

13th ICCRTS: C2 for Complex Endeavors

Automatically Tracing Information Flow
 of Vulnerability and Cyber-Attack Information

through Text Strings

Topic 6: C2 Assessment Tools and Metrics (also Topics 2 and 7)

Neil C. Rowe, Eric Sjoberg (STUDENT), and Paige Adams (STUDENT)

Naval Postgraduate School

Code CS/Rp, 1411 Cunningham Road, Monterey CA 93943

(831) 656-2462

ncrowe@nps.edu, ejsjober@nps.edu, phadams@nps.edu

Point of contact: Neil Rowe

Abstract

Quick dissemination of information about new vulnerabilities and attacks is essential to time-

critical handling of threats in information security, but little systematic tracking has been done of
it. We are developing data mining techniques to track the flow of such information by comparing
important information-security Web sites, alert messages, and strings in packets to find similar
words and sentences. We report on tools we have developed to collect relevant sentences, with a
particular focus on comparing sentences from different sources to find patterns of quotation and
influence. We report results on some representative pages that indicate some surprising
information flows, for which the combination of both word matching and structure matching
performed significantly better than either alone. We also report on preliminary work on the front
lines of cyber-attack, trying to correlate text in intrusion-detection reports and even attack packets
observed on a honeypot with reports of known attacks. These methods could help us
automatically locate relevant fixes quickly when being attacked. Our tools will in general enable
better design of incident response and incident reporting requirements for organizations, by
showing bottlenecks and unused capabilities in the management of vulnerabilities and attacks.

Keywords: Vulnerabilities, alerts, dissemination, World Wide Web, data mining, natural-

language processing, cross-document referencing, packets, intrusion-detection systems

mailto:phadams@nps.edu

1. Introduction

Availability of knowledge of new vulnerabilities and attacks is critical in maintaining security
and integrity of computer systems. We have been exploring how such information is transmitted
between Internet sites. Studying this is important because it is an essential kind of intelligence
gathering for potential hacker and even information-warfare attacks. It is important that channels
of information dissemination be efficient in crisis situations, especially for widespread or self-
propagating attacks. Without a good understanding of how the channels work, we also cannot
improve them very well or develop priority schemes for incident response (Yuill et al, 2000).
(Browne et al, 2001) reports that most attacks occur long after security patches are available due
to the lack of awareness by system administrators, so better dissemination of attack intelligence
should be a high priority.

While some work has been done on “insecurity flow” within software (Moskowitz & Kang,
1997), little systematic attention has been paid to flow of text descriptions of vulnerabilities and
attacks concerning software. Proposed languages for reporting vulnerabilities (like OVAL,
oval.mitre.org, or that proposed by (Tian et al, 2004)) provide a standardized structure but using
them is an imposition on busy system administrators. It would be much more user-friendly to
exploit the many bug reports and vulnerability announcements that are already produced in prose.
Studies have shown that good dissemination of vulnerability information does not harm systems
much, at least as much as dissemination of patches (Arora, Nandkumar, and Telang, 2006).

From our experience we postulate an overall information flow in Figure 1 (Iyer et al, 2003).
Attacks are caught by intrusion detection systems, leading system administrators to inspect
packets more thoroughly to gain further information. Informal sites like Bugtraq collect reports
of system administrators, and broker sites like that for the CVE examine the reports and decide
whether to issue a number to the vulnerability and associated (perhaps hypothetical) attack.
Further brokers like CERT and other security-practitioner sites then examine the continuing
discussion, contact software vendors, and try to provide a definitive statement about the
vulnerability and its countermeasures. Note that flow analysis is independent of disclosure issues
(Farrow, 2000) since flow can be proprietary or public depending on the kind of information.

www.cert.org, www.us-
cert.gov, secunia.com, etc.

www.securityfocus.com (Bugtraq)

cve.mitre.org,
cwe.mitre.org,
capec.mitre.org, etc.

Intrusion-detection alerts Packet dumps

Security-practitioner sites

Vendor security sites

Figure 1: Overall information flow of vulnerability and attack information.

2. Word-matching tools

To examine the current flow of security information, we have developed a number of Java and

Python tools to data mine information-security information based on word matching. Earlier
prototypes done by students (McVicker, Avellino, & Rowe, 2007) showed promising results from
just text keyword matching, so we made that a first step.

2.1 Finding relevant Web sites and matching them
One set of experiments tried to find sentences on the Web mentioning vulnerability

information and correlated them to infer who was reading whom. This required our writing first a
tool in Java to query Google and Alta Vista and find a set of pages matching a set of
vulnerability-associated keywords. In the most extensive experiments reported here, we used the
keywords "vulnerability," "ICMP," "packets," "flags," and "footprinting" in an attempt to collect
information about ICMP footprinting. We supplemented these links with all outgoing links from
those pages whose link text mentioned at least one keyword. Secondly, we wrote a tool to
examine the sentences of the found pages to find individual sentences matching the keywords.
Only sentences with a weighted match to the keywords exceeding a threshold were returned. The
weighting was an estimation of the inverse document frequency: the logarithm of the ratio of the
number of occurrences of a word in a sample corpus to the number of occurrences of the given
word in the corpus. HTML and other formatting data were removed from sentences before
matching. Sentences were carefully delimited using a list of 47 possible sentence-ending
patterns. One program analyzed HTML and related formats using a detailed knowledge of
HMTL tags; another extracted text from PDF files using the pyPDF utility
(cheeseshop.python.org/pypi/pyPdf/1.6). Both used a detailed model of Web URL formats to
interpret links and fill in their details. As an example, for the query keywords "ICMP
vulnerability flags footprinting", a top-rated sentence at 0.41 was in www.opennet.ru/
base/summary/1055867893_2296.txt.html: "An attacker can exploit this vulnerability by sending
a simple TCP packet to with the FIN-ACK flags set to a vulnerable machine."

