapel is made easy through the use of “cobegin”. A 
cobegin block automatically launches one process each for each function specified in a 
code block, designated by: “cobegin { [list of function calls] }”. For the pub/sub model, 
we used a cobegin inside a loop to start the desired number of publishers and subscribers 
for each run. Cobegin can launch arbitrary statements, including compound/block 
statements. The cobegin language feature of Chapel, along with its flexible data 
distribution mechanism provide independence from the requirement to use a fixed 
number of processors throught an execution, even when the processing requirements may 
increase or decrease. Eight of the Chapel language features, illustrated by our 
implementation, and Chapel specific language issues are described in figure 3. 
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1) Offers a variety of mechanisms that can assure cooperating processes are synchronized. 

2) Sync variables were used to synchronize producers and consumers. Sync and single 
variables are easy to use and an interesting feature of the Chapel language. 

3) Could not use Chapel "atomic" sections because they are not yet implemented. 

4) Time related functions, like sleep, are supported through a Time module. External 
function call mechanism also supported. 

5) Added synchronization for multiple brokers. 

6) Easy to extend synchronization for more complex pub/sub model.  

7) Easy to extend pub/sub example code to experiment with other built-in data distributions. 

Figure 3 – Chapel Language Experience 

X10 

The X10 programming language [9][10] has many concepts that are similar to Chapel. It 
supports a global partitioned address space (GPAS), provides mechanisms for creating 
data distributions that are independent of access, and provides synchronization 
mechanisms that aim to simplify the task of developers and make them more productive. 
It was easy to create new distributions at all “places” or at a subset of processes involved 
in the computation. Like Chapel, definition of places for data distribution and the 
distribution algorithm, like block cyclic distribution, are orthogonal to the code 
implemented to access the distributed data, allowing flexibility to change distributions 
without rewriting the processing algorithm. X10 makes it is easy to define new 
distributions by using inheritance to extend existing distributions. 

For the pub/sub model, we created a distribution, where the publication processing array 
is block distributed across all places (default is 4 places). Then we created two brokers 
and two pubcatchers. Pubcatchers listen for publications from publishers, currently 
simulated by reading them from a file, and insert them into the global publication 
processing queue to be brokered. Declaring the queue to be "atomic" causes X10 to 
synchronize pubcatcher access to the publication processing queue with other 
pubcatchers and brokers. We can create as many brokers as are necessary to keep up with 
the publication rate. Using an "atomic" queue make it easy for brokers to remove 
publications from the publication processing queue and to automatically synchronize with 
other brokers and pubcatchers. X10 also allows transparent access to remote elements in 
a distribution through “async” and “final” function call modifiers that can be used to 
control synchronized access to the remote elements 

Our X10 implementation of the pub/sub model is based on an example from the X10 
code distribution [9]: “Building arrays distributed across places using the union-of-

6 



13th ICCRTS: C2 for Complex Endeavors  

distribution approach”. It illustrates, in principle, an approach that would meet the 
requirements of our pub/sub system. Experiments with X10 and experience using the 
X10 programming environment is summarized in figure 4. 

 

 

1) This study was unable to get Eclipse set up yet to work with the X10 code. A new set of 
tools for working with X10 has been integrated into Eclipse [11], IBM’s IDE, but their 
installation and configuration on Linux was tedious. 

2) X10 has a lot of built-in functionality, including most of Java. X10 is implemented as an 
extension of the Java language, replacing some of its functionality. A rich set of libraries, 
written in Java, are available to programmers. Of course, this approach also inherited all 
of the disadvantages of Java for high performance computing, including garbage 
collection and lack of pointers. 

3) We worked with array distribution code examples and then built a process distribution 
version. X10 has a lot of examples to work with. The runtime environment, based on their 
test harness was easy to work with, but put all output into a test results file. This is 
reasonable for checking to be sure that all test codes work correctly for each build. 

4) We started with BlockDistedArray1D.x10 example code. 

5) We implemented code to print the processing locations where operations take place. 

6) The output from the enhanced code indicated that operations were taking place at each 
processor at the correct time. 

Figure 4 – X10 Language Experience 

MPI 

The Message Passing Interface (MPI) [12] is implemented by the MPICH2 software, 
which is freely available on the Internet. MPI has been a standard for parallel processing 
for many years. Our MPI implementation of the pub/sub model distributed the 
publications queue across all processors. A message/cyclic distribution is used so that 
sequential access to the queue, for brokering messages, results in a round robin allocation 
of brokering of messages by processors. Brokers process messages in the queue when 
they are found locally in first-in/first-out order. If no new messages are in the queue, 
brokers at all processors are idle. 

