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Abstract 
In this paper, we present a conceptual integration of pattern classification, dual control under 
uncertainty, and social dynamics simulation technologies to address the problem of instability 
management. We conceptually designed a model called Stochastic Enhanced Control of Unstable 
Regional Environments (SECURE) to provide effective real-time early-warning and decision 
analysis for monitoring, assessing, forecasting, and preventing the regional conflicts and 
instability. Our current work is focused on validating the model against real-world and synthetic 
datasets, and will be reported in future publications. 

The SECURE calculates the indicator of a power balance in the area of interest based on the 
interaction network that defines the state of and relationships among the groups, organizations, 
institutions, and individual members of the society. Using this indicator, SECURE tracks the 
dynamics of the society of interest over time and develops robust dynamic action strategies to 
maintain stability and prevent crises. SECURE solution is based on the concept of dual control, a 
judicious integration of actions to influence the state of the environment of interest as well as to 
gain more knowledge about the true state of the environment. SECURE is enhanced with the social 
dynamics simulation models to generate possible dynamics of the society. Such dynamics form the 
models that are used by the predictive and decision algorithms to recognize and control current and 
future state of the environment.  

1. Motivation: Regional Crises Early Warning 
1.1. The Challenge 
Today’s world is changing rapidly, generating more asymmetric and unconventional adversaries 
for the United States. International crises pose more of a challenge to U.S. national security as 
unstable or failed states fuel regional conflicts, harbor terrorists hostile to the U.S. or are unable to 
protect themselves against the spread of terrorism. Failed states can also become centers for the 
trade of illicit drugs and arms, and can form breeding grounds for dangerous diseases. Regional 
conflicts not only cause humanitarian disasters requiring ever-increasing resources from the 
international community, but also create political, economic, and social instability in the 
neighboring countries, a growing number of which possess or are interested in developing 
weapons of mass destruction.  
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The state failure and large-scale conflicts that ensue in societies do not just happen overnight: the 
dynamics leading to these events evolve gradually, and display potentially discernable patterns in 
critical societal relationships. The indicators of state weakness should not be based solely on the 
problems of state security, but also on the conditions that threaten the status quo, the physical 
integrity of the state’s borders, the general welfare, and human self-determination. Such conditions 
and their dynamics need to be assessed and identified early because a truly effective strategy is not 
one of reacting to a disaster, but one that anticipates and prevents disasters. Interventions should 
start early, before states begin to fail. However, the feasible preventive actions are severely limited 
and can only be narrowly focused, as the international community does not have the resources, 
political will, or know-how to mount comprehensive interventions in every state that gives early 
signs of failure (Ottaway, and Mair, 2004). 

1.2. The Need for Prediction of True Environment Dynamics 
The asymmetric threat environment has large information gaps. First, much of the information is 
missing due to limited resources to collect the data – e.g., open source intelligence (OSINT) only 
contains information expressed by the actors and is therefore most often an incomplete and 
misleading statement of their intent. Second, much of the transactional data collected are irrelevant  
to establishing an accurate description of the environment and hostile activities (“background 
noise”) – e.g., there are many actors that are not part of the hostile groups and do not influence the 
onset and evolution of crises. Third, information processing itself can encounter errors – either 
from automated tools, or from personal biases about intent of actions. Fourth, the groups of interest 
might possess few members living, planning and operating within a large population (e.g, Al 
Qeada in Pakistan). And finally, a significant amount of intelligence could be observations of 
intentionally deceptive actions conducted by the hostile actors. 

Due to these sources of uncertainty, actions to prevent crises cannot be based on current 
observations alone. Instead, we need to use historical observations to track the dynamics of an 
environment, predict its current true state from partially observed transactions, and forecast future 
evolutions including potential instabilities. 

Lately, U.S. researchers supported by the Department of Defense have conducted a concerted 
effort to develop early warning indicators (such as failed state index2) and decision support tools to 
forecast regional and state instabilities (O’Brien, 2002; Baker, 2003; King and Zeng, 2001). 
However, these early warning systems focus on a high-level assessment and do not predict the 
timing for impending conflicts nor the specific nature of the conflicts. Existing state instability 
forecasting tools therefore do not provide the insights that short-term planners need – who is doing 
what, why, and to whom, - in order to develop effective countermeasures. Consequently, 
researchers have begun to dedicate significant attention to analyzing the interactions among 
individuals, groups, and institutions (Popp et al., 2006; Saunders-Newton, Frank, and Popp, 2005; 
O’Brien, 2004; Schrodt and Gerner, 2000, 2001). Various models have been applied to study such 
interactions, including differential equations (Turchin, 2003), interaction-events data analysis 
(Gerner et al., 2002; O’Brien, 2004), game-theoretic models (Brams and Kilgour, 1988), and 
others. While these approaches benefit from technologies that can capture entities and events from 
open sources (e.g., text reports from news media), most of this data is either captured at a national 
level (O’Brien, 2004) or at a very detailed level of the individual members of the society.  
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A large number of models have also been developed using agent-based simulations of societies 
(Popp et al., 2006). However, the amount of data that is needed to populate these models is 
enormous, with data and data sources that are usually difficult to acquire. A significant amount of 
noise events (text parsing errors, misclassifications, missed information, and deceptions) have 
contributed to misleading forecasts (false alarms and false positives – the recognition of potential 
threats that have little or no impact) due to the sensitivity of agent-based models to input 
parameters. In addition, different models worked at different levels of granularity, with no 
common problem framework developed to integrate model inputs and outputs (Popp et al., 2006). 
Very few of the models were able to “remove the noise” from the input data, and none of the 
models were able to work with data sources at different levels of granularity. As the result, the 
Integrated Crisis Early Warning System (ICEWS) program was initiated at DARPA to develop a 
comprehensive, integrated, automated, generalizable, and validated system to monitor, assess, and 
forecast national, sub-national, and international crises. One of the main objectives for this 
program is to develop predictions that would support decisions on how to allocate resources to 
mitigate potential crises and instability.  