Once sentences were extracted, we compared every pair from different Web sites to find
related sentences. (Intrasite copying and citation is common and mostly uninteresting.) This took
some time. A threshold of match similarity for output is used based on the weighted sum of the
words in common, with the same weighting used previously, but with an extra weight given to
connections between sentences of pages having an explicit link between them. We set the
threshold to five standard deviations above the mean match score on the extracted sentences,
using the mean match score to approximate the mean since the distribution was very close to a
Poisson distribution. For example, for the 4692 top pages for the "ICMP flags footprinting"
keywords, the mean match score was 0.0488 and the standard deviation was 0.479 (they would be
equal for an ideal Poisson distribution). (For the 10,000 top candidates matching 23 keywords
associated with insider attacks on computer systems, the mean match score was 0.0400 and the
standard deviation was 0.0355.) For the ICMP keywords we used a threshold of 0.25 for match
filtering and obtained 35,448 matches. Connections were sorted so the earlier page (judged by its
"LastModified" date) came first in the output to enable construction of directed graphs of
influence.

We separately tabulated exact matches and inexact matches; the latter were almost always
much more common. An example exact sentence match (clearly not a coincidence) rated at 0.604
was between www.unix.org.ua/rfc/bcp0060.html and www.faqs.org/rfcs/bcp/bcp60.html of
"Unfortunately, a number of firewalls and load-balancers in the current Internet send a reset in
response to a TCP SYN packet that use flags from the Reserved field in the TCP header." An
example inexact sentence match rated at 0.54 was between the sentences "Remote attackers could
exploit these vulnerabilities to create a denial of service condition, or to execute arbitrary code on

an affected server" and "A remote to unauthenticated attacker could exploit these vulnerabilities
to execute arbitrary code or cause a denial of service on an affected system" found on
www.juniper.net/security/auto/ vulnerabilities/vuln2558.html and astro.berkeley.edu/~central/
archive/us-cert respectively. In both cases we judged that information flow was from the first
page to the second.

We wrote a routine to cluster this data to identify patterns of influence. A threshold argument
permits clustering at different levels of detail to see different phenomena. We also summed the
ratings for all sentence pairs found between two sites to get a site-pair rating of the degree of
information flow. As an example of output, the top-rated inferred flows for the ICMP query were
as follows. Some transitivity-like phenomena are apparent, since if site A is similar to site B, and
site B is similar to site C, then A is similar to C.

34.966: www.ecst.csuchico.edu to www.yolinux.com
34.943: www.e-infomax.com to www.ecst.csuchico.edu
34.943: www.ecst.csuchico.edu to www.uni-kiel.de
34.943: www.linuxdig.com to www.ecst.csuchico.edu
31.713: docs.mandragor.org to www.ecst.csuchico.edu
31.696: www.ecst.csuchico.edu to www.arameya.com
28.713: www.e-infomax.com to www.uni-kiel.de
28.713: www.linuxdig.com to www.e-infomax.com
28.713: www.linuxdig.com to www.uni-kiel.de
28.710: www.e-infomax.com to www.yolinux.com
28.710: www.linuxdig.com to www.yolinux.com
28.710: www.uni-kiel.de to www.yolinux.com
28.426: www.cs.wisc.edu to www.ecst.csuchico.edu
27.397: docs.mandragor.org to www.arameya.com
26.796: docs.mandragor.org to www.e-infomax.com
26.796: docs.mandragor.org to www.linuxdig.com
26.796: docs.mandragor.org to www.uni-kiel.de
26.793: docs.mandragor.org to www.yolinux.com
26.793: www.e-infomax.com to www.arameya.com
26.793: www.linuxdig.com to www.arameya.com
26.793: www.uni-kiel.de to www.arameya.com
26.788: www.arameya.com to www.yolinux.com
24.035: docs.mandragor.org to www.cs.wisc.edu
24.032: www.cs.wisc.edu to www.arameya.com
23.792: www.armware.dk to www.faqs.org
23.783: www.faqs.org to ietfreport.isoc.org
23.783: www.unix.org.ua to www.faqs.org
23.755: www.ietf.org to www.faqs.org

2.2 Classification of sentence similarities
Two sentences on two pages may be similar for several reasons. Exact matches are usually

beyond the limits of coincidence. Exact matches could be:
• Normal routine copying of pages, as when a Web site collects important papers on
security. The "TCP SYN" exact match given above can be inferred to be an example of the
first because the page names are also similar, bcp0060.html and bcp60.html. Pages with
numerous high-similarity sentences strongly support this hypothesis.
• Common authorship on sites. We excluded matching of sentences within the same
site (the same domain), but businesses often buy multiple site names to appeal to different

audiences. An example is an exact match between www.demboo.info/Carbon-cheats.htm and
www.mulax.info/Sims-cheats.htm of the sentence "For walkthroughs, cheats and tips call
09067 53 54 55 This is a fully automated system that provides gameplay hints and playing tips
for most of the games in the Electronic Arts range." A high site-pair rating of similar
sentences supports this hypothesis, but it can be distinguished from routine copying by having
significantly different file names between those of similar sentences.
• Acknowledged citation, particularly if the text is quoted or indented. This rarely
occurred in our security pages, but occurs much more with traditional journalism. This can be
distinguished by introductory words in a previous sentence such as "says", "explains",
"stated", "according to", "further information", etc.
• Plagiarism, not as uncommon as one would hope. Of course, security crises can
require getting accurate information out quickly, and copying someone's words without
citation may occur. We did not see any obvious examples in our test cases, but they would be
hard to prove.
• "Boilerplate", formalized statements to accomplish some legal or policy objective.
For instance, www.securiteam.com/securitynews/5RP0E204UA.html has "Additional
Information: For the most up-to-date information regarding these vulnerabilities, please visit
the CERT/CC Vulnerability Notes Database at: http://www.kb.cert.org/vuls/" and "Please note
that the test results summarized above should not be interpreted as a statement of overall
software quality.", and both sentences also occur in astro.berkeley.edu/~central/archive/us-
cert. Boilerplate can be inferred from the use of particular words such as "information",
"please visit", "please note", and "should not be interpreted".

