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ABSTRACT 
 

A Cognitive-based Agent Architecture for Autonomous Situation Analysis 
 
This paper presents a preliminary investigation on a cognitive basis for large scale, distributed 
intelligent agents with some level of autonomy. We believe that the proposed architecture can 
better address many known problems of machine based situation understanding. We propose a 
practical and economically feasible solution of intelligent agents adapting existing agent 
modeling frameworks, ontologies from semantic web technology as well as reasonable situation 
domain models.  These can be brought together with a suitable cognitive architecture ACT-R 
(Adaptive Control of Thought—Rational) which could be used to provide key roles in more 
human-like situational awareness capability in emergency and disaster operations, especially 
where sensor information is harvested from semantically heterogeneous data sources. Existing 
situational ontologies and vocabularies can be supplemented by using DOLCE (Descriptive 
Ontology for Linguistic and Cognitive Engineering)’s formal ontology. This serves as a 
metalevel ontology that can relate different ontology modules and can generate new categories to 
extend ontology using agent learning as needed. Semantically-rich Descriptions & Situations 
ID&S) ontology can also be  utilized to provide a theory of ontological contexts that can 
describe various types of context including non- physical situations, plans, and beliefs, as entities 
so they can be effectively communicated and understood among agents in order to reach a 
common situational view. Lastly the paper discusses the potential performance measurement 
issues and future research for this particular solution. 
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1. Introduction 
 

As witnessed by the diversity of research papers in past artificial intelligence (AI) related 
conferences, no single AI technique or tool has been found to be adequate to address all the 
characteristics presented by a human situation awareness process.  This is true even for 
relatively simple software based information agents using the meaning of the data for 
information sharing such as envisioned in the original Semantic Web (SW) concept.  Currently, 
there are multiple views on a suitable architecture and the nature of the knowledge needed to 
develop successful SW agents.  Moreover, agent-based information integration, as typically 
discussed for the SW is not the only type of information fusion being actively researched. 
Sensors provide systems access to real-time (or near real-time) streams of actual, low-level data 
of events.  These serve as input to other agents which both collectively or individually fuse 
these sensor data and integrate them with higher level situational knowledge.  Such 
sensor-based processing is used in many domains, including disaster response, crisis 
management, modern battlefield operations, and health monitoring.  These situations are 
characterized by multiple, distributed heterogeneous information sources, and rapidly changing 
situations that may include mobile agents/objects. Special agent capabilities are needed because 
situations involve a large number of inter-dependent, dynamic objects that change their states in 
time and space, and engage each other in fairly complex relations.  As a result, required 
intelligent systems capabilities include effective methods for situation recognition, prediction, 
and reasoning activities.  Collectively, these capabilities have been called situation management 
[1].  

A task to build such situation understanding agents requires processing dynamic situations using 
complex cognitive modeling, design and population of formal situation ontologies, collection, 
and fusion of sensor data.  Current agent systems still have difficulty accommodating things 
like diverse spatiotemporal information within a single analytic context in a suitable period of 
time.  Yet, as part of analytic process for understanding situation, humans easily integrate both 
quantitative and qualitative information assessments to quickly arrive at analytic conclusions.  
The discrepancy may, in part, be in part due to the duality behind human cognitive architecture.  
The dual processing theory [2] distinguishes between cognitive processes that are: 

• Unconscious - rapid, automatic and high capacity 
• Conscious - slow and deliberative 

 
This characterizes human reasoning as a robust interplay between an easily believed 
perception-based system, and a more cognitively demanding logic-based reasoning system.  
This is a view of intelligence as a developed phenomenon that balances multiple reasoning 
mechanisms, together with scruffy modules of knowledge which learn to deal with situations that 
are only partial predictability, due to dynamics and the absence of precisely defined states.  
Berg-Cross [3] [4] suggested that a multi-level hybrid architecture—based on a cognitively 
realistic foundation—could approximate human performance for diverse analytic problems.  To 
be practical, such architecture would build on the existing agent models, semantic web 
technology and standards, as well as reasonably adequate knowledge and domain models.  The 
direction proposed herein is an architecture that leverages recent advances in machine learning, 
distributed agent technology, and rich semantic representation brought together within a suitable 

 3



cognitive architecture—ACT-R (Adaptive Control of Thought—Rational).  ACT-R is 
particularly suitable for performance measurements of intelligent capability because it has been 
widely shown to be capable of simulating human performance on a range of task and matching 
human learning improvement profiles over time.   
 