1.3. The Need for Control in the Presence of Uncertainty 
One of the needs identified in the ICEWS program is the development of Courses of Action 
(COAs) that can achieve end-state regional stability objectives in near real-time. Such COAs must 
be designed in the presence of a very high uncertainty in the data, when no single reliable 
prediction about the situation can be obtained and instead multiple possibilities are equally likely. 
In this vein, two types of control actions are possible: on the one hand, we can design preventive 
actions that seek to change the environment towards a desired state while being robust to the 
uncertainty in current forecasts about the environment; on the other hand, we can design 
investigative actions that improve our knowledge of the environment to enable better control of 
the environment in the future. 

The preventive actions need to account for the risks associated with potential undesired 
consequences due to the uncertainty of current environmental state predictions and uncertainty in 
action outcomes. When the uncertainty in current predictions is large, few, if any, preventive 
actions are possible that would avoid such consequences while ensuring that the crisis does not 
occur.  Here, injecting investigative actions to gain a better understanding of the environment will 
lead to better preventive actions in the future.   

Investigative actions can be of two types: (i) passive information collection actions; and (ii) active 
probing actions. Passive information collection actions can extract the relevant information critical 
to improving the quality of predictions from other (possibly non-government) sources or allocate 
available sensor resources for future intelligence collection in areas of interest. However, actions 
limited to passive sensing cannot improve the situational awareness when no revealing transactions 
have occurred. For example, passive sensing can analyze open-source intelligence from blogs and 
websites visited by potential leaders of hostile groups in the region; however, no significant 
information can be gathered if the adversarial actors do not express their views, intent, or do not 
overtly communicate with each other in any way. 

1.4. The Need for Probing when Uncertainty is too High 
To discover the hidden state of an environment (e.g., actors, their relationships, their views, intent, 
and power balance in the society), we can apply actions that are analogous to injecting test signals 
into physical systems. Such probing signals force the system to reveal itself. Mathematically, the 
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main objective of probing actions is to maximize the information gain (or minimize the entropy, a 
measure of uncertainty) of the predictions about the state of the environment. This can be achieved 
by finding those probing actions that reduce the entropy of the current state of the environment the 
most.  An example of a probing action could be providing information that coerces adversaries to 
communicate more and hence to reveal their relationships, commit actions that could be observed, 
or even change some of their plans. The outcome of probing is an improved understanding of the 
environment and, consequently, a better ability to prevent instability and/or control crises.  

2. The SECURE System: Concept Description 
2.1. System Workflow 
The workflow of the SECURE system is shown in Figure 1. The observations and events from the 
environment are gathered by the Entity/Relationship Extraction component. Such data can be 
obtained from existing technologies developed under various programs (e.g. ICEWS), and is 
therefore outside the scope of this research. This data is fed into the Environment Dynamics 
Tracking component, which generates predictions of the environment dynamics and its current and 
future states. This component is using the set of hypothetical environment dynamics models that 
are generated by Social Dynamics Simulation. If the reliability of predictions is high (low entropy), 
the Control component is activated to find actions that seek to prevent the crises and influence the 
environment. If the reliability is low, the Investigative component is activated that invokes the 
information collection and/or probing actions to increase our understanding of the environment. 
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Figure 1: The Workflow of SECURE Model 

2.2. Instability Indicator as a Power Balance Network 
SECURE calculates the indicator of regional/state instability as a power balance network (PBN) in 
the area of interest. The PBN indicator is based on the interaction network that defines the state 
and relationships among groups, organizations, institutions, and individual members of society 
(Figure 2). The nodes in the network represent groups, organizations, government, states, and 
individuals, with node attributes defining size/membership of the groups, beliefs of people, 
economic power of organizations, social identities of individuals and groups, and other economic 
and social features. The links in the network represent who does what to whom in the area of 
interest – social interactions and influences, economic transactions, behavioral interactions, 
political events and activities, etc., with link attributes defining the frequency and types of 
interactions among the nodes.  
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Figure 3: Observed versus True State of PBN

•Actors (nodes) = individuals, organizations, countries/states, institutions
•Interactions (links) = who did what to whom --- social, economic, behavioral, political 
events/transactions/relationships/influences
•Node attributes (labels) = beliefs of people, economic prosperity of groups, social status, 
group-social identities, number of members, etc. 
•Link attributes (labels) = frequency and type of interactions, e.g. repression intensity, the 
influence power, the success of services rendering, etc.  

Figure 2: Power Balance Network as a Labeled Graph 

There are large information gaps in the data that can be gathered about a society of interest due to 
factors including: 
• Large numbers of actors/interactions/attributes that are irrelevant: for example, 

normal/green only events cannot be filtered out because the same event might be in normal and 
abnormal behavioral patterns. 

• Large numbers of actors/interactions/attributes that are missing: for example, it is 
impossible to know the financial status, opinions, or # of members of every group in the 
society. 

• Large numbers of actors/interactions/attributes that are uncertain: for example, we can 
only approximate the beliefs of every person/group by using “representatives” and drawing 
conclusions about the group as a whole. 

• Large numbers of actors/interactions/attributes that are deceptive/erroneous: for 
example, false information in surveys, data intentionally misrepresented by members of the 
group, misclassified memberships or events (e.g., errors in text entity extraction from open 
source data or bias in Subject-Matter Expert’s (SME) input). 