Inexact matches between sentences on different pages could be:
• Common authorship on sites. For instance, www.konde.info/Nothing-cheats.htm says
"IGN is the ultimate Spider-Man: The Movie resource for trailers, screenshots, cheats ,
walkthroughs ... " and www.mulax.info/Games-cheats.htm says "IGN PS2 is the ultimate
resource for PlayStation 2 trailers, screenshots, cheats, walkthroughs ... ". It is unlikely that
anyone other than the same author would have strung those four particular nouns in succession
at the end.
• Acknowledged citation. For instance, cert.pol34.pl/news/annall.htm has the sentence
"According to Microsoft Advisory (935423), in order for this attack to be carried out, a user
must either visit a Web site that contains a Web page that is used to exploit the vulnerability or
view a specially crafted e-mail message or email attachment sent to them by an attacker."
This is usually signaled by introductory words in the sentence.
• Acknowledged paraphrase. For example, cert.pol34.pl/news/annall.htm says "According
to the US-CERT there is publicly available exploit code for multiple vulnerabilities in Sun
Java Runtime Environment (JRE)" and astro.berkeley.edu/~central/archive/us-cert says
"Publicly available exploit code exists for this vulnerability, and US-CERT has monitored
incident reports that indicate that this vulnerability is being actively exploited."
• Unacknowledged paraphrase. We see much that looks like this, though is hard to prove.
It often occurs in attempts to translate more technical language into more accessible language.
• Boilerplate, such as required legal notices. For instance, many pages at
astro.berkeley.edu/~central/archive/us-cert begin with "Further information is available in the
following US-CERT Vulnerability Note".
• Accidental similarities. These can occur with commonly repeated language. For
instance, www.freerepublic.com/focus/keyword?k=msie says "An attacker could use a
specially crafted web page to exploit the vulnerability and take control of a system, warned
Danish security firm Secunia" and astro.berkeley.edu/~central/archive/us-cert says "An
attacker could exploit these vulnerabilities by using specially crafted network traffic, by

convincing you to click on a specially crafted URL, or by convincing you to open a specially
crafted Office document". But it is unlikely that the two sentences are referring to the same
vulnerability, since they are both describing Web client vulnerabilities in a general way;
previous sentences on their pages distinguish their motivating subjects more precisely.

3. Structure-based sentence matching

To explore security-assertion matching in more detail, we conducted additional experiments

with the pages and sentences found in our first experiments. Many authors have distinctive styles
of sentence structure. For example, one author may prefer multiple adjectives within a sentence
while another may prefer prepositional phrases. The occurrence and frequency of adjectival and
prepositional phrases can define an author’s writing style. This idea is currently being used to
detect pseudonymous writing (Rao & Rohtagi, 2000). When authors of vulnerability and attack
information copy or use preexisting documents as templates, they preserve the characteristic style
of the original author, and this may be detectable.

3.1 Mining methodology
For these experiments we used the Python programming language because of its ease and

flexibility in working with text strings, the free availability of several useful modules for
performing web-mining functions, and our experience with the Python-based Natural Language
Toolkit (NLTK) for NLP routines (Sourceforge, 2007). Useful in particular were the
mechanize and BeautifulSoup modules. The mechanize module provides a means for
programmatic web browsing and allowed us to retrieve and iterate over Web pages. The
BeautifulSoup module is a HTML/XML parser that can compensate for invalid markup
structure and provides navigation, search, and modification functions for the parse tree. We used
it to extract specific data elements from a parsed forum page.

In these experiments we focused on extracting data from two sources: vulnerability note
entries from Carnegie-Mellon’s CERT database, and posts from the Bugtraq computer security
forum operated on the SecurityFocus website owned by Symantec Corporation. As an archive of
a high-volume mailing list, Bugtraq’s forum contains early notification and discussion of new
security vulnerabilities, while the CERT database contains descriptions of vulnerabilities that
have been formally verified and written up by the CERT. Accordingly, we expected that a new
vulnerability would first be reported in the Bugtraq forum, and then, once verified, appear in the
CERT database. We wanted to trace the information vector from initial vulnerability indication
to verification and resolution.

3.2 Comparisons
The data retrieved from the CERT and Bugtraq entries had few undocumented relationships.

There were approximately 2,500 entries in the CERT database and 25,750 in the Bugtraq forum
that matched seven test topics we selected. Based on these results, we elected to build a test set
for our comparison algorithms on a larger previously collected data set that contained sentences
resulting from a search on insider security attacks. In this data set were 7,085 sentence pairs,
which were read and manually categorized as being related or unrelated.

Our methodology was to use low-level natural-language processing to provide information
about the part-of-speech sequence in the sentences (nouns, verbs, articles, adjectives, etc. and
their ordering). We utilized an N-Gram tagger provided by the NLTK to determine the parts of
speech of sentence tokens (typically words) (Jurafsky & Martin, 2000). It tags a token based on
that token and its N-1 predecessor tokens. It assigns a tag by looking up the most likely tag for the
sequence of tokens and tags based on the data on which it was trained. We trained trigram,
bigram, and unigram taggers using the Wall Street Journal data subset of the Penn Treebank. The

trigram tagger was the primary tagger since it provided the most context for tagging individual
tokens. The trigram tagger backed off (that is, resorted) to first the bigram and then the unigram
tagger when there was insufficient data for a three-token sequence. The unigram tagger backed
off to a regular expression tagger and then a default tagger. The regular expression tagger
attempted to provide correct tags for regularly occurring tokens such as dates, gerunds, simple
past tense verbs, and URLs.

To compare two sentences, several algorithms were implemented and compared (see Figure
2). We used the f-score (the geometric mean of recall and precision) as our performance metric.
The first method ("Keywords") calculated only the ratio of common keywords in both sentences.
The second method ("TS") calculated the ratio of common tags and tag bigrams in both
sentences. The third method ("TTS") multiplied the number from the second method with the
ratio of tokens in common between the two sentences. For this method, tokens that were tagged
as articles, conjunctions, and pronouns were ignored since they occur fairly often. For the final
method ("TTS-A"), the ratio of similar tags, tokens, and bigram tags were averaged together.
This provided a more comprehensive metric since it included the similarity weighing the words in
the sentence, the type of words in the sentence, and the structure of the sentence (captured by the
tag bigrams) equally.