A part of paper discusses why ACT-R was chosen over other cognitive architectures and how 
ACT-R architecture can be used to learn and perform aspects of situation assessment.  Our 
discussion of work is divided into three parts.  First, we describe what is understood about 
situation understanding cognitively, and the ingredients of a situational ontology are described.  
Simple domain ontologies can be enhanced by leveraging some foundational ontology and their 
modules to formalize concepts like ‘participation’.  Framing models like Description of 
Situations (D&S) can be used to model how knowledge of information can be shared by agents.  
Second, the ACT-R architecture is described showing how it might be populated and trained on 
situational understanding tasks.  A third and final section summarizes the feasibility of the 
approach and describes future research and development for the proposed solution.  The final 
section also addresses foreseeable performance measurement issues with the proposed solution. 
 
2. Situational Knowledge and Ontologies 
 
As intelligent agents anchored in the real world, we generally understand the idea of ‘situations’ 
and can be said to have ‘situational awareness’ (SAW).  Automation of SAW using agent 
architectures has proven increasingly important for complex designs as diverse as air traffic 
control, power plant operations, and disaster management [6].  A rational empirical approach to 
SAW & understanding is generally defined with three sequential components: (1) 
perception/awareness of elements/objects in the environment within a volume of time and space; 
(2) along with a comprehension of their functional nature and organizational relationships (their 
‘meaning’); as well as (3) an ability to go beyond SAW to project the status & relations of 
situated objects in the near term as an empirical test of ‘expectations’.  A top-down, rational 
model of SAW incorporates an agent’s goals & objectives into its reasoning about events, 
relations, and situations.  This helps upper-level agents reduce the number of possible relations 
definable within an agent’s knowledge to constrain situational possibilities.  By knowing 
something about what is expected, attention on relevant events and relations can improve agent 
operation [5]. 
 
Situation/context-aware systems have been proposed as an important class of applications and an 
important step towards ubiquitous computing.  Examples of such agent systems described at the 
1st International Workshop on Agent Technology for Disaster Management [6] include 
discussion of agent architectures to handle coordination via intents, multi-agent learning to 
support urban planning, and training based on agent-based situation simulation.  Often, such 
work involves sensor-based data being fused into situational information.  A typical sensor 
based multi-agent architecture consists of several functional layers: a set of dedicated sensor 
agents are usually responsible for the initial degree of sensor data processing and they are 
considered the first layer; the next set of agents are responsible for associating output from these 
sensor agents with object concepts derived from domain knowledge and inference; another set of 
‘higher’ agents are responsible for transforming associated information into ‘situations.’  Such 
systems assemble operating pictures using precision geospatial environment information layers 
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(modifiable digital overlays) that can support decision making based on the detailed ‘knowledge’ 
shared by the agents sensing a physical environment.  An example of a such a system called 
SAPPHIRE (Situation Awareness and Preparedness for Public Health Incidents using Reasoning 
Engines) shown below dealing with Public Health Incidents [7].  Pollution sensing includes 
toxic gases such as carbon monoxide (CO), sulfur dioxide (SO2), hydrogen sulfide (H2S), and 
nitric oxide (NO), etc., with a half dozen meteorological factors and chromatography data such 
as ethane and ethylene, etc.  Systems like SAPPHIRE are not limited to direct sensor feeds, and 
can include entire reports of other agent’s processing (hence NLP capability as shown in the 
Figure 1).  In such architectures, agents at higher levels in the “network” may have more 

responsibility whereby they may use more elaborate communication protocols, taking into 
account and monitoring the information provided by lower-level sensor agents.  Several 
things are needed to make such systems effective.  For sensor data fusion, common sensor 
standards are needed to create a common sensor data model.  To be able to handle conflicting 
information from sensors, higher agents might need a capability for incremental, flexible 
perceptual/ conceptual learning, which is feasible through retrieval of relevant memories.  
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Fig. 1: SAPPHIRE [7] 

 
Generally multi-agent architectures include adaptive infrastructures that can be used to make 
problem solving responsive if not adaptive to some degree real-time constraints, available 
network resources, and coordination requirements.  Multi-agent architectures often include 
specialized components for adaptive functions such as local agent scheduling, multi-agent 
coordination, organizational design, detection and diagnosis, and on-line learning, a core 
characteristic of adaptive architectures.  These can be configured to interact so that a range of 
different situation-specific coordination strategies can be implemented and adapted as problem 
‘situations’ evolves.  A common model to support these is that situations are represented as a 
high-order knowledge type of concept that is formed using existing concepts.  We assume that 
situation knowledge is formed by an agent’s interaction history with the environment and that 
agents can form situation “concepts” by “observing” that certain patterns of sequence of inputs 
from the environment.  Thus for agent adaptive learning evaluative feedback should follow a 
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certain action/class of actions, or the next input event from the environment given the current 
action.  For all these reasons robust knowledge is needed to support adaptive agent reasoning. 
 