As a result, the true state of the power 
balance is not known (Figure 3). Instead, the 
obtained observed state of PBN is obtained, 
which would not have a perfect match with 
the true state of PBN due to the data gaps 
and classification issues. The objective of 
the environment dynamics tracking 
component is then to recognize the true state 
of the PBN and find the mapping between 
the observed and true PBN states that 
produces the best match. 
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Figure 4: SECURE PBN Inference via Network 

Pattern Matching 

2.3. PBN State Identification via Pattern Matching 
To estimate the state of the environment, SECURE performs the probabilistic network pattern 
matching of the observed data about the state of actors and their interactions in the society against 
a set of hypothetical power balance 
patterns (Figure 4). The outcome of 
network matching is the state of the 
power balance that best 
explains/matches the observations, and 
the forecast of the instability associated 
with the highest-scored mapped 
pattern(s). 

More formally, we define a power 
balance network as an attributed graph 

),,( M
m

M
m

M
m

M
m AEVG = , where for a 

hypothesis m , often called model 
network, M

mV  is a set of societal 
actors/nodes, M

mE  is a set of links, and 
M
mA  is a set of attributes on nodes and 

links. Similarly, the observed interaction 
pattern, often called data network, is defined as ),,( DDDD AEVG = .  

To find the matching between these two networks, we define the mapping of the data network to 
model network, i.e. the mapping of the nodes in the observed data, such as people, groups, 
institutions, states, governments, etc., to the nodes in the hypotheses PBN – the power holders and 
their profiles/roles. The model is based on the NetSTAR formulation of network pattern 
classification originally developed to recognize adversarial organizational networks (Levchuk et 
al., 2006; 2007).  

The mapping between observed and hypothesized networks is represented as a matrix { }m
ijm sS = , 

where 1=m
ijs  if and only if the observed node i  is mapped to a node j  in the hypothesis. This 

mapping is found by maximizing the likelihood that the observed data has been generated by the 
model: ( )SGGPS M

m
D

S
m ,|maxarg= . We can approximate the negative of log-likelihood function 

using the quadratic polynomial objective function (this formulation is an alternative to the 

structural method described in (Levchuk et al. 2006)): ( ) ∑∑ +=
ki

kiki
kimj

mjkimjki cscssSQ ;2
1 , where the 

parameters mjkic ;  and kic  are correspondingly the score of mismatch of the links and the score of 
mismatch of the nodes between the observed and hypothesized PBNs. In our research, we have 
experimented with several definitions of the mismatch coefficients, including Euclidean norm, 
cosine similarity, sigmoid, and logistic measures. 

The problem (1) then becomes a quadratic assignment problem, which can be solved by several 
algorithms. One of the good low-computational complexity algorithms is a graduated assignment 
algorithm developed by Rangarajan, Vuille, and Mjolsness, 1999. This algorithm relaxes the 
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Figure 5: HMM-based Society Dynamics 

integrality constraint on the objective function and iteratively computes the continuous mapping 
approximation matrix which gradually converges to a 0-1 solution. 

2.4. Identification of Environment Dynamics and Temporal State Tracking 
The dynamics of an environment can be represented as stochastic evolution of power balance 
networks over time. This evolution corresponds to changes in the PBN pattern, where a PBN 
instance represents the current state of the environment. The same environment dynamic may 
result in different sequences of PBNs due to uncertainties in the actions and interactions of 
members of the society. This allows accounting for the diversity of the possible states of the 
environment and enables predictions of instability that are robust to normal deviations of 
population behavior and uncertainties in the environment. Different environment dynamics will 
result in sequences of PBNs that significantly differ from one another. In addition to deviations in 
environment state, another important challenge is that the knowledge of an environment will 
always be incomplete. As a result, we need to consider that the state of the environment is a 
process that is only partially observable over time. 

To represent the environment dynamics, we use the Hidden Markov Model (HMM) formalism. We 
chose to use HMMs because they constitute a principled method for modeling partially observed 
stochastic processes that have temporal structure. Each HMM can be viewed as a detailed, 
stochastic time–evolution of a particular system. An HMM can sequentially process new 
information (a window of data) each time an observed event occurs. The window of observations 
could contain a single or a batch of observations and activities to improve the efficiency of a 
solution. The premise behind an HMM is that the true underlying process (defined as a Markov 
chain representing the evolution of the activities as a function of time) is not directly observable 
(hidden), yet it can still be probabilistically inferred through another set of stochastic processes 
(observed events about interactions in the society, for example). In order to account for specific 
decision points and control in the environment, this model can also be extended to Partially 
Observable Markov Decision Processes (POMDP). 

A single HMM indicates a certain hypothesis 
about the society dynamics --- the evolution of 
environment states that can be indicative of a 
pattern or precursors to instability. HMMs can 
be constructed by SMEs or learned from data 
about environment changes in the past. Figure 5 
shows a typical HMM. The black colored 
circles represent true states of the environment 
(the shaded area). This true process is a 
“hidden” environment dynamic with series of 
true state transactions describing the evolution 
of a particular environment. This true “hidden 
pattern” is observed through a noisy process 
represented by a series of observed events (the white rectangle in Figure 5). Our objective here is 
to detect hidden “true” societal evolution dynamic and its hidden state evolution which is a 
sequence of activity network states (shown inside black circles) via the observed process (white 
circles).  We can infer the existence of a true pattern based upon a set of observations as shown in 
Figure 4 because HMM states are statistically related to a noisy observation process. Each state of 
the HMM corresponds to a true state of PBN, while each observation state is the observed state of 
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PBN – actors in the society, their attributes, actions and interactions. An HMM is defined using 
three parameters: the prior probability of a true state of a PBN ( )i

M
mi xG =Ρ= ]0[π  (where 

{ }Nixi ,...,1, =  is a set of feasible PBN states and brackets in the definition of the PBN state 
indicate the time at which the state is considered), the transition probability of moving from one 
PBN state to another ( )i

M
mj

M
mij xtGxtGa ==+Ρ= ][|]1[ , and the probability of observing a PBN 

state given a true state. The observation probability does not have to be specified in advance, but 
can be calculated as the observations are received. We will calculate observation probability as a 
likelihood score from the pattern matching step described in the previous section: 

( ) ( )SxGoGPxtGotGPkb i
M
mk

D

S
i

M
mk

D
i ,|maxarg][|][)( ==≅=== . 