F SCORE vs threshold

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1 1.2

threshold

Keywords
TS
TTS
TTS-A

Figure 2: Relative performance of four sentence-comparison algorithms.

3.3 Results
Overall, the tagger appeared quite successful in detecting similarity between two sentences.

Since many security-related websites use well-formed English to describe the potential bug or
security vulnerability, the Wall Street Journal data proved adequate for tagging these sentences.
Where regularly formed English was not found, the unigram tagger provided the most likely tag
given that word.

Figure 2 shows our final algorithm TTS-A achieved its highest f-score of .83, when precision
was .96 and recall .73. Figure 3 shows more details of the tradeoff between recall and precision.
Compared to keyword matching alone, this is a 37% increase in recall for the same level of
precision. Surprisingly, our algorithm achieved over 99% precision with 50% recall. This

indicates that just looking at the tokens, their tags, and a partial ordering of the tags suffices to
establish a correlation.

Precision vs Recall (7000 pairs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
pr

ec
is

i

keywords
TS
TTS
TTS_avg

recall

r to be those in which a
particu s ntal
substri "

• ent malware tools."

 the
 the comprehensive matching correctly predicts a relationship between the two sets of

text ev th
sentences.

e,

•

or geopolitical hegemony, the pursuit of

ximately 0.66 for recall on our test set. Any pair of
sentences achieving a score above 0.7 means that one sentence is a direct copy of the other with
some minor errors in parsing or punctuation.

Figure 3: Recall-precision curve for the 7000 test sentence pairs.

The sentences for which comparison of tokens, tags, and structure correctly identified the

match or lack thereof while keywords alone did not largely appea
lar ubstring was common to both sentences. An example is the pair with the accide
ng that bundles together many different malware tools":

"MPack is a powerful kit that bundles together many differ
• "The kit is a professionally developed collection of back-end web components built on

PHP that bundles together many different malware tools."
Structure matching permits matching to be more tolerant to parsing errors. For example in

below pair,
en ough the parsing algorithm failed to properly parse the text into the correct set of

• "It monitors global risks and threats including global warming, terrorism, cybercrim
economic espionage, etc. It champions security at home and at work."
"It monitors global risks and threats including global warming, terrorism, national
disasters and health emergencies, cybercrime, economic espionage, etc. It also
analyses issues and trends in the struggle f
energy security and environmental security, the cultivation of human rights, and the
strengthening of democratic institutions."

Another interesting result is that with a threshold of about 0.45, the token, tag, and structure
method achieves a 1.0 for precision and appro

Figures 4 and 5 show histograms of all the scores assigned to the 7000 sentence pairs. 95%
of the pairs received scores below 0.3, indicating a low probability of a match. The peak in
scores between 0 and 0.2 represents random coincidences of nouns, articles, and verbs.

Figure 4: Histogram of scores for combined matching of tokens, tags, and structure.

Figure 5: Histogram of scores for keyword matching alone.

It was difficult to confirm the relationship of many pairs receiving scores between 0.3 and

0.45. For example, the sentences below which scored 0.44 discuss a Zogby poll on the same
subject. Particularly intriguing is that these sentences are using the same poll and the number is
different, whether accidentally or deliberately.

• "A Zogby poll of New Yorkers' opinions about the 9/11 investigation, released last
month, indicated that 49 percent of New York City residents and 41 percent of New
York state residents believed that some federal officials 'knew in advance that attacks
were planned on or around September 11, 2001, and that they consciously failed to
act.'"

• "Consider another Zogby poll from August 2004, which found that 63 percent of New
Yorkers under 30 believe some U.S. leaders 'knew in advance that attacks were
planned on or around September 11, 2001, and that they consciously failed to act.'"

Of particular interest were sentence pairs where all algorithms failed to see that the sentences

were related (Figure 6). Many of these sentences appear to be completely different in structure
even though they discuss identical subjects. Higher-level processing with full parser may be
necessary to recognize such pairs. Particularly helpful might be to focus on noun-noun references
as this has been very helpful in parsing captions (Guglielmo & Rowe, 1996). The Appendix
gives more examples of specific matches found by our programs and their ratings.

Sentence 1 Sentence 2

"One strain of scam email makes the bogus
claim that recipients have won one of the
much sought after devices in a bid to trick
prospective marks into visiting a malware
loaded site."

"Email recipients are sent a bogus email
informing them that they have won a new
iPhone, in reality the email contained malware
designed to subvert and compromise the user's
computer."

"NanoScan is a rapid, light scanner that
currently detects over 750,000 active viruses,
spyware, Trojans and other malware within
just one minute."

"Panda Software has launched the mini,
customisable version of NanoScan, the instant
virus scanner from Panda Software, designed to
detect active malware on a PC in less than one
minute."

"According to a 2005 FBI Cyber Crime
Study, 90 percent of small businesses had at
least one cyber security incident within the
past year."

"In fact, of the 500 companies that responded to
a recent FBI survey, 90 percent said they'd had a
computer security breach, and 80 percent of
those said they'd suffered financial loss as a
result."

"Using ideological attraction, the Soviets
successfully recruited many high-level spies."

"At that time period the Soviets recruited their
spies using ideological motivation."

Figure 6: Sentence pairs where our structure-matching methods fail.

4. Correlating attack reports with packets

A final step in using descriptive information about attacks is in correlating it to the details of

observed attacks. If we can automate the latter as well as the indexing of resource sites such as
those of Bugtraq and the CERTs, we could recognize attacks automatically within a second after
they occur in a more general way than that provided by intrusion-detection systems. This would
be helpful since, as (Lai & Hsia, 2007) points out, many administrators are too busy to do
anything about their vulnerabilities until they receive attack reports.

A good way to accomplish this last step is to continuously collect attack data on a honeypot, a
computer deliberately intended for no purpose other than to be attacked. We have done some
first steps in exploring this using a honeypot we have been running to study deception methods
(Rowe and Goh, 2007). Honeypots provide plenty of data about common untargeted attack
methods on the Internet, its "background radiation" (Pang et al, 2004).