Knowledge structured as ontologies are increasingly used to define vocabularies for the Semantic 
Web (SW) thrust to allow intelligent agents to exchange queries and assertions among agents [8].  
More recently, ontologies have been applied to represent the more complex problem of 
sensor-driven situational understanding [9].  We illustrate the use of two levels of ontologies for 
understanding and representing situational knowledge – a mid-model of situations and a more 
foundational model that captures more of the event aspects of participation in situations as well 
as the relationship between descriptions and situations as meta-knowledge which can be used by 
agents.  The SAW ‘model’ [5] is a ‘light’ ontology capturing the core elements and relations of 
a rational agents view of situations, as shown in Figure 2.  This provides a principled way to 
describe situations including crises and disasters.
 
In the SAW ontology model, there are primary classes: SituationObject, PhysicalObject, and 
Events.  The organizing point in the ontology and resulting models is defined as a relationship 
to three things: Goals, SituationObjects, and Relations.  SituationObjects are entities in a 

situation that participate in relations and can have characteristics (i.e., Attributes). These 
attributes define values of specific object characteristics, such as expected/unexpected, weight or 
color.  Objects may be PhysicalObject (a sub-type) with Volume, Position, and Velocity. Goals 
Relations are used in a structuring geometrical (not well represented in SAW) and positional 
aspects of these concepts.  For example, to represent bus transportation systems for flood 
situations being reported on by environmental sensors, we need both realistic street information 
that can be overlaid by bus stops and also more abstract timetables along with timetables and 
circumstances that apply in emergencies as sensors report water height, closed streets, etc.  This 
would allow us to represent situations about stops on a bus route that is ‘near’ the intersection of 
two streets.  However, in the event of a flood this information will be supplemented by 

 
 

Fig. 2: Core Concepts in the SAW Ontology [5] 
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elevation information and perhaps closeness to streams.  Such features are not typically 
captured in geospatial databases and processable by Geographic Information System (GIS) 
functions. In our architecture, this information would be integrated by a situational agent using 
components of information from sensor agents and also making use of geospatial repositories of 
information.  To handle these requirements the SAW ontology can be improved by grounding it 
in a more foundational ontology like DOLCE (Descriptive Ontology for Linguistic and 

Cognitive Engineering) developed within the WonderWeb Project (European Union Funded 
Project 5) [10].  DOLCE is a cognitively based, ‘reference’ ontology, consisting of about 30 
classes, 80 properties and many more axioms. 

 
 

Fig. 3: Ontology Design Pattern for Object ‘Participation’  
in Situations Built on DOLCE Foundation  

 
It was designed to provide a sufficiently neutral base to map, integrate, and build domain 
ontologies, such as an improved SAW ontology.  DOLCE includes the idea a high-level 
participation pattern of objects taking part in the Events on the SAW model. DOLCE 
conceptualizes endurants (Objects or Substances) and perdurants (Events, States, or Processes) 
as distinct types linked by the relation of ‘participation’.  Participation patterns help us 
understand the structure of repeating events that occur for types of situation.  As shown time in 
Figure 3, time in indexing is provided by the temporal location of the event at time interval 
duration, while the respective spatial location at a space region is provided by the participating 
object.  The general pattern in Figure 3 uses an extended version of UML which can be 
converted to the DOLCE-time-plus [11] light ontology and is intuitively applicable to situations 
of interest to us including disasters, and health monitoring. Particularly nice for representing 
knowledge that agents need to fuse information into situations is DOLCE’s use of an 
Information-object design schema/pattern as shown in Figure 3.  This model formalizes how 
descriptions, which one agent may receive from another, serve as Descriptions for Situations.  
This extension to the DOLCE foundational ontology is called the Descriptions and Situations 
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(D&S) Ontology and can be used to define agent workflow - how the information in messages 
can be used by an actor who play a specific role.  
 