In the context of predicting and preventing societal instability, we will use HMMs to address the 
following problems: 

• Problem 1 – Identifying the environment dynamics: There are multiple HMM 
representations for different types of environment evolutions, some of which indicate 
various levels of instability. HMMs allow finding the model of societal evolution dynamics 
that best explains observations by maximizing the likelihood probability ( )λ|OΡ , where 

{ }TooO ,...,1=  is a sequence of observed PBN states and λ  is a HMM. The maximization 
is then achieved by using a forward-backward algorithm (Rabiner, 1989), where the 
forward algorithm is used to update the likelihood scores for all HMMs over time. 

• Problem 2 – Recognizing PBN evolution: Often, we are interested in finding how the state 
of an environment has been changing over time, i.e. the most probable sequence of states 
that resulted in the observations obtained. We can do this by using HMMs to find the 
sequence of states { } { }NixqqqQ iT ,...,1,,...,, 21 =⊂=  that maximizes the likelihood 
probability ( )λ|,OQΡ . This can be achieved efficiently using a Viterbi algorithm (Rabiner, 
1989). 

• Problem 3 – Prediction of the future state of a society: To develop effective preventive 
policies before a potentially avoidable crisis develops we need to anticipate the future states 
of the environment that can cause instability. Using HMMs, we can calculate the likelihood 
of an environment to be in a specific state i

M
m xTG =][  at some future time T  given the 

observations up until time t . This can be obtained by finding ( )λ|,...,,,][ 21 ti
M
m oooxTG =Ρ  

for each state is  as a score of attainability for the state.  
• Problem 4 – Learning the model of environment dynamics: When historic data about 

environment is available, we can find the parameters of HMM models to represent the 
corresponding state dynamics of the society. This amounts to finding the state transition 
structure and probabilities for model { }iiij kba πλ ),(,=  that maximizes the likelihood 
probability ( )λ|OΡ , and can be achieved using Expectation-Maximization and other 
related algorithms (Cappe, Moulines, Ryden, 2005). 

2.5. Control of Environment Dynamics 
To develop Courses of Action (COAs) that can achieve end-state regional stability objectives in 
near real-time, we must deal with the presence of very high uncertainty in the data. That is, where 
no single reliable prediction about the environment and the situation can be obtained and instead 
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Figure 6: The POMDP Model and Environment Controller 

multiple possibilities are equally likely. In this vein, two types of control actions are possible: in 
one case, we can design preventive actions that seek to change the environment towards a desired 
state while being robust to the uncertainty in current forecasts about the environment; in the other 
case, we can design investigative actions that improve our knowledge of the environment to 
enable better control of the environment in the future. Preventive actions need to account for the 
risks associated with potentially undesired consequences that can result from uncertainty in the 
current environmental state predictions and action outcomes. 

Regional control to achieve stability objectives can be modeled using Partially Observable Markov 
Decision Process (POMDP). A POMDP model adds the concept of actions and state rewards to the 
HMM (Figure 6). Actions affect the state transition probabilities, so we redefine the 
environment/PBN state transition probabilities as dependent on the action ][ta  taken at the current 
time: ( )][,][|]1[ taxtGxtG i

M
mj

M
m ==+Ρ . A reward can be positive or negative; it is positive for 

stable states and negative for states where conflicts exist. Rewards can also incorporate the cost of 
conducting preventive actions. For simplicity, we assume that the environment has finite number 
of states and the control options 
are finite as well. All the 
derivations extend to the case of 
infinite state space representations 
mutatis mutandis. 

If the state of the environment is 
fully observable (that is, for each 
environment state ix  there is an 
observation ko  and ( ) 1| =ik xoP ), 
then the problem simplifies to a 
Markov Decision Process (MDP). 
The MDP solution is significantly 
easier to obtain, with algorithms 
running in time )|(| 2NO  per 
iteration or )|(| 3NO  for a closed-
form solution (Bellman, 1957). 
The POMDP solution is 
significantly more complex, and 
the problem of finding optimal 
policies is PSPACE-complete (Papadimitriou and Tsitsiklis, 1987). There exist two main classes of 
approximate algorithms for POMDP: value-function methods that seek to approximate the value of 
belief states – probability distributions over the environment states (Hauskrecht, 2000), and policy-
based methods that search for a good policy within some restricted class of policies. The approach 
we undertake in SECURE system belongs to the second class due, in large part, to the large 
number of possible states of the environment and the intractability of efficiently storing the 
continuous belief state distributions. 

SECURE identifies the preventive action policy using a finite state environment controller (Figure 
6). This setup allows us to trade-off optimality with complexity and to train the controller over 
time. As the new observation Oo∈  is received, the controller adapts using a parameterized 
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stochastic function ),,|( ogh φω  equal to the probability of moving the controller from state Ω∈g  
to state Ω∈h , where φ  is a set of parameters, and |}|,...,1{ Ω=Ω  is the set of internal-states of 
the SECURE stochastic controller. The plan for courses of action is defined via a stochastic 
parameterized policy ),,|( oga θµ  equal to the probability of taking action Aa∈  given 
observation Oo∈ , Ω∈g  is the state of the SECURE controller, and θ  is the set of parameters. 
To optimize the COA, we need to find the parameters φ  and θ  that would optimize a state 

stability benefit expressed as the long-term average reward: ⎥
⎦

⎤
⎢
⎣

⎡= ∑
=

∞→

T

t
tT

irE
T 0

, )(1lim),( θφθφη , where 

[ ]⋅θφ ,E  is the expectation over all possible environment-controller state trajectories 
{ }),(),...,,( 00 TT gigi  when the controller’s parameters are φ  and θ . 