4.1 Intrusion alert records
Two useful kinds of data obtainable from a machine under attack are the record of suspicious

events and the full packet records. An intrusion-detection system can provide the first kind for
known attacks. For instance, one record from the Snort intrusion-detection system running on our
honeypot was:

Date: 2007-09-12 Time: 15:46:56.148-07 Alert_code: 1394 Alert_description:
SHELLCODE x86 NOOP IP_address_1: 89.26.217.22 Port_#_1: 4310 IP_address_2:
192.168.0.3 Port_#_2: 445 time_to_live: 118

These alerts are triggered by Snort production rules of a relatively simple syntax that are

created by programmers who study attack traffic. Although there are periodic updates, it may
take a while for a rule for a new attack to get implemented. However, there are a sufficient
number of general rules that Snort and other intrusion-detection system can trigger to recognize at
least something in a new attack, because attacks often reuse parts of others.

Snort alert codes are indexed with some reference information, sometimes to CERT or
Bugtraq sites. These can be looked up at the Snort site and correlated with the information in
their referents. For instance, rule 1394 that triggered the above alert has the following description
at www.snort.org, providing a good number of useful keywords for further lookup.

GEN:SID 1:1394
Message SHELLCODE x86 NOOP
Summary This event is generated when an attempt is made to possibly overflow a buffer.
The NOOP warning occurs when a series of NOOP (no operation) are found in a stream.
Most buffer overflow exploits typically use NOOPs sleds to pad the code.
Impact This might indicate someone is trying to use a buffer overflow exploit. Full
compromise of system is possible if the exploit is successful.
Detailed Information This rule detects a large number of consecutive NOOP instructions
used in padding code. It's not specific to a particular service exploit, but rather used to try
and detect buffer overflows in general. It is common for buffer overflow code to contain a
large sequence of NOOP instructions as it increases the odds of successful execution of the
useful shellcode.
Affected Systems Any x86 programs.
Attack Scenarios An attacker uses a buffer overflow exploit which contains the following
payload: 90 90 90 90 90 90 90 90 90 90 /bin/sh
Ease of Attack Simple.
False Positives High, This event may be generated by applications such as ftp and http
when binary data is being transferred. A false Positive can be generated if the snort sensor
detects text from an IRC client or any other application that passes data plaintext. The
event is generated if snort detects several (a) characters in a row - such as 'aaaaaaaaaa'.

4.2 Packet analysis
Since new attacks and even many well-known attacks may not trigger an alert system, we may

need to find them in the background traffic. Text strings occur surprisingly often in attack traffic,
and other strings can be constructed from nontext data, though the text strings tend to be more
fruitful since they come prechunked. Two examples of packet dumps from TCPDump on our
honeypot were:

09/14-00:47:21.626361 131.120.18.41:53 -> 192.168.0.3:3559 UDP
TTL:111 TOS:0x0 ID:15349 IpLen:20 DgmLen:145 Len: 117
47 59 81 83 00 01 00 00 00 01 00 00 02 67 63 06 GY...........gc.
5F 6D 73 64 63 73 08 55 53 4E 42 41 52 4F 4E 05 _msdcs.USNBARON.
6C 6F 63 61 6C 00 00 06 00 01 00 00 06 00 01 00 local...........
00 00 00 00 40 01 41 0C 52 4F 4F 54 2D 53 45 52 @.A.ROOT-SER
56 45 52 53 03 4E 45 54 00 05 4E 53 54 4C 44 0C VERS.NET..NSTLD.
56 45 52 49 53 49 47 4E 2D 47 52 53 03 43 4F 4D VERISIGN-GRS.COM
00 77 A1 C8 65 00 00 07 08 00 00 03 84 00 09 3A .w..e..........:
80 00 01 51 80 ...Q.

09/16-22:43:13.038582 131.120.18.41:53 -> 192.168.0.4:1052
UDP TTL:111 TOS:0x0 ID:13512 IpLen:20 DgmLen:137 Len: 109
FF FA 81 83 00 01 00 00 00 01 00 00 08 64 6F 77 dow
6E 6C 6F 57 64 0D 77 69 6E 64 6F 77 73 75 70 64 nloWd.windowsupd
61 74 65 03 63 6F 6D 00 00 01 00 01 C0 15 00 06 ate.com.........
00 01 00 00 0E 10 00 35 03 6E 73 31 04 6D 73 66 5.ns1.msf
74 03 6E 65 74 00 06 6D 73 6E 68 73 74 09 6D 69 t.net..msnhst.mi
63 72 6F 73 6F 66 74 C0 23 77 A1 A5 3D 00 00 03 crosoft.#w..=...
84 00 00 02 58 00 09 27 C0 00 00 03 84 X..'.....

Here the first two lines give the packet header information, the left side below gives the raw
bytes in hexadecimal, and the right side translates it into alphanumeric characters if possible. The
first packet refers to a low-security site USNBARON that has been used for attacks, and the
second refers to downloWd, a favorite hacker spelling. But not all the strings are interesting; the
first packet also refers to nstld.verifsign-grs.com, a standard address for checking certificates, and
the second also refers to windowsupdate.com, the standard Windows updating site.

We can connect these strings to attack intelligence by supplying them to a Web search engine.
In general, we can look up any substantial character strings we find in a packet, including also the
individual words like "root-servers", "Verisign", and "msnht" above, in our databases of text
about attacks created using the methods of sections 2 and 3 above. Techniques can be similar to
those of forensics on malicious code which also exploit hidden strings in the code. It does not
matter whether the strings are functional in the attack or not – sometimes they are artifacts of the
attacker software, and sometimes they are just bragging – because they can all provide
identification and classification clues. Even subtle word clues can help, like "MARB" and
"MEOW"s in the following portion of a packet we received. Sure enough, doing a Google
lookup on those two words finds a reference (Parker, 2004) which explains their significance.

