
13th ICCRTS-2008 “C2 for Complex Endeavors” 

1 

 

Title:  Identification of Adversarial Activities: Profiling Latent Uses of Facilities 
from Structural Data and Real-time Intelligence 
 
Suggested Topics:   

Topic 2: Networks and Networking  

Topic 7: Network-Centric Experimentation and Analysis 

Topic 3: Modeling and Simulation  
 

Authors: 

Darby E. Grande, Ph.D. 

Georgiy M. Levchuk, Ph.D. 

E. Webb Stacy, Ph.D. 

Aptima Inc.,  

12 Gill Street, Suite 1400 

Woburn, MA 01801 

Phone: 781-935-3966x225, x267 

Fax: 781-935-4385 

e-mail: dgrande@aptima.com,  

georgiy@aptima.com, wstacy@aptima.com  

 

Martin Kruger 

Office of Naval Research  

975 N Randolph Street, Suite 1425 

Arlington, VA 22203-1995 

Phone: 703.696.5349 

e-mail: Martin_kruger@onr.navy.mil 

Correspondence: 

   Darby E. Grande 

Aptima Inc.  

12 Gill Street, Suite 1400 

Woburn, MA 01801 

Phone: 781-935-3966x225 

Fax: 781-935-4385 

e-mail: dgrande@aptima.com 

mailto:dgrande@aptima.com,
mailto:georgiy@aptima.com


13th ICCRTS-2008 “C2 for Complex Endeavors” 

2 

 

Abstract 
Intelligence Preparation of the Battlefield (IPB) provides critical support for military planning and 
decision making.  In both offensive and defensive operations, the IPB process gives a decision maker 
information about the enemy, including potential courses of action, as well as information about the 
environment in which he is working. Physical structures that can support repetitive crimes (such as IED 
supply chains or illegal drug trafficking) provide important information for C2 planning. Activities of 
interest must be situated somewhere, and the physical structures present in any given location change 
slowly. Knowledge of those structures and their capabilities therefore provide an effective lens through 
which to view activities, and therefore an effective means for attacking the problem.   

In this paper we discuss the Facility Identification via Networks with Adaptive Links (FINAL) 
technology that Aptima is developing to find facilities associated with adversarial actions and discover 
the intent for their use.  Based on algorithms that perform probabilistic network pattern identification 
from partial knowledge about network nodes, links, and their attributes, FINAL profiles the use of 
facilities by combining networks of data describing actual conditions and more abstract network models 
of repetitive crimes. 

Introduction 
A drug cartel offloads its cargo from a merchant ship to an unoccupied warehouse in Boston.  A gun 
running organization makes a large transaction in an old farmhouse in a sparsely populated area in 
Georgia. An insurgent organization manufactures IEDs in a small house in northeastern Iraq. Each of 
these operations has its own “invisible” supply chain. Each link in the supply chain must operate in some 
physical space within some geophysical location, but the supply chains need to stay invisible in order for 
the operations to achieve success.  Identifying, monitoring, and rendering inoperable the physical 
structures required to mount these operations is a promising way to intervene and eventually destroy 
these operations. 

Unfortunately, the collected data contains large information gaps: much of the critical information is not 
collected due to limited sensors and the concealment of activities; the amount of deception increases as 
adversaries learn over time; and the actions of adversarial and neutral groups blend together to prevent 
clear distinctions. In addition, in most cases there is too much information, it is too fragmented, and the 
interrelationships are too complex. Attempts to understand incoming information and to relate it to past 
experience can baffle even seasoned experts. In previous research for DARPA, Aptima tackled an 
analogous problem—recognizing the roles of and relationships among individual actors and their 
resources to predict the structure and intent of networked adversaries in order to develop targeted 
counteractions against them (Levchuk and Chopra, 2005). In empirical studies, our automated network 
identification technology, called NetSTAR (Network, Structure, Activities, and Roles), outperformed 
unaided human analysts in accuracy of identification and was able to handle significantly larger levels of 
uncertainty and data complexity (Levchuk et al., 2006; Levchuk et al., 2007). 

Sponsored initially by a Phase I SBIR award from the Office of Naval Research, Aptima is developing 
the Facility Identification via Networks with Adaptive Links (FINAL) tool to support human 
analysts in finding facilities associated with adversarial actions and discovering the intent for their use. 
The framework is based on the NetSTAR technology, which performs probabilistic network pattern 
identification based on partial knowledge about network nodes, links and their attributes. To identify the 
facilities used for adversarial activities, FINAL performs probabilistic matching of observed facility 
networks against hypotheses of action patterns performed by adversaries. The facility or data network 
is a labeled graph of facilities, their links, and node/link attributes drawn from available structural and 
operational information about buildings, roads connecting them, suspected and observed criminal 
activities in the area, and other concrete intelligence information. The activity or model network 
patterns form the hypothesis set; they are networks created with the help of subject matter experts and/or 
captured from histories of repetitive adversarial actions. The matching of a hypothesized model network 
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pattern against the facilities of observed data network corresponds to node-to-node activity-to-facility 
mapping, thus identifying the intended past, current, or future use of the facilities.  