The most simple and least complex solution assumes the controller to have a single state, in which 
case the action selection function ),|( oa θµ  is a purely reactive policy. This policy can be trained 
from previously monitored and analyzed situations for the environment of interest, but it then 
chooses the control actions based only on the current observations, disregarding the recent history 
of environment states and control actions. In the presence of observation noise, such purely 
reactive policies are severely suboptimal. Instead, to achieve better conflict prevention and to steer 
the environment to a desired state (or to prevent it from moving into an undesired state), the 
decision model must remember the features of the history. For example, if the current observation 
is a political rally, this observation alone cannot tell the model what the true situation in the region 
of interest is and whether conflicts between the groups and members of the society can occur. 
Instead, knowing the causes of the rally, the position of the participants in the society, and the 
strengths of the political system would provide a better understanding of the societal dynamics, 
prediction of possible futures, and identification of actions that could be used to control a fragile 
situation. 

A more efficient approach would be to store all the history of observations and actions 
{ }),(),...,,(),,( 1100 TTT aoaoaoH =  as the state in the controller (e.g., utile distinction trees 

(McCallum, 1996) and prediction suffix trees (Ron et al., 1994)). However, this will require the 
amount of memory to represent policies to grow exponentially with the number of events 
(observations and actions). While such models are intractable in situations that involve a large 
number of temporal observations-actions, simpler approaches exist that can code the state 
representations more efficiently. 

The POMDP solution can maintain a state space in the form of beliefs about the true environment 
states. These beliefs are probability distributions over the environment states and provide sufficient 
statistics to act optimally. Even though the set of belief states is infinite, the structure of the 
POMDP problem allows the efficient clustering of all beliefs into a limited set of states, and 
several popular algorithms have been developed for finding the value-function using value 
iteration (Sondik, 1971; Kaelbling et al., 1996; Cassandra, 1998). However, when the number of 
environment states is very large, finding an optimal solution and representation of the exact value-
function over belief states is computationally prohibitive. Only problems with tens to hundreds of 
states can be solved using these approaches. The optimal solution was proven to be PSPACE-
complete, and as a result, researchers have recently looked at new methods that restrict the set of 
states that the POMDP controller can have (Sutton et al., 2000; Poupart et al., 2001; Aberdeen and 
Baxter, 2002). One such solution using an internal-state policy-gradient algorithm (Aberdeen, 
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2003) was shown to solve the problem with tens of thousands of possible environment states in 
reasonable time (30 minutes). This is a solution used in SECURE system to find control actions. 

2.6. The SECURE Investigation Model 
The investigative actions can also be incorporated into the POMDP model. However, this would 
increase its complexity significantly, making the solution intractable when the number of 
intelligence collection actions and environment states is large. Instead, we can decouple the 
environment control into investigation and prevention models and conduct investigative activities 
when certain conditions in the prevention model are not met. The investigative policy will then 
define the information collection or probing action to find the information element (feature) of the 
environment (e.g., adversarial organization, intent, plans, materials flow, individual actor profiles, 
etc.) that is the most relevant or critical for predictions at the current time. 

At each time step, we can calculate the likelihood distribution of the beliefs of a subset of 
environment states that are most likely. We can do this by looking at the environment-controller 
state ),( gi  as a state of the hidden network and using the Hidden Markov Model forward 
algorithms to estimate the forward probabilities for each state, given previous observations. We 
will then select the most likely subset of states at every iteration of the forward algorithm to reduce 
the complexity of the solution. Let’s denote the probability of being in state Ν∈i  at the current 
time as )(ipt . To distinguish the states and determine the information collection and probing 
actions, we define the vector of features },...,{ 1

i
N

ii ςςς =  for each feasible state of the environment 
i . For simplicity of notation, we can assume that each feature i

fς  can be collected using some 

action, and that the observation fξ  will be obtained with the probability 

)|()|( ςςξξςξ ==Ρ= i
fffp . The actions to collect the feature information can involve both 

types of investigative actions described above. For the purposes of the mathematical formulation, 
we ignore the differences between passive information collection and probing, but we note that the 
main differences in real-world settings would involve the probability of collecting correct 
intelligence, cost of the actions, and the action specifics. 

Without loss of generality, we assume that all environment states are among the current potentials. 
We use the entropy as a score of confidence in current predictions, as it characterizes “how much 
uncertainty is there in predicting the true state of the environment given the data already 
collected?”. When the entropy is high (i.e., there is a high uncertainty that the current predictions 
can achieve a correct result, so ∑−=

i
ttt ipipH )(log)(  is close to ||log Ν ), the likelihood 

estimates of the environment state predictions are similar. If these states carry significantly 
different projections in terms of planned preventive actions, i.e. the best policies for each state are 
significantly different and none is satisfactory for all states, we cannot rely with confidence on the 
policy derived from the current state prediction.  Since significant uncertainty in predictions is 
often due to missing data, we can instead attempt to identify the features that are critical to 
prediction, so that the collection of these features would achieve the largest reduction in the 
prediction’s ambiguity. 

First, we perform feature extraction by selecting the subset of all features },...,1{ NF ⊂ , where for 
each selected feature Ff ∈  there exist at least two states ji,  such that j

f
i
f ςς ≠ . Second, we order 

these features to achieve the most distinguishability among state predictions while satisfying 
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Figure 7: Example of an Investigative Action Plan 

resource constraints. The measure of the benefit for conducting the investigative action for feature 
Ff ∈  is then the information gain: 
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Finally, we can construct the sequence of investigative actions by defining a decision tree (Figure 
7), where each internal node corresponds to the collection action (probe), and the links out of the 
nodes correspond to the action outcomes (collected information). The leaf nodes of the collection 
tree correspond to the environment states or groups of states. In the latter case, the leaf node is a 
belief about being in each of the states of the 
set, and we can compute the probability of 
each of those states. 

