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Abstract 
A key challenge for battlefield simulation is the estimation of enemy courses of action (COAs). Current 
adversarial COA development is a manual time-consuming process prone to errors due to limited 
knowledge about the adversary and its ability to adapt. Development of decision aids that can predict 
adversary’s intent and range of possible behaviors, as well as automation of such technologies within 
battlefield simulations, would greatly enhance the efficacy of training and mission rehearsal solutions.  

In this paper, we describe the development of OPFOR agents that can intelligently learn BLUEFOR’s 
mission plan. This knowledge will allow OPFOR agent to reason about the intent of BLUE and counteract 
accordingly to prevent/influence the future BLUEFOR’s operations by affecting current operations, 
challenging BLUE’s resources, and preparing OPFOR for future battles. 

1. Motivation: Modeling Adaptive Opposing Forces 
A key challenge for battlefield simulation is the estimation of enemy courses of action (COAs). Current 
adversarial COA development is a manual time-consuming process prone to errors due to limited 
knowledge about the adversary and its ability to adapt. Development of decision aids that can predict 
adversary’s intent and range of possible behaviors, as well as automation of such technologies within 
battlefield simulations, would greatly enhance the efficacy of training and mission rehearsal solutions.  

Under the sponsorship from DARPA, Aptima Inc. has conducted an SBIR Phase I project to develop the 
Automated Collateral Tactics for OPFOR Responses (ACTOR) module for battlefield simulations. This 
module will allow automating control of opposing force’s (OPFOR) simulated units while requiring 
minimal input from the simulation operators based on the mission environment and the commander’s 
objectives. ACTOR modeling is based on dynamically learning the command and control (C2) behavior 
patterns of BLUE forces (BLUEFOR) and consequently generating adaptive OPFOR plans aimed at 
achieving the highest degree of deception and system-wide effects on the BLUEFOR C2 team. The ultimate 
goal of the ACTOR framework is to enable the design of advanced collaborative planning tools to support 
development of BLUEFOR courses of action. 
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Figure 1: ACTOR Technology Components 

ACTOR technology consists of the three components defining automated intelligent adversary (Figure 1): 

• Knowledge component contains libraries of BLUEFOR actions signatures, mission patterns, and 
organizational structures and OPFOR action impact / BLUEFOR responses learned over time by 
ACTOR from interactive plays between various OPFOR and BLUEFOR teams; 

• Perception component contains parametric inference algorithms enabling OPFOR’s identification 
of current and future actions, missions, and structures of BLUEFOR;  
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• Action planning component contains models for developing OPFOR’s reconnaissance plans and 
plans of (counter)actions against BLUE forces. 

ACTOR will create OPFOR agents that can intelligently learn what BLUEFOR are doing and adapt their 
behaviors. This technology can bring several benefits to current Command and Control processes. First, 
ACTOR will enhance Intelligent Preparation of the Battlefield (IPB) process and Courses of Actions 
(CoAs) planning by allowing more accurate predictions of adaptive adversaries in today’s and tomorrow’s 
complex and asymmetric environments. Second, ACTOR will enable faster and more efficient training of 
US force commanders and staff against the simulated forces that mimic the adaptability of current enemies. 
And finally, ACTOR will allow quick mission rehearsal and collaborative wargaming to improve the 
readiness of BLUE forces. 

In this paper, we describe one of the inference algorithms in perception component of ACTOR model that 
performs the recognition of BLUEFOR’s mission plan. The knowledge of BLUEFOR’s mission will allow 
OPFOR agent to reason about the intent of BLUE and counteract accordingly to prevent/influence the 
future BLUEFOR’s operations by affecting current operations, challenging BLUE’s resources, and 
preparing OPFOR for future battles. 

The paper is organized as follows. In Section 2 we summarize current research in plan and behavior 
recognition. Section 3 describes our probabilistic plan identification algorithm. We present the use case and 
simulation analysis results in Section 4 and provide conclusions and future research directions in Section 5. 

2. Related Research in Plan Recognition 
Plan recognition is the process of inferring another side’s plans or behaviors based on observations of its 
interaction with the environment. Several applications of plan recognition have been developed in the last 
decade. Most of the automated plan recognition models, however, have severe limitations to be used by 
OPFOR agents: 

• Traditional utility-based plan recognition infers the preferences of the actors and selects the plan that 
achieves the highest static or expected utility. Maximum-utility plan recognition models (Mao and 
Gratch, 2004; Blythe, 1999) cannot track the plan evolution over time as the utility of action execution 
mostly does not change while the actions in the plan are executed.  