05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 00 00
90 06 00 00 01 00 04 00 05 00 06 00 01 00 00 00
00 00 00 00 32 24 58 FD CC 45 64 49 B0 70 DD AE 2$X..EdI.p..
74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 00 00 t,..`^..........
70 5E 0D 00 02 00 00 00 7C 5E 0D 00 00 00 00 00 p^......|^......
10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A 00 20 *M...j.
AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 00 00 .nr.....MARB....
00 00 00 00 0D F0 AD BA 00 00 00 00 A8 F4 0B 00
20 06 00 00 20 06 00 00 4D 45 4F 57 04 00 00 00 MEOW....
A2 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 F
38 03 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 8..............F
00 00 00 00 F0 05 00 00 E8 05 00 00 00 00 00 00
01 10 08 00 CC CC CC CC C8 00 00 00 4D 45 4F 57 MEOW
E8 05 00 00 D8 00 00 00 00 00 00 00 02 00 00 00

The headers of attack packets also provide useful indexing words to the attack, particularly the

packet-length ("Length"), time-to-live ("TTL"), type-of-service ("TOS"), and protocol-name (at
the end of the first line) fields. To exploit these, we give the field name and the associated value
as keywords. IP addresses are useful since they can be looked up in registry sites like the ARIN
registry (www.arin.net) for information about what they are. More specific classification of the
type of usage (such as the specific service using HTTP) can be obtained by simple methods of
approximate assembly of the packets, and this helps classify the attack. Subtle clues in the
packets can also be learned by using techniques such as support-vector machines (Li, Wang, &
Luo, 2006). Further packet partitioning can be done using techniques from digital forensics in
extracting hidden files from disks (Garfinkel, 2007).

4.3 Keyword lookup

Once we have accumulated keywords from the attack description (with intrusion detection) or

the packet itself, we can find out what vulnerabilities and attacks are associated with them. Many
words used in attack packets are common generic words, so it is important to eliminate them. (In
addition, we saw some true text messages on the honeypot, such as those from UDP phishing.)
We can keep a list of such ignorable words much like stopword lists used in conventional text
data mining. Currently we use one of 638 words (mostly from our previous data-mining work but
with some additions specific to packets), including prepositions, adverbs, adjectives, pronouns,
and overly-general nouns and verbs, as well as names of common Internet sites. Example entries
are “into”, “rather”, “entire”, “ourselves”, “rather”, “order”, “fact”, “mr”, “root”, “windows”,
“need”, “please”, “2007”, “Adobe”, and “Microsoft”.

As an experiment, we took 1,632,374 lines of TCPDump output from five days of our
honeypot run in September 2005, which was about 14 megabytes of packet data. We grouped
together all consecutive packets with the same IP addresses (source and destination) and port
numbers, and extracted their text strings as sets, one per packet sequence. After eliminating
stopwords, we obtained only 406 unique string sets averaging 5.7 words per set, each
characterizing an attack type or variant. An example is "aof baronus gss ntlmssp usn". Many
pairs of these sets had substantial overlap, like that between the previous example and "aof
baronus gss mww ntlmssp usn vge yeo". The strings critical to attacks are those common to
pairs. A simple algorithm to get the critical strings is to successively find pairs of sets which
overlap in all but one string (corresponding to attack instances in which only one string differed).
Applying this to the 406 sets from the experiment gave us 67 additional strings of significantly
higher precision.

Our remaining words can then be looked up in an index of vulnerability and attack
information using the methods of section 2. For this lookup it is usually desirable to search for
references that match the conjunction of terms rather than the disjunction since most attacks
depend on a specific conjunction of features in the packet to be effective, and precision tends to
be low for disjunctive queries with these kinds of words. However, packets often form sequences
based on their originating IP address and ports. Collecting all the strings for the packet sequences
gives us large numbers of keywords for which matches on only a significantly large subset should
be sufficient. To avoid missing useful data, we should do lookups on both the individual packets
and packet sequences.

What if we fail to find any reasonably specific vulnerability or attack information on a
particular attack packet sequence? That can actually be good because we may be seeing a new
attack. We should be particularly interested if unusual strings (as judged by frequency counts)
occur in the packet strings, as these may be our first warning of new attack methods. We should
record the sets and, if possible, post them on bulletin boards to seek additional information.

5. Future Work

We have developed a variety of tools for data mining of vulnerability and attack information.

The next step is to upscale our tools to collect a much larger chunk of the current information
flow. This will require some database design and a bank of computers running continuously to
fill the database.

The tools themselves need to be tuned. With part-of-speech tagging, we could achieve better
results than with keyword matching alone, and the combination of the two worked even better.
We estimate that using even more sophisticated natural-language processing techniques might
improve the results and discover relational patterns not evident with our current techniques. In
particular, semantic analysis (looking at the “meaning” of the text) would provide the opportunity
to discover related textual information even if a sentence were rewritten using a different word
structure and vocabulary. Some recent work has shown good results in detecting semantic
entailment in two separate pieces of text.

Information flow analysis of vulnerability and attack information can be used in a variety of
dissemination architectures. It could support centralized reporting and dissemination, or it could
support a peer-to-peer sharing of new information (Baquero & Lopes, 2003), depending on the
resources and philosophy of the users. Identification of new kinds of attacks in a protocol could
at least prompt system administrators to disable service of the protocol on their routers and other
networking equipment, a simple approach that can immediately reduce attack damage
significantly (Lai & Hsia, 2007). It could supply data for accurate modeling of vulnerability
reporting (Browne et al, 2001). It could also provide the necessary data for design of good
randomization strategies for software based on what vulnerabilities tend to be exploited (Iyer et
al, 2003), or deception strategies (Rowe & Goh, 2007). Detection of new attack variants in
packets could be worth money to its discovers since some organizations pay for new exploits
(Kannan, Telang, & Xu, 2004).

6. Conclusions

We have developed parts of a new approach to real-time information security, an approach

that automatically recognizes text associated with attacks and correlates them with Web
information about them. This could provide useful “information flow” analysis of how attack and
vulnerability intelligence is created and disseminated, indicating possible bottlenecks and
redundancies. It could also provide a basis for automatic real-time defense against attacks even if
not much is yet known about them. But much work needs to be done to build the database of
significant size that will be necessary, and set up automatic updates to it.