The probing plan tree can be constructed 
using several approaches. One of the 
simplest algorithms computationally, selects 
the probes greedily based on the maximum 
reduction in the entropy. Another approach 
can consider the outcomes of the probes in 
the future, so that the policy that maximizes 
the long-term reduction in the entropy is 
used. We can use a combination of the roll-
out and greedy methods to design such a 
probing action tree. 

Execution of the probing plan is 
accomplished by following the decision tree 
and the outcomes of the investigative 
actions. Each decision to collect the data splits the set of current hypotheses (environment states) 
into two, and results in a reduction in the entropy (or increased information gain).  

3. Generation of Hypothetical Future Environment Dynamics 
The knowledge of potential interaction networks and their dynamics indicative of impending 
conflict relies on ontology of power balance patterns. This ontology can be constructed and 
updated over time using agent-based simulations of the socio-cultural dynamics for a geographic 
region of interest. In these simulations, the support and membership for different identity groups is 
driven by changes in opinions and attitudes. These changes are the result of events in the 
environment and the exchange of information across the agents’ social networks. The model, 
called SCIPR (Simulation of Cultural Identities for Prediction of Reactions), is a simulation tool 
that is currently being used to predict the reactions of culturally diverse groups, such as insurgents, 
political factions, or civilian populations in response to U.S.-influenced events or adversarial 
actions (Figure 8). By modeling responses and behaviors to “what-if” scenarios such as 
reconstruction or military intervention, SCIPR helps to gauge the effects of alternative courses of 
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Figure 8: SCIPR Overview 

action on measures of interest 
(attitudes and opinions, such as 
support for the government or 
militant groups) and membership of 
groups (such as political parties and 
activist groups).  

SCIPR represents the changes in 
identities and opinions via social 
interactions and regional events. 
SCIPR is used in SECURE to 
generate the set of possible futures 
and construct the dynamic evolution 
of the state of power balance 
networks. Each future is generated using a set of parameters and distributions of the attributes and 
the relationships among the groups in the society. As this data is only partially available, we can 
apply the orthogonal array or importance sampling methods to determine a subset of attributes 
(with instantiations for the missing data) that would provide the most comprehensive set of 
possible futures/PBN networks. 

3.1 Population Representation 
SCIPR produces these futures by first generating a representative population from census, polling, 
ethnographic, and SME data on the following categories: 

• Primary Identity Groups: Gender, religion, political affiliation, tribe, etc. 
o Identities: Male/Female, Catholic/Protestant/Muslim, Republican/Democrat, etc. 
o Identity relationships: Given an identity (male), what is the distribution of identities 

in another group (political affiliation) 
o Identity connectivity: Given an identity group (religion) what is the average 

percentage of contacts that are of the same identity.  
• Regions: Country(s), states, counties, cities, etc. 

o Region details: Population, identity composition, connectivity distances, media, etc. 
• Opinions and Attitudes: Support for government, stability, foreign presence, etc. 

o Identity to Opinion Ranges: Given and identity (Democrat) distributions of attitudes 
(for/against or believe/don’t believe) on a given opinion (stability) 

• Events: Courses of action, hostile events, natural events, etc. 
o Event reactions: Given an event (attack), an identity (Male), and opinion (stability), 

what is the expected the reaction (decrease/increase in belief) 

This data is then used to create agents with the following attributes: 
• Identities: Male, Catholic, Democrat, etc. 
• Connection network: Number of contacts, distance range and identity diversity of contacts, 

access to phone and media, etc. 
• Region: Home state, county, city, etc. 
• Initial Opinions and Attitudes: Support government, believe there is stability, don’t support 

foreign presence, etc. 
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Figure 9: SCIPR Population Generation Example 

An example of how an ideally 
structured population dataset is used to 
create an agent population is shown in 
Figure 9. In this example the 
population of Northern Ireland is 
distributed by district. For each 
district, the number of Catholics and 
Protestants is known. After some 
analysis it is clear that given that a 
person is Catholic or Protestant he or 
she is likely to be one of only a subset 
of all the political parties (for 
Protestant it is Loyalist or Unionist 
parties, for Catholic it is Nationalist or 
Republican parties). In addition, for all regions it was estimated that 40% of a person’s contacts 
would be of the same religion. Finally given a person’s political affiliation, an initial stance on his 
or her opinion toward having a united Ireland can be derived. 

3.2 Social Dynamics 
The generated population is then simulated over time allowing agents to exchange opinions over 
their social networks and to respond to events that occur within their region. The theoretical basis 
for SCIPR’s algorithms controlling the responses to opinion exchanges and events comes from the 
integration of social identity theory and theories of social influence. Social identity theory was 
originally developed by Henri Tajfel and John Turner (Tajfel, 1978; Tajfel & Turner, 1979). Many 
other scholars have continued to develop and test the hypotheses of social identity theory, notably 
Dominic Abrams and Michael Hogg (2004). Currently, social identity theory is the most well-
developed and well-tested theory of cultural change. Social identity theory is highly compatible 
with theories of social influence, most notably Friedkin’s network-oriented structural theory of 
social influence (Friedkin, 1999, Salzarulo, 2006) as well as other classic research into aspects of 
social influence such as conformity (Asch, 1955) and group conflict (Sherif et al, 1988; Brown, 
2000). Below is a description of all the most important causal mechanisms in social identity theory 
and theories of social influence.  