• Traditional probabilistic plan tracking and actor profiling looks at patterns of activities performed 
by a single individual or the whole group to determine its role, threat indicator, intent, goal, or future 
actions. This approach does not allow tracking of coordinated and interdependent actions by multiple 
actors in both space and time. For example, criminal clustering models (Stolfo et al., 2003) have only 
dealt with single relationship-based group identification, while spatial criminal forecasting (Brown, 
Dalton, and Hoyle, 2004) have relied only on the demographic information, areas of concentration of 
adversarial actors, and the locations of hostile events. Statistical temporal event analysis techniques, 
such as Hidden Markov Models (Schrodt and Gerner, 2001; Singh et al., 2004), Bayesian Networks (Tu 
et al., 2006), Markov Decision models (Yin et a., 2004), decision tree-based models (Avrahami-
Zilberbrand, and Kaminka, 2005), and conditional hierarchical plans (Geib and Harp, 2004) can reliably 
forecast behavior of only single actor, dyadic relationships, or a group. This behavior representation 
assumes that only a single action can happen at any time. Each single actor or group and its actions may 
look benign, but only by analyzing combined interactions can one discern the true nature of behavior 
and enable early predictions of future hostile activities.  

• Traditional interactions analysis models – including differential equations (Turchin, 2003), 
interaction-events data analysis (Gerner et al., 2002; O’Brien, 2004), game-theoretic models (Brams 
and Kilgour, 1988), agent-based simulations (Popp et al., 2006), and others – need to be pre-populated 
with a large amount of data. A significant amount of noise events (text parsing errors, 
misclassifications, missed information, and deceptions) contribute to misleading forecasts (false alarms 
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and false positives – the recognition of potential threats that have little or no impact) due to the 
sensitivity of these models to input parameters. In addition, different models work at different levels of 
granularity, with no common analytical and software framework developed to integrate model inputs 
and outputs (Popp et al., 2006). Very few of these models were able to “remove the noise” from the 
input data, and none of the models were able to work with data sources at different levels of granularity. 

Instead of single actor plan recognition, the OPFOR needs to learn the mission of BLUEFOR that consists 
of multiple units and performs coordinated activities constrained by the BLUE’s organizational structure. 
Therefore, we need to account for the resource and organizational constraints of BLUE forces, the utility 
and probabilistic nature of the actions, the uncertainty in dynamic observations about BLUE’s activities, 
and the fact that many activities might happen in parallel. In spirit, our models of perception for OPFOR 
agent are close to team plan recognition research (Kaminka, and Pynadath, 2002). Our approach differs in 
the quantitative representation of the organizational structure and mission plans, and the algorithms that we 
use for discovering the hidden organization and mission of BLUEFOR from noisy observations. 

3. Method: Probabilistic Mission Plan Identification 
ACTOR mission recognition algorithms are based on hypothesis testing principles: the algorithm selects the 
mission(s) from the hypotheses set that best explains the OPFOR’s observations (Figure 2). Each mission 
is matched against the set of observations to determine its most likely state. The match between the mission 
and its state is scored with the a-posteriori function, and then the likelihood function is used to rank-order 
the missions from the hypotheses set. 
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Figure 2: Mission Plan Recognition Process 

The set of observations is obtained by OPFOR sensors, which include its operatives, insurgents, fighters, 
civilians and local informants. The observations are noisy events about the operations that individual BLUE 
force units are conducting (e.g., patrols, searches, security operations, force march, checkpoint setup, etc.). 
These events contain three information elements (Figure 2): (i) geo-spatial information – indicating the 
location of activities; (ii) temporal information – indicating the time of activities; and (iii) feature 
information – indicating the type of actions, participating units, resources used, etc. 

3.1. Mission Plan and Military Assets Representation 
Formally, a mission is defined as a plan that BLUEFOR has created and going to follow. We follow a 
formal planning model defined in (Levchuk et al., 2002). Missions consist of tasks that individual 
BLUEFOR units will execute. In order to define the mission, we need to specify its structure, the set of 
tasks, and the resources required to execute theses tasks. The mission structure (Figure 3) is defined as a 
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directed acyclic graph  termed task graph (Levchuk et al., 2002), where the set of graph nodes 
 represents the tasks of the mission and a set of directed edges  

represents the precedence constraints among tasks (so that tasks can be started only after all their 
predecessor tasks are completed). We use this formulation for the reasons of simplicity, but it can be 
extended to represent task networks with conditional nodes and temporal constraints (Vidal and Bidot, 
2001; Rossi, Venable, and Yorke-Smith, 2003).  