References

Arora, A., Nandkumar, A., & Telang, R. 2006. Does information security attack frequency

increase with vulnerability disclosure? An empirical analysis. Information Systems Frontier,
Vol. 8, No. 5, 350-362.

Baquero, C., & Lopes, N. 2003, October. Towards peer-to-peer content indexing. ACM
SIGOPS Operating Systems Review, Vol. 37, No. 4, pp. 90-96.

Browne, H., Arbaugh, W., McHugh, J., & Fithen, W. 2001, May. A trend analysis of
exploitations. Proc. IEEE Symposium on Security and Privacy, pp. 214-229.

Farrow, R. 2000. Vulnerability disclosure debate. Network Magazine, October 2000.
www.spirit.com/Network/net0800.html, Retrieved December 12, 2007.

http://www.spirit.com/Network/net0800.html

Garfinkel, S. 2007. Carving contiguous and fragmented files with fast object validation.
Digital Investigation, 45, 2-12.

Guglielmo, E., and Rowe, N. 1996, May. Natural language retrieval of images based on
descriptive captions. ACM Transactions on Information Systems, 14, 3, 237-267.

Iyer, R., Chen, S., Xu, J., & Kalbarczyk, Z. 2003, October. Security vulnerabilities – from
data analysis to protection mechanisms. Proc. 9th Intl. Workshop on Object-Oriented Real-Time
Dependable Systems, pp. 331-338.

Jurafsky, D., and J. Martin. 2000. Speech and language processing. Prentice Hall.
Kannan, K., Telang, R., and Xu, H. 2004, January. Economic analysis of the market for

software vulnerability disclosure. Proc. 37th Hawaii Intl. Conf. on System Sciences, p. 8.
Lai, Y.-P., & Hsia, P.-L. 2007, June. Using the vulnerability information of computer

systems to improve the network security. Computer Communications, Vol. 30, No. 9, 2032-
2047.

Li, B., Wang, Q., & Luo, J. 2006, December. Forensic analysis of document fragment based
on SVM. Proc. Intl. Conf. on Intelligent Information Hiding and Multimedia Signal Processing,
Pasadena, CA, 236-239.

McVicker, M., P. Avellino, and N. Rowe. 2007. Automated retrieval of security statistics
from the World Wide Web. Proc. 2007 IEEE Workshop on Information Assurance, United States
Military Academy, West Point, New York, pp. 355–356.

Moskowitz, I., & Kang, M. 1997. An insecurity flow model. Proc. 1997 Workshop on New
Security Paradigms, Langdale, UK, pp. 61-74.

Pang, R., V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. 2004. Characteristics of
Internet background radiation. Proc. 4th ACM SIGCOMM Conference on Internet Measurement,
Taormina, IT, pp. 27-40.

Parker, D. 2004. Examining a public exploit, part II. Retrieved from
www.securityfocus.com/infocus/1801, September 15.

Rao, J., and P. Rohatgi. 2000. Can pseudonymity really guarantee privacy? Proc. of the 9th
USENIX Security Symposium.

Rowe, N., and H. Goh. 2007. Thwarting cyber-attack reconnaissance with inconsistency and
deception. Proc. 8th IEEE Information Assurance Workshop, West Point, NY, June, pp. 151-158.

Sourceforge. 2007. Natural Language Toolkit. Retrieved from http://nltk.sourceforge.net,
September 1.

Tian, H., Huang, L., Zhou, Z., & Luo, Y. 2004, May. Arm up administrators: automated
vulnerability management. Proc. 7th Intl. Symposium on Parallel Architectures, Algorithms, and
Networks, pp. 587-593.

Yuill, J., Wu, F., Settle, F., Gong, R., Forno, R., Huang, M., & Asbery, J. 2000, October.
Intrusion-detection for incident-response, using a military battlefield-intelligence process.
Computer Networks, Vol. 34, No. 2, 671-691.

Appendix. Example sentence matches

We show here some more examples (both successful and unsuccessful) of the sentence

matching. We give in order the dates of the pages, the text of the pages, the URLs of the pages,
and the rating we computed using both keywords and structure matching.

Wed Dec 31 16:00:00 PST 1969
Mon Nov 22 08:12:44 PST 2004
Symantec (2003) ?Symantec Internet Security Threat Report Sees Increase in Blended Threats,
Vulnerabilities and Internet Attacks

http://nltk.sourceforge.net/

Press Release,?Symantec (2003) ?Symantec Internet Security Threat Report Sees Increase in
Blended Threats,Vulnerabilities and Internet Attacks?
http://72.14.253.104/search?q=cache:BSGuNyNGVdIJ:www.nvpcug.org/Newsletter/7July05.pdf
http://secureflorida.org/clientuploads/C-SAFE/CSAFEcybersecuritymanual.pdf
0.91751

Mon Jul 02 09:26:18 PDT 2007
Tue Jul 03 15:10:02 PDT 2007
Lack of Mac malware baffles experts - vnunet.com Apple's Mac OS X remains almost completely
free of any sort of malware threat despite several years of availability, a significant market share,
and even an entire month dedicated to pointing out its flaws.
Apple's Mac OS X remains almost completely free of any sort of malware threat despite several
years of availability, a significant market share, and even an entire month dedicated to pointing
out its flaws.
http://www.b12partners.net/mt/archives/macintosh/
http://www.vnunet.com/vnunet/news/2186013/dearth-mac-malware-continues
0.91394

Mon Aug 20 13:57:51 PDT 2001
Tue Jul 03 04:09:15 PDT 2007
A debate has raged for some time over whether the major threat to system security arises from
attacks by "insiders" or by "outsiders." Insiders have been blamed for causing 70 to 80 percent of
the incidents and most of the damage (Lewis, 1998).
Insiders have been blamed for causing 70 to 80 percent of the incidents and most of the damage
(Lewis, 1998).
http://www.aci.net/kalliste/tic.htm
http://web.elastic.org/%7efche/mirrors/www.jya.com/tic.htm
0.70866