The primary variables related to social identity theory (Tajfel & Turner, 1979) are identity 
(sometimes called membership) and opinion (sometimes called attitude). The most relevant 
definitions of the four words are shown in Table 1, taken from the Merriam-Webster Online 
Dictionary (2006). While the definitions of identity and membership are very similar as are the 
definitions of opinion and attitude, the terms identity and opinion will be largely preferred because 
they are more commonly used in social identity and social influence literature. 

Table 1. Important definitions. 
Identity: the relation established by psychological identification 
Membership: the state or status of being a member 
Opinion: a view judgment, or appraisal formed in the mind about a particular matter 
Attitude: a mental position with regard to a fact or state; a feeling or emotion toward a fact or state 

In social identity theory, people may have multiple identities to which they subscribe at any one 
time. Minimally, a person has a unique individual identity that determines opinions, perceptions, 
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and actions. In addition, almost all people identify themselves as members of groups. Categories of 
groups may be at any level of analysis and tend to be hierarchical. For example, some groups may 
be: gender, age, race, religion, political view, political affiliation, university, hair-combing style, 
MBTI personality type, etc… Depending on the group and the person, a person may hold multiple 
identities with regard to the same category. For example someone may consider himself as both a 
Republican and a Democrat. Social identity theory is concerned most with this perception of 
identity and the actions that arise from this perception, rather than institutional membership in a 
group (being a registered member of the Republican Party or Democratic Party). 

As noted above the second concept of importance in social identity theory is opinion. The most 
useful variables to describe opinion come from models of opinion dynamics (Deffuant, 2006; 
Deffuant et al, 2002; Hegselmann & Krause, 2002; Salzarulo, 2006). These variables are opinion 
and certainty. Opinion is the name of the feeling/judgment about something in the world. Certainty 
is the strength with which the opinion is held. 

Social identity theory (Tajfel & Turner, 1979; Hogg & Grieve, 1999; Hogg et al, 2006) and 
theories of social influence (Asch, 1955; Festinger, 1954; Friedkin, 1999; Milgram, 1974) suggest 
three main reasons that people change their identities and opinions: improvement of self esteem, 
increase of certainty (decrease of uncertainty) about the world, and conformity to social pressure. 
The self esteem motivation (Tajfel & Turner, 1979) says that a person can improve his/her self 
esteem by identifying with a group and thinking about how his/her group is good in some way 
(better than other groups, improving over time, better than some benchmark, etc…). A person can 
improve his/her certainty about the world by identifying with groups and taking on their opinions 
(Hogg & Grieve, 1999; Hogg et al, 2006) and by communicating with other people to find out their 
opinions (Festinger, 1954). A person can also be motivated by the desire to belong, the fear of 
physical punishment, and the fear of social stigma to change identities and attitudes to conform to 
the opinions of other people (Asch, 1955; Milgram, 1974). 

The implementations of these social dynamics in SCIPR are used to assess how agents change 
their opinions and how they determine their cognitive membership to any of the available identities 
based on initial conditions and events in the environment (including actions by interested sides). 
The simulations therefore provide forecasts of how different COAs might lead to desired or 
undesired changes in opinions of interest and material support for hostile identities. 

4. Conclusions and Future Research 
The concept of controlling instability using integration of pattern classification, dual control under 
uncertainty, and social dynamics simulation technologies promises to result in an effective 
decision support system for the strategic and operational planners. The SECURE model described 
in this paper has component technologies that have been validated in previous studies and achieved 
high performance ratings. We are currently working on obtaining a data set and prototyping 
component integration for the full-range SECURE system validation study. In the following, we 
describe the types data useful for secure system, propose types of analyses that SECURE system 
will be used for, and outline a design for SECURE technology validation. This constitutes our 
current research in the instability forecasting and prevention domain. 

4.1. Example of the Real-world Datasets for Validating the SECURE System 
Performing modeling and simulation research on regional instability requires robust and 
comprehensive data. However, these data are difficult to find and often inappropriate for the 
development of robust models. Furthermore, relying on less-than-ideal data can undermine the 
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success of modeling and simulation projects. As the result, we decided to leverage four datasets 
that complement each other to develop valuable output and validate SECURE models.  

This data covers the events in the Balkans from April 1989 through July 2003, and most of it is 
publicly available. We propose to use Balkans data sets to validate SECURE-based conflict 
prevention technology for the following reasons: 

• Availability and comprehensiveness: The events in the Balkans have been well covered 
by the media, and there is a large body of data due to the conflict’s duration. As a result, 
our data is unclassified, and most of it has been collected from open sources.  

• After-the-fact analysis: The conflict in former Yugoslavia has been well researched, with 
many methods and statistical analysis applied to predict various events of interest and 
analyze the hypotheses about the conflict. In addition, the researchers were able to develop 
data sets about various socio-cultural-economic variables in this region, and understand the 
causes of some of the conflicts in various case studies. 

• Varied conflict prevention actions: Various actors have been engaged in mediation and 
prevention of the conflict, including U.S., U.N., E.U., Russia, etc. Consequently, the 
ground truth is available on the preventive and reactive actions performed by the parties 
involved, and these actions can be used in analyzing the ability of SECURE to propose 
similar or better actions. 

We propose the use of four data sets for our analysis. The first set is event-based data generated by 
Drs. Gerner and Schrodt using CAMEO (Conflict and Mediation Event Observations) coding 
scheme from open sources, such as the Reuters News Feeds. The Balkans data set3 contains events 
for the major actors (including ethnic groups) involved in conflicts in the former Yugoslavia from 
April 1989 through July 2003. The coding scheme used to extract the event data from open text 
sources has been specifically optimized for the study of mediation, and contains a number of 
tertiary sub-categories specific to third-party mediation in international and inter-ethnic conflict. 
We consider mediation as one of the conflict prevention-related actions, as it is a specific type of 
political activity that highlights the role of a third party in facilitating a negotiating process, while 
not imposing any solution on the parties involved. In addition to the dataset, we will use its 
analysis (Gerner and Schrodt, 2002) 4 that studied the impact of mediation on the level of 
hostilities in the region. These results were obtained by analyzing post-mediation events. We will 
compare these results with predictions of the intervention and mediation actions that the SECURE 
tool will produce. 