Each processor also runs a publisher that sends publications to the remote publication site 
that currently represents the end of the queue. Publishers must synchronize when adding 
publications, to avoid race conditions. Since publishers must synchronize independently 
of brokers, a separate "communicator" is used for publishers. Similarly, brokers have to 
synchronize among themselves, to maintain a common view of which entry is the next 
that needs to be brokered. Brokers, do not, however, communicate among themselves for 
other purposes. 
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We expect that MPI synchronization, based on communication primitives and barriers, 
will be less efficient than X10 and Chapel, where synchronization primitives, like sync 
variables in Chapel, can be efficiently compiled. The MPI model for the pub/sub 
implementation is shown in figure 5. 

 

 

Figure 5 - MPI Fragmented Memory Model 

The principal problem faced by developers writing MPI code, when implementing 
systems that are similar to our pub/sub system is that code must be written to explicitly 
determine whether data is local or remote, and execute different code accordingly. To 
write data into a particular location in a distributed array, the MPI application must 
compute which processor would store the component of the array where the data is to be 
stored. If the data and array destination location are local, the data can be copied into the 
array location. Otherwise, the processor storing the data must send it to a remote process 
and the remote process must be waiting to receive the data. This process of coding 
software that implements data distribution functions in MPI is tedious and expensive. 
Programmer productivity is extremely low, compared to productivity for programmers 
using the Chapel and X10 paradigms. 

When a publication arrives at a pubcatcher, we check the count to determine where the 
publication belongs in the message queue. If it belongs in the local fragment of the 
distributed message queue, we copy it to the local data array. If it is remote, we use 
MPI_SEND to send it to the remote processor for the component of the message queue 
where it is to be stored. Pubcatchers also have to listen for inputs from publishers, in 
addition to waiting to receive data from remote processors for storage in the local array 
fragment. This requires that asynchronous receives be done for MPI messages from other 
processors, making the coding even more difficult.  

Future Work 
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The pub/sub model offers many alternatives to exploit its inherent parallelism. Both 
pubcatchers and brokers operate in parallel by processing data that is exchanged through 
the shared “queue”, which is actually just a distributed collection that we may want to 
access in various ways in future experimentation. We are also interested in exploring in 
other directions, based on this initial design and implementation of a Chapel pub/sub 
information management system. Approaches that allow out-of-order processing may be 
most appropriate, since publications can arrive sporadically. For load balancing, 
pubcatchers and brokers may both need to send publications to remote locations or 
retrieve publications from them. 

While implementing an MPI version of our pub/sub system, it became clear that writing 
MPI code is a lot more difficult and time-consuming than writing code in X10 or Chapel, 
even for a programmer who is experienced with MPI. We have implemented the Chapel 
pub/sub system in a variety of ways, using synchronization mechanisms and data 
distributions experimentally. We have also experimented with X10 and written parts of 
the pub/sub model in X10. We now intend to converge on a few implementations with 
distinct features and compare the implementation effort with an MPI-based 
implementation effort for a system with similar features. 

Experiments performed so far have provided some confidence that using the new HPCS 
languages will allow developers to implement systems faster. Also, because X10 and 
Chapel offer a higher level at which parallelism is described, we expect that the 
compilers will be able to more effectively optimize the code. The data distribution 
features that were used in the examples above demonstrate that tuning data distribution 
support to improve performance can be easily done in the HPCS languages, X10 and 
Chapel, but would require a major effort for MPI. 

Conclusion 

Our experience in developing the pub/sub model indicates that synchronization in the 
new HPCS languages, Chapel and X10, are easy to understand and use. Compared to 
MPI, it is clear that programmer productivity is higher for the HPCS languages. The MPI 
libraries have limited features that would allow them to initiate parallel processes. The 
MPI “World” is defined at the beginning of execution. The HPCS languages, while 
initially not supporting dynamically changing process sets, are designed to offer the 
potential to support them in the future. We have discussed several ways in which the new 
HPCS languages incorporate features that are not currently available in MPI, allowing 
them to support improved programmer productivity. 

Future C2 system architectures will depend more heavily on parallel processing and 
multiprocessor machines. It is fortunate that DARPA began its HPCS program several 
years ago, so that new HPCS languages will be ready for production deployment by the 
year 2010. MPI could support many scientific applications where the development costs 
and timeline could be tolerated as the only way to solve some problems. The expanded 
role of parallel computing in modern C2 systems requires rapid development and reduced 
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maintenance costs, both in terms of dollars and time. This paper shows that new 
languages have proven functionality that will help to meet that demand. 
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