Wed Dec 31 16:00:00 PST 1969
Tue May 31 00:21:30 PDT 2005
Botnets or zombie networks are groups of computers that have been infected by malware that
allow the malware to control the infected PC and use it to send spam or launch distributed denial
of service (DDoS) attacks.
Zombie networks are groups of computers that have been infected by malware that allows the
author to control the infected PC and use it to send spam or launch DDoS attacks.
http://weblog.infoworld.com/techwatch/archives/cat_security.html
http://www.attrition.org/pipermail/isn/2005-May.txt
0.68167

Wed Dec 31 16:00:00 PST 1969
Wed Dec 31 16:00:00 PST 1969
Adware Installation Trick 3: Outright Lying How it works: malware may even be labeled as
something else entirely, such as a well-known piece of software or a crucial component of the
computer operating system.
Adware Installation Trick 1: Piggybacking How it works: malware may come bundled with a
legitimate piece of software the user actually wants, such as a game or emoticon.
http://www.greatarticleshere.com/aid32813/Adware-How-to-Beat-the-Sneakiest-Software.html
http://www.simplyyourarticles.com/aid16923/Adware-How-to-Beat-the-Sneakiest-Software.html
0.58637

Wed Dec 31 16:00:00 PST 1969
Fri Aug 12 18:42:55 PDT 2005
In the first quarter of 2007, security firm Sophos PLC identified 23,864 new malware threats,
more than double the 9,450 the company found in the same period last year.
The firm reported last week that it had detected 7,944 new pieces of such malware in the first six
months of this year ? almost 60 percent more than the same time last year.
http://203.29.124.140/feed/single/21
http://www.cwalsh.org/isnd/archives/2005_07.html
0.46503

Thu Mar 27 02:20:40 PST 2003
Tue May 31 00:21:30 PDT 2005
In the paper statistics can be found on computer crime vulnerabilities, computer crime incidents,
computer security incidents, malicious attacks, etc. which could include crimes, attempts at
crimes, etc. but probably also non-criminal conduct.
These fix some vulnerabilities, which can be exploited by malicious people to conduct cross-site
scripting attacks, bypass certain security restrictions, gain knowledge of potentially sensitive
information and compromise a user's system.
http://www.ulapland.fi/home/oiffi/enlist/resources/HeuniWeb.htm
http://www.attrition.org/pipermail/isn/2005-May.txt
0.42534

Wed Dec 31 16:00:00 PST 1969
Wed Dec 31 16:00:00 PST 1969
Botnet computers are machines (generally running one of the notoriously insecure Windows
OSes) that are infected with malicious software that lets criminals use them to send spam and
launch denial-of-service attacks as part of extortion rackets.
Botnets or zombie networks are groups of computers that have been infected by malware that
allow the malware to control the infected PC and use it to send spam or launch distributed denial
of service (DDoS) attacks.
http://boingboing.net/2007_05_01_archive.html
http://weblog.infoworld.com/techwatch/archives/cat_security.html
0.41331

Wed Dec 31 16:00:00 PST 1969
Tue Jul 03 15:00:37 PDT 2007
New Scam Targets Bank Customers (Click for story) SANS Internet Storm Center is reporting on
a new strain of IE Malware.
The prolific Storm malware is on the attack again, according to the folks at the SANS Internet
Storm Center (ISC).
http://www.personal.psu.edu/faculty/w/r/wrp103/oldnews.html
http://www.us.first.org/newsroom/globalsecurity/
0.39362

Wed Dec 31 16:00:00 PST 1969
Wed Dec 31 16:00:00 PST 1969
Using malware or software designed to infiltrate a computer system, hackers steal account
information for users of MMO games and then sell off virtual gold, weapons and other items for
real money.

The computer then becomes part of a bot network, which can then be used to launch denial of
service attacks, install keylogging software and steal personal account information and other
malicious activities.
http://www.futurebrief.com/security2006.asp
http://weblog.infoworld.com/techwatch/archives/cat_security.html
0.38138

Wed Dec 31 16:00:00 PST 1969
Fri Oct 28 15:11:32 PDT 2005
Moreover, only 4 percent of the successful DoD attacks were noticed by network administrators,
and only a small percentage of those detected were reported to authorities.
Thirty percent of respondents have no clue as to how many attacks their network was subjected to
in the past year, and 22 percent do not know how many successful attacks transpired at that time.
http://www.ecommerce-guide.com/news/trends/print.php/7761_504441
http://www.umsl.edu/%7esauter/spam/index2.html
0.36669

	Abstract
	1. Introduction
	2. Word-matching tools
	2.1 Finding relevant Web sites and matching them
	2.2 Classification of sentence similarities

	3. Structure-based sentence matching
	3.1 Mining methodology
	3.2 Comparisons
	3.3 Results

	4. Correlating attack reports with packets
	4.1 Intrusion alert records
	4.2 Packet analysis
	09/14-00:47:21.626361 131.120.18.41:53 -> 192.168.0.3:3559 UDP TTL:111 TOS:0x0 ID:15349 IpLen:20 DgmLen:145 Len: 117
	47 59 81 83 00 01 00 00 00 01 00 00 02 67 63 06 GY...........gc.
	5F 6D 73 64 63 73 08 55 53 4E 42 41 52 4F 4E 05 _msdcs.USNBARON.
	6C 6F 63 61 6C 00 00 06 00 01 00 00 06 00 01 00 local...........
	00 00 00 00 40 01 41 0C 52 4F 4F 54 2D 53 45 52 @.A.ROOT-SER
	56 45 52 53 03 4E 45 54 00 05 4E 53 54 4C 44 0C VERS.NET..NSTLD.
	56 45 52 49 53 49 47 4E 2D 47 52 53 03 43 4F 4D VERISIGN-GRS.COM
	00 77 A1 C8 65 00 00 07 08 00 00 03 84 00 09 3A .w..e..........:
	80 00 01 51 80 ...Q.
	4.3 Keyword lookup

	5. Future Work
	6. Conclusions
	References
	Appendix. Example sentence matches