The D&S ontology [12] is based on a first-order logic conceptualization that supports 
manipulation of descriptive objects (such as clinical plans, evacuation routes, emergency plans, 
institutions, etc.).  This allows representation of hypotheses about situations (such as cases, 
facts, settings)1.  D&S’s explicitly committed conceptualization as a distinction between an 
unstructured world or context, and intentionality (an agent description) that recognizes a 
structure (situation) in that world or context. One nice thing about ontological commitment using 
D&S is that it supports organizing domain theories for areas like disasters & healthcare into 
different ontologies as well as into different descriptions or situations. For example, “a flood 
situation” is a disaster entity whose conceptualization is described and realized in several 
modules—disaster, transportation, hydrology, geography etc.  Finally, the DOLCE models can 
serve as modular, meta-level ontologies that can relate different ontology modules and can 
generate new categories to extend ontology (by agent learning) as needed. 

 
3. Rationale for ACT-R 
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Fig. 4: Adapting ACT-R to a Multi-level Hybrid Approach 

Two major production-system based cognitive architectures, ACT-R and SOAR [13], were 
considered to provide much needed rational level functionality for the proposed situational 
awareness architecture.  Ultimately the team decided to go with ACT-R due to its closer 
resemblance to human cognition process.  The major difference between ACT-R and SOAR is 
that ACT-R has been constantly evolving along the direction that makes it closer to the 
human-level intelligence, in the sense that it closely resembles the perceptual and cognitive 

                                                  
1 When D&S plugged into DOLCE it results in ‘DOLCE+’ with description being a non-physical endurant. A 
situation is added as a top level. 
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constraints by humans.  Achieving human-level intelligence is always more challenging than 
developing powerful algorithms, as years of research in artificial intelligence show that while we 
can build deep blue to beat the world’s best chess player, we still cannot develop an artificial 
systems that will play chess like the world’s best chess player.  In fact, recently rigorous tests on 
the ACT-R architecture has been done through advanced techniques in brain imaging, providing 
solid evidence that the architectural constraints closely match the neuro-physiological 
mechanisms of humans.  We consider these constraints as strong theoretical claims that increase 
the likelihood that correct models of human-level intelligence can be constructed, at the same 
time reducing the likelihood that powerful but incorrect models will be developed.  This is a 
very important rationale for our decision on using ACT-R: Although one may argue that SOAR 
may be more “theoretically powerful” by covering psychologically unreal possibilities, we 
consider that a weakness, not strength.  As a close match to human-level intelligence is critical 
in ensuring the technologies developed will match well with the real perceptual and cognitive 
profiles of humans who are interacting with these technologies.   
 
Under the proposed multi-agent based framework, the primary functionality of individual agents 
can be determined by one or more plugged-in ACT-R models.  This can use ontology translators 
similar to those proposed by Wray et al. [14] to allow various ACT-R models and their host 
agents to share domain knowledge, along with inference knowledge captured in various 
ontologies.  A system of different intelligent agents involved in various steps of the SAW 
process can work collectively to achieve a common system goal.  Each ACT-R model has its 
own set of knowledge representation, input/output modules that allow it to interact with the 
external world as well as with other agents/models, and has its own learning mechanisms that 
allow it to adapt to the new situations and environmental conditions.  Since ACT-R is developed 
based on the principle that knowledge are always rationally deployed to decide on the next set of 
actions, each model can behave rationally based on the existing knowledge it has.  For example, 
ACT-R has a built in Bayesian learning mechanism that allows it to retrieve the relevant 
knowledge structure based on its need probabilities at a particular context of situations [15], as 
well as a reinforcement-like learning mechanism that learns to adapt to the statistical structures 
of the environment so that actions that have led to successful outcomes before will more likely 
be selected in the future [16].  These sophisticated mechanisms allow each ACT-R model to 
gradually adapt and learn the skills and knowledge required for different situations.  
 
Another important advantage of the ACT-R architecture is its ability to span components of 
cognition that have traditionally been treated as separate in cognitive psychology.  For instance, 
a model of Intelligence, Surveillance, and Reconnaissance (ISR) analysis will likely involve 
reading and language processing, spatial processing, memory, problem solving, reasoning, and 
skill execution and acquisition.  ACT-R not only has a generic knowledge representation across 
these different components of cognition, but it also specifies how these components are 
integrated to produce behavior.  At its lowest level, ACT-R has both a spreading-activation 
mechanism to predict accessibility of declarative knowledge and a reinforcement-learning 
mechanism to predict the future success of certain actions.  
 