 
Figure 1: Components and Workflow of FINAL Technology 

The matching is performed using probabilistic attributed-structural pattern consistency scoring based on 
maximum likelihood or maximum a-posteriori estimation, so that the hypothesized model network patterns 
which best explain (or best match) the observed facilities of the data networks score the highest. These 
patterns are used to assess the true uses of facilities. Since this approach uses probabilistic pattern matching 
and is not constrained to perfect matches, our model is robust to uncertainty in the data and allows 
discovery of facility groupings for common activity involvement and the association of facilities with 
multiple actions. In addition, the hypothesis testing approach is well-suited to guide additional intelligence 
collection activities to maximize the information gain (uncertainty reduction). 

As shown in Figure 1, the workflow of the FINAL technology begins with the network pattern matching, 
results in a threat prediction map from which information from confident, or highly-scoring, matches may 
be used as inputs for disruption planning, and matches with lower confidence may be used to develop 
intelligence collection plans based on FINAL’s knowledge of the missing discriminatory information.  In 
the first phase of this work, we have focused on developing the facility prediction algorithms and a 
simulation environment in which to test them.  In future phases, we plan to advance the sophistication of 
our input (data) treatment as well as the interactive visualization capabilities for the results. 

In the sections below, we further discuss the model and data network foundations of FINAL, introduce our 
solution approach, present results from initial use case study, and describe our intended future directions 
and extensions for this work. 
Data and Model Networks 
The key components of FINAL are its data and model networks.  As shown in Figure 2, these networks 
are the inputs to the pattern-matching algorithms. We represent the observations in the form of a 
network, called the data network, where each node corresponds to a specific facility, and the links 
correspond to the relationships among the facilities. Nodes and links are quantitatively defined through 
their sets of attributes or features indicating: 

• the capabilities of the facilities and their connecting roads; and 

• the uses of the facilities and their connecting roads.  
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Figure 2: Data and Model Networks 

Capabilities influence the potential uses of the facilities and are referred to as enablers of criminal acts 
in the criminology literature (Brantingham & Brantingham, 1995). For example, the size of a building, 
the number of floors, the number and size of building entrances, and the height of the ceiling may 
indicate whether the building can be used as a school, an automobile repair shop, a weapons storage 
facility, or residential quarters. Similarly, a road’s width and pavement quality, the road’s length, and the 
amount of security on the road can be indicators of whether the road can be used to smuggle drugs, 
transport weapons, or deliver disaster relief supplies.  

Previous uses of facilities can forecast potential similar criminal activities; such uses are referred to as 
attractors in criminological science. For example, a facility used to store perishable foods could be used 
effectively to store weapons components. Also, current facility uses by adversaries represent the signals 
about true facility employment, and uses by non-adversarial groups may indicate attractive opportunities 
for criminals to use the facility for their purposes; such data are referred to as criminal activity 
generators. For example, facilities used as schools may be targets for kidnapping and drug trafficking, 
facilities used by local police may be targets for VBIED attacks, and residential buildings may be used 
to store small quantities of weapons because this provides good concealment and discourages direct 
targeting by opposing forces (Brantingham & Brantingham, 1995). 

Accordingly, we construct two types of networks – a capability network and a facility use network, - and 
overlay them to form a facility data network (shown in Figure 3). There are two sources of data that can 
be used to construct capability and use networks: static data sources and dynamic data sources. Static 
sources refer to the data elements available a priori about the area of interest. These include satellite 
imagery already collected, information about the setup of the security checkpoints and sensor locations, 
maps of the area and intended facility use data (locations of hospitals, schools, police stations, markets, 
shops, etc.). Static data sources may also include historic information about previous facility uses. Some 
of these data may be outdated and need to be updated using more recently collected intelligence. Finally, 
static data sources allow the extraction of structural information about facility networks – geo-spatial 
locations, routes, sizes and other capability features of the man-made structures. 