The second data source will be a collection of dyadic events generated by Dr. King and VRA5. The 
data available here includes almost 10 million individual events, each coded to the exact day they 
occur or become known. Each event is summarized in the data as “Actor A does something to 
Actor B”.  Actors A and B record about 450 entities – both countries and within-country groups. 
The statements of “does something to” are coded in ontology of about 200 types of actions. The 
data were coded by computer from millions of Reuters news reports. We will use a portion of this 
data that relates to the Balkans conflict; this would allow us to have a richer of the state of the 
environment in former Yugoslavia, especially interactions between different actors (including 
ethnic groups) in the region, and correspondingly increase the environment state prediction 

                                                 
3 Available at http://web.ku.edu/keds/data.dir/cameo.html  
4 http://web.ku.edu/keds/papers.dir/gerner02.pdf  
5 http://gking.harvard.edu/events/  
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accuracy. This data also contains information on intervention actions other than mediation, and 
will be helpful in comparing the ability of SECURE to correctly assess the influence of an action. 

The third data source will be from the collection of case-studies conducted by CDA Collaborative 
Learning Projects6. In one of their analysis reports, CDA studied how certain ethnic communities 
in Bosnia were able to exempt themselves from the violence, particularly ethnic cleansing, that 
surrounded them, in an effort to identify patterns and to draw lessons about conflict prevention. 
The reactions of the local communities and the actions they perform to control the crises are 
essential in the analysis of preventive actions and their impact. In addition to providing data about 
their coping mechanisms, these case studies provide rich contextual information about the actors of 
interest in the environment we will analyze. This information, used as attributes of the 
environment actors, will improve our ability to predict the current state of the environment, but can 
also be used to analyze the effectiveness of probing actions, where we can assume that this data is 
not available to the system a priori and can only be obtained if a specific intelligence collection 
activity is performed.  

The fourth data source is from the ongoing Flashpoints project led by the Center for Emerging 
Threats and Opportunities (CETO), Marine Corps Warfighting Lab (MCWL), in Quantico, VA. 
Annual Flashpoints reports identify those nations and regions most likely to experience conflicts in 
the future that may result in US military intervention. CETO, with assistance from the Potomac 
Institute for Policy Studies, developed Flashpoints as an index calculated with factors and 
indicators correlated with instability. The 11 factors are associated with four to six indicators that 
are derived from existing open-source datasets. Flashpoints ranks 158 countries by their relevant 
indicators and then normalizes the results to allow a ranking from the country most at risk of 
instability to the country least at risk of instability.7 

These four, open source data sources will permit a rigorous and comprehensive test of the 
SECURE model. Furthermore, SECURE’s flexibility permits the inclusion of alternative or 
complementary data sources, should they become available. 

4.2. Types of Analysis Produced by the SECURE System 
The SECURE system enables the conduct of the following analyses: 

(1) Learning/Causality: Discover Power Balance Patterns Indicating Conflict Tendencies. 
SECURE finds which power balance/interaction networks correspond to what incidents 
using historic data, and infers the causes of the conflicts by looking at the socio-economic 
power imbalance among specific groups in PBN. 

(2) Inference: Discover the power balance that most explains observed data. Given uncertain 
observations, the SECURE finds the true state of the power balance /interaction patterns. 

(3) Forecasting: Track balance dynamics and predict its evolution. SECURE forecasts the 
most likely evolution of the power balance dynamics over time.  

(4) Prevention: Act to influence and prevent conflicts.  SECURE finds the cost-effective 
action strategies to prevent the conflicts and state failures by (i) driving the power balance 
to desired state; (ii) preventing undesired power balance states; and (iii) collecting the data 
for increased awareness. 

                                                 
6 http://www.cdainc.com/publications/steps_case_studies.php  
7 Rauch, Dale. Center for Emerging Threats and Opportunities, Marine Corps Warfighting Lab. Telephone Interview. 
28 Jan 2008. 
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Figure 10: SECURE Validation Experiment Setup 

4.3. The Design of the SECURE System Validation Study 
In our current research, we are working to validate the SECURE system in three ways against real-
world data set: 

(a) Accuracy of predicting the effects of specific interventions: SECURE system will be 
used to forecast the impact of intervention actions (e.g., 3-rd party mediation, military 
action, economic sanctions, etc.) that have been taken in the past. SECURE will only use 
previous event data to make its predictions about the next state of the environment. These 
forecasts will then be compared against the real-world event data. 

(b) Effectiveness of probing and info collection actions: SECURE system will be used to 
generate probing and info collection actions for the data that will be missing from the main 
data set (e.g., CDA’s data will not be included in the main data set). We will then analyze 
to see if these probing and passive info collection actions lead to critical info events. 

(c) Effectiveness in designed alternative preventive actions: SECURE will be used to 
generate control actions based on the POMDP controller. These actions will oftentimes be 
different from the actions that occurred in the real-world. Hence, we would need an 
impartial assessment of the effectiveness of these actions. We propose to conduct an 
experiment to compare the effectiveness of actions produced by SECURE and by a SME 
team. All the data on historic environmental dynamics, as well as the intervention policies 
undertaken in the real-world, will be available to the SME team, which could select the 
action taken earlier or one of their own. The preventive actions generated by SECURE and 
the SME team will then be compared blindly by an expert strategic decision making team 
(Figure 10). 
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