For example, knowledge that is needed frequently or repetitive actions with certain outcomes 
will eventually lead to skilled behavior that can be deployed with little cognitive resources.  At 
the middle level, deliberate acts such as attending to relevant parts of the environment or 
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pressing the right key on a device requires intelligent integration of multiple sources of 
information and background knowledge to generate intelligent behavior.  To this end, ACT-R 
has a set of ‘sub-symbolic’ mechanisms that arbitrate how various sources of information should 
be integrated, and how and what actions should be selected and executed at different situations.  
Mechanisms at this level are found to be critical to various training goals. For example, work on 
computer-generated forces [17] shows that training for people interacting with and against 
synthetic partners is effective only when these agents perform elementary actions like real people.  
Similar results were obtained by Jones, et al. [18] and their study shows that training is effective 
only when synthetic pilots make turns with the timing of real pilots.  
 
A cognitive agent is therefore essential to ensure that the simulated environments appear ‘real’ 
during training of operators.  At the highest level, long-term knowledge are stored as a large set 
of declarative memory elements and procedural rules. This set of knowledge can be obtained 
through a diverse set of training scenarios in various situation analysis environments.  Taken 
together the direction proposed here is a multi-level approach that leverages our understanding of 
cognitive agent architecture in integrating three levels of information processing behavior as 
shown in Figure 4.  In the high level a distributed agent architecture such as Cougaar (cognitive 
agent architecture) [19] and foundational ontology such as DOLCE will likely work together to 
provide a means to process high level situational knowledge that may requires immediate 
attentions.  At the rational level, ACT-R will act as a bridge to connect high level and low level 
situational information processing behaviors through its proven strength in pattern matching and 
conflict resolution.  At the low level, an unconscious behavior such as machine learning will 
help to transform sensor fed raw data to ongoing situational knowledge through data filtering and 
fusion.  Under the proposed hybrid approach, the anticipated major contribution of ACT-R will 
likely come from a rational level where most rule-based behaviors through a human-like 
cognitive capability take place.  One of our research goals is to capitalize on the success of 
ACT-R in simulating the rational/adaptive nature of human information processing to coordinate 
activities in low level information fusion/selection and high level semantic ontological reasoning 
to support distributed decision making process in autonomous situation analysis. 
 
4. Conclusion 
 
The first level of performance analysis helps to understand cognitive criteria underlying success 
with SAW and pointed out potentially problematic areas and real-time issues with agent 
knowledge which can be addressed by improved ontology. Performance measurement of a 
cognitive based distributed multi-agent system (MAS) offers unique challenges that must be 
addressed explicitly in its agent infrastructure.  Our study identified several key issues with 
current agent technology that must be addressed in the future study.  These are: 
• Definition and selection of appropriate agent social behavior (competitive vs. collaborative) 

based on current operational conditions; 
• Knowledge storages and retrieval – distributed vs. replicated; 
• Knowledge sharing and transfer through proper ontologies; 
• If knowledge is replicated locally, how to deal with synchronization issues if the bandwidth 

is limited; 
• Suitable consensus building mechanism among agents under a competitive mode; 
• Hierarchical vs. Peer-to-peer infrastructure or mix – dynamic goal switching for ACT-R; 
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• Autonomous task delegation and volunteer capability; 
• Appropriate performance metrics to evaluate appropriate collective intelligent behavior 

including social behavior of multiple intelligent agents. 
 

A study done by Helsinger, et al. [20], demonstrated the feasibility of using an performance 
metrics within Cougaar to improve an individual agent’s performance and adaptability to their 
dynamic operational environment.  The challenge and future research for our proposed solution 
lies in how to overcome these issues of current agent technology so that collaborative distributed 
situation analysis can no longer be viewed as a computationally challenging and inefficient 
alternative. One possible key to success is how to maximize the use of cognitive capability in 
such system, using ACT-R like cognitive plug-ins models. The team believes that further 
development and refinement of proposed approach will eventually lead to a more human-like 
and robust autonomous situation analysis platform that can effectively operate in a highly mobile 
and distributed (both computationally and functionally) environment with very little human 
supervision. 
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	1. Introduction
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