Dynamic sources refer to data gathered by active intelligence collection missions. These include patrols, 
searches, interrogations and interviews with locals, dynamic UAV imagery, etc. This intelligence can 
capture which facilities are currently in use, who uses them, and for what purposes. This information can 
be used to connect facilities when the same vehicles or people are spotted near them, when documents 
discovered during searches indicate the flow of materials among facilities, and when interviewers point 
to the relationships between people and activities at different facilities. As discussed further below, 
intelligence collection can be guided to enable discovery of missing features critical to improving 
predictions of facility employment (e.g., imagery of the building from another vantage point is needed to 
determine the number of the floors).  

We also define the types of features that describe the facilities, their uses, and the connections among 
them. At present, after initial prototype stage of tool development, we continue to explore available 
sources for these varied data types.  In some cases, we believe that attribute (capability) data are readily 
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available, but an important part of our future research is continuing to explore the technologies that 
could automate the facility feature extraction. For example, both static and dynamic data sources include 
various types of imagery collected from different vantage points and different ranges of the 
electromagnetic spectrum. There are technologies that allow finding what is in the image (shapes of 
buildings, materials of structures, patterns of roads, etc.), but coupling the images with symbolic map 
data can significantly improve the ability to identify the structural (capability) networks. The maps carry 
context for image exploitation and provide relationship-adjacency of buildings, connectivity of roads and 
traversability of waterways. Maps, however, are sometimes outdated, and being able to find the 
differences between existing maps and more recent imagery is necessary for performing map updates 
and may require active intelligence collection. Adding other data sources, such as original construction 
plans, architectural specifications, phone books, etc., will improve our ability to capture diverse 
attributes of a facility network.  

 
Figure 3: Data Network Construction 

The model networks consist of nodes, indicating the functions or activities that adversaries might 
perform, and the necessary links between them. The nodes and links of model networks are associated 
with attributes that can relate them to the nodes and links of the data network, and generally will 
represent concepts from the building-knowledge ontology. Thus, the conceptual basis for both data 
networks and model networks is the same. The nodes of a model network, which are the functions 
performed by adversarial groups using man-made structures, can be associated with functional 
requirements and even with specific facilities and geo-spatial information. For example, a generic 
function of “weapons assembly” can have a definition of capabilities of the facility that can be used to 
perform this function. Then, the links of a model network can represent the activities that tie the facility 
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functions together: for example, the function of weapons assembly would require bomb making 
materials to be transported to the assembly location from their storage location. 

The model networks can represent both (1) patterns of potential adversarial activities, and (2) the patterns of 
specific facilities utilization. In the latter case, the data about ID, location, or a type of facility used to 
perform a function can also be associated with the node of model network.   

Formulation of Facility Use Prediction 

In this section we discuss the algorithms developed to identify the uses of facilities.  Formally, function (or 
activity) pattern is represented as a graph ),,( MMMM AEVG =  – a model network where  is a set of 
function/action nodes,  is a set of links between them, and  is a set of attributes on links and nodes 
( , and  is attributes vector for node  and  is attribute vector for link between nodes 

 and ). Observed data are aggregated to a data network – a graph 
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a set of observed facilities, and  is a set of observed relationships among them, and  is a set of 
attributes on facilities and their connections.  
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We need to discover the mapping from functions to facilities – that is, from the nodes of the model graph 
to nodes of a data graph. This is accomplished by finding an assignment matrix 
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 if model node (activity/function) i  is mapped to data node (facility) 1=ijs j . This mapping means that 
facility j  is used to perform function , and essentially corresponds to how the enemy selects facilities for 
a specific activities in their operations.  

i

We find an assignment matrix  that maximizes the likelihood function S ( )SGGP MD ,|  equal to the 
probability that the observed facilities network (data network) has been generated by the hypothesized 
function network (model network) given the assignment of facilities to functions (mapping between nodes 
of data and model graphs). While direct optimization of the likelihood is infeasible, an approximate solution 
can be obtained. Several approaches have been explored by our team, including:  

(i) matrix norm minimization; 

(ii) quadratic assignment problem; 

(iii) structural consistency measure relaxation; 

(iv) Hidden Markov random fields.  

We began with the matrix norm minimization, implementing the algorithm in a prototype software 
environment to showcase the model capabilities for finding the hostile facilities.  From here we moved to 
solving the quadratic assignment formulation of the problem, as this allows us to better model the errors in 
the data.  In the quadratic assignment formulation, we reduce the problem to  
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where the function  scores the mismatch between the links  in the model and (  in the data 

network and  scores the mismatch between nodes  in the model and i  in the data. 
ijkmc ; ),( mk ), ji
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There are several solutions to the problem [1]. One such solution that achieved a very high accuracy and 
showed allowable complexity has been reported in (Rangarajan, Yuille, and Mjolsness, 1999). The 
algorithm, called graduated assignment, is a mixture of the continuous gradient-based optimization, matrix 
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scaling, and a soft assignment, and this is the solution approach we have employed in the initial prototype 
implementation of FINAL. Graduated assignment algorithm iteratively finds a continuous 
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mapping is then found using soft-max principle from matrix . The ][npki β  is gradually increased, 
resulting in  approaching 0-1 matrix. The graduated assignment algorithm reduces the 
complexity and enables iterative update of the solution with incoming intelligence data. 

][npki

 
Figure 4: Example of Facility Profiling from Action-Facility Mapping 

Upon each application of the mapping algorithms, not only do we obtain the correspondence of tracked 
facilities to specific activities/functions in each hypothesized behavior pattern, but we can also rank-order 
these associations for each hypothesis using values of likelihood function ( )SGGP MD ,| . This function is 
often normalized to prevent scalability issues when the number of feasible observations is very large.  

The attributed network matching algorithm allows performing the following predictions: 

• Outcome 1: Facility utilization profiling. Given a model  of the activity/function pattern that 
needs to be explored and the data about facilities , the algorithm comes up with single or 
multiple mappings S  of the functions to facilities that “best explain” obtained observations (shown 
in Figure 4). The mapping of function to facility indicates the assessment that the function/activity 
can be performed at the facility as a part of the planned activity/function pattern. Each mapping S  
is scored with the likelihood function 

MG

DG

( )SGGP MD ,| . If multiple functions are mapped to a single 
facility, it indicates that a facility is involved in several potentially illegal activities. 
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• Outcome 2: Facility groupings and terrain classification. When multiple facilities are matched to 
the activity pattern, they represent a set of resources, or a supply chain, used by adversaries over 
time. Understanding how these facilities are used and which are the most critical ones will allow for 
better disruption of the criminal activities. When multiple mappings are developed that indicate 
several possible alternative function/action executions (that is, multiple facilities, and not a single 
one, are forecasted to be employed to conduct the activity), this will indicate to the intelligence 
analysts that potentially either all the facilities need to be shut down, or that additional intelligence 
gathering need to take place. 

• Outcome 3: The behavior and abnormalcy identification. The outcome of mapping algorithm can 
also be used to score each model of potential hostile and benign activities. The algorithm can thus 
distinguish which behaviors are happening in the environment of interest – what method of attack is 
ongoing, or whether the normal activity is happening instead of adversarial one. We can use a 
maximum a-posteriori estimation ( )DM GSGP |,  to score each model, where 

( ) ( ) ( )
( )D

MMMMD
DMM Gp

SGpSGGpGSGp ,,||, = . Computation of the ( )
jj MM SGp ,  can be done 

approximately using the frequencies that the model behavior ( ) has been happening in the past 
and the decision about facility employment that adversaries were making ( ). 

jM

jMS

Simulation Environment and Use Case 

In order to test the facility identification algorithms, we have developed a simulation environment for the 
purpose.  This environment and its support of our illustrative use case are described here.   

As an initial prototype implementation for FINAL, we have developed a testbed in which we mimicked 
the RED mission execution using distributed team decision making for task selection and resource 
allocation. The virtual simulation component of the testbed (Figure 5a) was given a selected RED 
mission and actors. Simulation then generated the feasible RED mission execution events – equivalent to 
the true mission plan and mapping of activities to facilities. This information was hidden from FINAL 
predictive component that received the noisy data from the environment as observed by BLUE sensors 
(which were part of the virtual simulation).  

The FINAL prototype (Figure 5b) includes the simulation, prediction, and visualization components. 
Simulation is instantiated with the database containing the scenario setup (all terrain objects, including 
facilities, RED and BLUE actors, their attributes, etc.). It is driven by the behavior generation algorithms 
responsible for selection of tasks and actions for RED and BLUE actors. The behaviors are driven from 
the definition of the mission for RED team which was stored in a separate database. The multiple 
possible missions for RED team also served as the hypotheses/model networks for FINAL network 
mapping predictive algorithm.  Developed visualization components show the virtual environment 
evolution, the state of RED and BLUE organizations (actors status, mission progress, etc.) and the 
predictions generated by FINAL algorithm. 

The FINAL predictive component generates the estimate of the RED’s mission plan and action-facility 
mapping, and this estimate was compared to the simulator’s output as the ground truth. 

To populate the simulation environment for the use-case, we developed a model of adversarial attack 
consisting of the creation and detonation of a dirty bomb in a fairly urban area.  We began by brainstorming 
the steps that might be taken to accomplish such an attack, as well as the facilities and links (roads) that 
might be required.  This initial story of how the attack might be accomplished is shown in Figure 6.   

8 
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Figure 5: FINAL Prototype 
We hypothesized the existence of a RED commander who coordinates hostile activities: conducting 
surveillance at several potential targets, obtaining required materials from a number of different sites, 
coordinating transportation for the materials and the surveillance, assembling the weapon, and executing the 
attack.  These steps require a number of different facility types, as well as connections between them for 
transportation.  One could imagine a number of variations on this set of activities, as well as several 
components of this story working together for benign purposes.  In the future work, we will therefore 
expand the collection of hypothesized function networks to include such variations and “normal” activities. 

The first step in creating an environment with which to test the FINAL algorithms has been to construct the 
facility network.  This is the network of capabilities and uses described above.  For this initial prototype 
testing, we chose the map of a town area to serve as our static data layer.  From this we manually extracted 
the network of facilities and assigned attributes.   

9 
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Figure 6: Use Case Storyline 

During facility network construction, we also created a road network and assigned attributes to the facilities 
and roads. These attributes can be obtained from aerial/satellite imagery (e.g., footprint of the building; the 
roof type; the fact that it is a sport, entertainment, or a parking lot; the surrounding neighborhood; the tree 
density and landscaping properties; etc.), close-up imagery (e.g., wall size and material construction; the 
building height and number of the flows and windows; any visual signs on the building about its use; etc.), 
labeled maps (e.g., original construction information; intended uses; etc.), historic data (e.g., police incident 
reports in or around facility; public records; cultural and ethnic information about the neighborhood; socio-
economic data profile of inhabitants/attendees/neighbors; etc.), and current reports (e.g., spotting of suspect 
people and activities around the building obtained from HUMINT reports or local informants; etc.). In our 
use case, we developed a collection of attributes based on the data schema used in a future potential 
integration site for FINAL. 

To formalize this activity, we have created a list of attributes, list of facilities, and set of action patterns for 
our use case. 

First, we developed a set of attributes using three classes (Figure 7):  

• attributes describing structural capabilities of facilities: these data can be collected from analyzing 
imagery by automated or manual means, using information such as radar scans and intelligence data 
about availability of resources at facilities, etc. 

• attributes describing current events and facility uses: this information is dynamic and can be 
obtained from human collection teams, UAV data feeds, etc. 

• attributes describing previous uses of facilities: this is historic information that could have been 
obtained from the past events in the area of interest. 

These attributes formed the vectors that capture information about facilities and their links (observed 
attributes) and actions and their relationships (ground truth) as shown conceptually in Figure 8.  For 
simplicity of analysis in the current prototype stage, we focused only on two types of attributes – 
capabilities and current events/uses.  

To lay the ground work for algorithm testing, we have modeled 4 types of noise in the data that made the 
observed attribute vectors different from ground truth: 

(1) Event miss: Events about the uses of facilities are captured by BLUE sensors (SIGINT, HUMINT, 
IMINT), and not all such events might be detectable at some facilities. For example: Facility was used to 
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hold a meeting between terrorists, but there was no UAV/patrol at the time in the area. As an outcome, all 
attributes from the missed event are excluded from analysis. 

(2) Attributes miss: Sensors (humans, data processing algorithms, etc.) might miss an attribute present in 
the incoming data/event. For example: LIDAR data were incorrectly analyzed by the image classification 
algorithm. As an outcome, correct attribute was missed and excluded from the analysis. 

(3) Attributes/event deception: Sensors (humans, data processing algorithms, etc.) might falsely perceive 
that an attribute was present in the incoming data/event or might falsely add an event due to deceptive 
information that has never occurred. For example: Analyst, based on studied imagery, reported the presence 
of a hide-out at the construction site. As an outcome, incorrect attribute is added as input and is used for 
analysis. 

(4) Attributes errors: Sensors (humans, data processing algorithms, etc.) might incorrectly assess the value 
of an attribute in the incoming data/event. For example: Analyst, based on studied imagery, reported that 
the building had large footprint, while building had medium-to-small footprint. As an outcome, incorrect 
attribute value is used as input for analysis. 

 
Figure 7: Attribute Classes 

 
Figure 8: Information Capture in the form of Attribute Vectors 

In our use case, we defined 16 facilities of interest in the terrain. Their attributes are shown in Figure 9. 
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For example, BioLab had size=1, security=2, had materials (capability=2) that could be purchased by RED 
(vulnerability of money=2), could be attacked (vulnerability of attack = 1), reconnoitered (vulnerability of 
recon = 1), could be used to attempt to store materials but no capability of doing so successfully. 

The RED team in the environment was represented by 4 actors that could be either single people or small 
cells (see Figure 10).  Actor capabilities were defined to match them with tasks that were part of RED’s 
mission as described in next section. BLUE actors were represented by BLUE human collection teams and 
aerial sensors. 
The second component of the Use Case is the set of action patterns to be matched against the facilities 
network.  These are the hypothesized activities supported by the facilities that RED could execute as part of 
their plan.  For the initial use case introduced above, we developed an adversarial action pattern to analyze 
which describes 5 tasks/activities in preparing for and carrying out a dirty bomb attack, as shown in Figure 
11.  The set of action patterns we are continuing to develop will contain variations upon this use case 
baseline action graph, alternative adversarial attack possibilities, as well as benign actions that may explain 
the data and observations we collect and analyze.    

 Capability (what it CAN do) Vulnerability (what can be done TO it)
Name SZ SEC STR MAT TEC KNW MON ATK VAL REC TRS SZ SEC STR MAT TEC KNW MON ATK VAL REC TRS
BioLab 1 2 0 2 1 0 0 1 0 0 0 0 0 0 1 0 1 2 1 0 1 1
Mall 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1
Airport 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 3 0 1 1
Park 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
Residential 1 3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
Commercial 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 2 1 0 1 0
Farm 3 3 3 1 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1 1
Government 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 1 0
PublTrnsp 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0
Hospital 2 1 0 3 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
Construction 2 2 1 0 2 0 0 1 0 0 0 0 0 0 2 0 1 0 1 0 1 1
Temple 2 4 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 1 1
Mansion 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
School 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
Bank 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0
Car dealership 1 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0  

Figure 9: FINAL Use Case --- Observed Facilities and their Attributes 
Capability (what it CAN do)

Name SZ SEC STR MAT TEC KNW MON ATK VAL REC TRS
BombMaker 0 0 0 0 0 1 0 0 0 0 0
Financier 0 0 0 0 0 0 1 0 0 0 0
Transportation 0 0 0 0 0 0 0 0 0 0
Recon 0 0 0 0 0 0 0 0 0 1

1
0  

Figure 10: FINAL Use Case --- RED Actors and their Capabilities 

Purchase 
Material

Recon

Store 
Material

Assemble 
Bomb

Attack With 
Explosives

 
Figure 11: FINAL Use Case --- Dirty Bomb Attack Action Graph 

The simulated mission and activity execution works as follows. The resource requirements attributes of 
tasks indicate the resources that RED actors must bring to facility. For example, in order to assemble the 
bomb RED actors must possess the knowledge and materials for bomb making. As the result, to execute 
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the activity, RED team selects the actors that have corresponding capabilities. The facility requirements 
indicate the resources that facilities should have for successful task completion. For example, to 
assemble the weapon the size of facility should be at least 1 and technology must be available for 
assembly. Thus, to execute the activity, the RED team selects the facility that matches task facility 
requirements with its resource capabilities. 

Similarly to facilities and activities, the roads and task relationships were defined and their attributes 
specified. The details are available upon request. 

Results 
We conducted several analysis of the sensitivity of the FINAL predictions of RED mission plan and 
allocation of activities to facilities to the level of noise in the data and types of parameters. We have used 
the simulator to generate five (5) different random mission execution allocations for the RED mission 
(different mappings). We then conducted 10 random runs for each action-facility allocation generated by 
the simulator, which resulted in different levels of the noise. The total of 50 thus obtained samples was 
averaged for each noise parameter set to generate “average accuracy” measure equal to the number of 
action-facility allocations corrected identified by the FINAL algorithm. 

Analysis 1: Effects of Missing Intelligence Data 
We ran the FINAL algorithm before the mission and during the mission executed by RED. This gave us 
six (6) sample points against the progress of the mission. This progress is equivalent to the level of 
missing dynamic data, and we thus were able to assess the sensitivity of FINAL’s accuracy in predicting 
the facility-to-action allocation to the amounts of missing event data. In this particular example, all data 
that were detected contained no noise.  

From the results shown in Figure 12, we see that FINAL is able to achieve >66% recognition accuracy 
under 80% missing data. We also noticed that the ability to develop multiple solutions (solution choice 
(b)) provides significant (20%-40%) improvement in accuracy as compared to having a single solution at 
the higher missing data levels, but the effect is reduced as the amount of obtained intelligence increases. 
We also note that the algorithm is not perfect even when all the data are available. The reason for this is 
that the mission execution generated by the simulation component of our testbed developed solutions 
that were not optimal in terms of utility of mission execution. Since FINAL algorithm is using 
optimization-based matching, in some instances it tends to value the intelligence about the capabilities of 
facilities higher than the intelligence of their observed use. 

Average Accuracy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Before
Start

20% 40% 60% 80% 100%

Mission Progress

%
 c

or
re

ct
 a

ct
io

n-
fa

ci
lit

y 
m

ap
pi

ng

Best Mapping

Cumulative
from 3 best
mapping

 
Figure 12: Sensitivity to Missing Event Data 

13 

 



13th ICCRTS-2008 “C2 for Complex Endeavors” 

We conclude that FINAL provides the ability to predict the potential uses of facilities when only scarce 
information is available about what RED are doing, and that the effects of different attributes needs to be 
studied in more detail. 

Analysis 2: Effect of Missing Attributes 

After studying the impact of missing event data, we decided to analyze an impact of detecting the event 
but missing some of its attributes/features. Since most of the attributes in our defined use-case were 
essential, missing the attributes would have a significant impact on our ability to map the facility to an 
activity. 
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Figure 13: Sensitivity to Missing Attributes 

We notice (Figure 13) that the impact of missing attributes is more pronounced than the impact of 
missing events. The reason for this is due to the penalties for missing key attributes and the type of 
information that is affected: while missing events affected only facility use attributes, current analysis 
also changes the capability attribute vector by missing the attributes of this set. As the result, the data get 
more skewed and cannot be matched well to the activities. 

Analysis 3: Importance of Attributes 

From the second study, we learned that the presence of some attributes might affect differently the 
accuracy of the algorithm. We thus ran a similar analysis looking at the accuracy in cases we restrict the 
use (and corresponding penalties) of the attributes. We compared (Figure 14) three cases: (i) using only 
structural attributes; (ii) using only current events/intel about uses of facilities; and (iii) accounting for 
all attributes. 

From Figure 14 we can see that the algorithm accuracy can be improved if we rely solely on the event 
attributes as the number of essential attributes missing is increased. This effect was mainly due to large 
penalties that were introduced for missing facility capability attributes. We note however that we should 
expect that the noise in the capability data sources would be smaller than in online event/intel collection 
sources. We then hypothesize that reliance on the data elements to predict facility employment must 
depend on quality of collected intelligence. If such quality can be estimated, we could develop solutions 
customizable to the situation. This hypothesis is confirmed by running the predictions against the data of 
varied quality as shown in Figure 15. We see that different attributes uses had varied success at different 
data noise levels and none was the best for all situations. 
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Figure 14: Importance of Attributes 
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Figure 15: Trade-off in Relying on Attributes for different Data Quality Levels 

The reliance on attribute types can be controlled via penalties/weights in the objective function. These 
weights should thus be selected based on data quality for best performance. If however a technology is 
developed that can fill the gaps under high missing data conditions, the improvements to the prediction 
accuracy could be significant. 

Analysis 4: Effect of Deceptions 

In this study, we increased the probability of deceptive (false) attributes occurring in the data from 0 to 
50% with the value of such attributes in the range [-2,2]. As shown in Figure 16, we achieved >70% 
accuracy under 50% probability of deception. We see that there is a slower decrease in accuracy with 
decrease in data quality from deceptions due to anchoring the solutions in both static (facilities 
capabilities) and dynamic (facility use events) information. With introduction of deceptive attributes the 
pattern in the data was preserved. We conclude that when amount of irrelevant information increases, we 
can maintain high accuracy by accounting for static and dynamic data elements. 
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Figure 16: Effects of Deceptions and False Alarms 

Future Extension to Guided Intelligence Collection 
Due to limited sensors and intelligence collection capabilities, much of the desired data are not initially 
available for the analysis. A challenge, therefore, is to identify data elements most critical to facility 
use prediction. This can be achieved by assessing which attributes of the facilities and their 
relationships could help improve the accuracy of identification. In other words, we need to know which 
data elements can most significantly improve the current information and bring about the largest 
dichotomy between hypotheses. Choosing a single hypothesis out of the given set can then be done with 
higher confidence.  

The automated intelligence collection planning will provide increased accuracy and confidence of 
facility use predictions. This approach is unique in that it integrates the prediction with data collection: 
the data collection is targeting the most critical missing data, which allows the largest increase in the 
accuracy and confidence of the prediction.  

The goal of intelligence collection is to find information that would improve understanding of facility 
employment – or, in other words, information that would improve accuracy of action-to-facility 
matching. The outcome of the intelligence collection planning is the design of the set of actions that 
need to be performed over time. 

In intelligence collection planning, we need first to recognize the differences between the hypotheses of 
activity patterns in terms of the activity attributes. We would like to make three important points about 
capturing these attributes and their effects on identification. 

The missing data: Current observations provide the data about some attributes of the facility 
employment, while information about other attributes is missing. Intelligence collection planning is 
aimed at discovering these missing attributes. Without loss of generality we can assume for now that the 
current observations have already been accounted for and the set of action networks that need to be 
explored is reduced according to the a-posteriori threshold. The missing data can contain the structural 
information about the facility, as well as the dynamic operational intelligence reports about the current 
and previous facility uses. The objective is to find such information that is most critical to improve 
current predictions, determine the reconnaissance actions and their cost, and construct a plan from them. 
While we do not know the outcomes of the data collection actions, we certainly can know and account 
for potential outcomes since the actions will be specific at collecting such intelligence.  
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Distinguishing activity mappings: Observations about facilities reinforce some activity-to-facility 
associations, while discarding others. For a case of single model network, we can look at different 
mappings that score the highest and determine the features that would have the most impact on 
distinguishing the mapping with new data.  

Distinguishing activity patterns: Observations also provide the ability to link/relate the model network 
activity patterns to one another. This is obtained via mapping the actions in the hypotheses to the 
facilities. The mapping of actions from different activity patterns to the same facility anchors these 
actions and allows exploring for their differences. If actions are of the same class, then conducting 
reconnaissance at the mapped facility would not provide any benefit. If however the actions are of 
different types, then finding more information at the facility may indicate a stronger matching for one 
action than another, and in this case lower the feasibility of one activity pattern and increase the 
feasibility of another. 

As an example, the information about the entrances to a certain building might not be known. This 
information will not provide an improvement to the current identification in case the building is mapped 
to the activities which are similar, or for which the entrance information is irrelevant. For instance, if 
building is mapped to be a coffee shop, or a book store, or a diner, then obtaining information about the 
building entrances would not reinforce either of these mappings. However, if the building is also mapped 
to storing of bomb materials, then the knowledge that the building has a wide concealed entrance will 
reinforce the association with this activity and reduce the associations likelihood that it is a coffee shop, 
a diner, or a book store.  

Clearly, in this example we are looking for the nodes and links in the action/function pattern that are 
different and the information that distinguishes them that have not been collected before. The nodes and 
links are explored for such difference only if they are mapped to the same facility or connection (a road) 
in the facility network.  

The Intelligence Collection Planning is formulated using the following four steps (see Figure 17): 

 
Figure 17: Intelligence Collection Planning Process 

17 

 



13th ICCRTS-2008 “C2 for Complex Endeavors” 

18 

 

Step 1 (Network Mapping Output): First, the data network derived from observations is matched 
against all hypothesis networks from the libraries. The most probable hypotheses, which have produced 
similar rankings, can then be further explored. From the network mapping, each hypothesis node is 
mapped to a data network node, or in other words a specific facility ID. This provides an ability to relate 
hypotheses to each other.  

Step 2 (Feature Extraction): Second, we compare the hypothesis networks with the current data 
network to see which of the potential data elements are missing. The resulting data elements, which 
could include missing attributes of nodes and links, are then classified as relevant (ones that distinguish 
the hypotheses) and irrelevant. The latter subset is discarded, and the former is categorized according to 
the action that needs to be performed to collect the data element, the cost of this action (e.g., in terms of 
time, money, effects of the action such as making the enemy suspicious of our presence, etc.), the 
question it is supposed to answer, and the corresponding network relationship that it will resolve. Each 
action-data element is then called a “probe” to indicate that it is trying to explore the existence of a 
specific attribute and its value through active search in the environment. 

Step 3 (Intel Plan Design): In FINAL, an intelligence collection plan is represented in the form of a decision 
tree, where each node corresponds to the probe to be conducted, and each leaf corresponds to the next probe 
and is selected based on the outcomes of the previous probe. Organization of the probes into a data collection 
tree is based on maximizing the anticipated information gain which contributes to the ability to distinguish 
among hypotheses (Levchuk et al., 2007). The features can then be merged together for integrated intelligence 
collection actions (e.g., a patrol can spot the activities at buildings and identify the specific structural 
characteristics of the buildings on its path). 

Step 4 (Guided Intel Collection): Guided intelligence collection is performed by following the decision 
tree nodes. Each node defines the action that needs to be performed, and based on the outcome of the 
action the process moves to the next node in the decision tree.  

Conclusion 
Our simulation studies showed that the FINAL technology can achieve high recognition accuracy in the 
presence of significant noise due to missing events, attributes, errors, and deceptive observations. 
FINAL has been tested on a small-scale example to show the feasibility, and approaches to improve the 
accuracy of algorithms and the ability to handle large data sets have been identified. In future research 
and development activities, we plan to focus on addressing the challenges of data set size and quality and 
develop a fully functional prototype solution with the objective to integrate into the real system of 
systems currently supporting adversarial analyses. 
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