),( EVG =
},...,,{ 21 NTTTV = },{ >=<= jiij TTeE
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T2

T3

T4

T5

Conduct patrolling-1

Conduct patrolling-2
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Conduct site security

(a) Example of Mission Task Graph (b) Example of Mission Task List  
Figure 3: Example of Mission Plan 

 
Type Description 
SCR Secure (areas, sites);  
EN Envelope-Isolate-engage (of the enemy forces) 
TRSP Transport/MED Evacuation (of forces, soldiers, civilians, etc.) 
MAN Manage-Maintain-Setup (checkpoints, facilities, buildings) 
REC Ground Recon-Search – to search buildings, routs, collect intelligence on the ground 
INT Interrogate civilians, criminals, enemy combatants 

FIRE 
Non-precision Fire against enemy – including direct and indirect fire capability, such as 
missiles, bombs, artillery, etc. 

DTN Detain enemy combatants, civilians, etc. 

PTRL 

Patrol/Force presence ops – patrolling operations, which very often are conducted to 
enforce the curfews, show presence and discourage criminals from illegal actions, and 
militia from attacks 

Figure 4: List of Resource Types 

To model the task execution and allocation of resources, we define the list of resource types (Figure 4). 
Then, for each task , we define the resource requirement vector  (Figure 5), and for each 
unit/asset  in the BLUE’s organization we define resource capabilities vector  (Figure 6). 
Here,  is the number of units of resource l required for successful processing of task  and  is the 
number of units of resource type l available on platform  (

iT ],...,,[ 21 iLii RRR

mP ],...,,[ 21 mLmm rrr

ilR iT mlr

mP Ll ,...,1= , where L is the number of resource 
types). The task  execution is successful if the vector of applied resources from the BLUE’s assets is 
component-wise more or equal to the task’s resource requirements: 

 where 

iT

;,..,1;,..,1,
1

LlNiRwr il

K

m
imml ==≥⋅∑

=

1=imw  if asset  is assigned to task . The 

application of asset’s resource to the task can be viewed as an individual action by this asset, and can thus 
be observed by OPFOR’s sensors. 

mP iT

 
Tasks SCR EN TRSP MAN REC INT FIRE DTN PTRL
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Site reconnaissance 0 0 0 0 2 0 0 0 0
Building search 2 0 0 0 1 0 0 0 0
Checkpoint setup 1 0 0 1 0 0 0 0 0
Attack OPFOR positions 0 2 0 0 0 0 4 0 0
Site security 3 0 0 0 0 0 0 0 0
Resupply ops 1 0 3 0 0 0 0 0 0
Detain OPFOR members 0 0 0 0 0 2 0 2 0
Patrolling 0 0 0 0 0 0 0 0 3

Figure 5: Example of Task Resource Requirements 

BLUE Units SCR EN TRSP MAN REC INT FIRE DTN PTRL
RFL Squad 1 0 0 1 0 0 0 1 1
Tank 0 1 0 0 0 0 1 0 0
Rec Squad 1 0 0 0 1 0 0 0 0
MP 0 0 0 1 0 1 0 1 1
Humwee 0 0 1 0 0 0 0 0 0

Figure 6: Example of Asset Resource Capabilities 

3.2. Mission State Representation 
The state of mission  is then defined as a labeled network ),( EVG = ),,( SEV=Ω , where 

{ }NisS T
i ,...,1|}1,0{ =∈=  is a set of task states that correspond to node labels (  if the task  is 

completed; otherwise ). Figure 7 shows the example of the mission and its state. 
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Figure 7: Example of Mission and its State 

Mission states can be feasible and infeasible. A feasible mission state (Figure 7b) represents task execution 
satisfying precedence constraints (that is, if  then - i.e., all parents of the 
completed task are themselves completed). An infeasible state is such that this condition is not satisfied. For 
example, in Figure 6c the task T4 is indicated as “completed”, while its predecessor T3 is not. 

1=T
js Eeis ij

T
i ∈∀= :,1

3.3. Knowledge and Data Available to OPFOR 
The OPFOR agent has a knowledge of a set of feasible missions that BLUE may conduct. This knowledge 
could have been generated from experience of the OPFOR’s battles against BLUEFOR, studying the 
BLUE’s doctrine, etc. The models to build this knowledge are outside the scope of this paper. 

Figure 8 shows an example of the set of feasible missions that BLUEFOR can conduct; this set is assumed 
known by OPFOR. In Figure 8, we color-coded the tasks of the same type that occur in different locations. 
As the result, we capture the spatial information (information about task locations), temporal information 
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(sequencing of tasks according to precedence in the mission), and type information (overlap in the types of 
activities that need to be performed). As an example, missions M1 (Recon and patrolling) and M2 (ground 
stability and defensive ops) have two common tasks, (“site recon” and “site security”), and are qualitatively 
and quantitatively distinguished by other mission-unique tasks. 

Tasks:

Site reconnaissance

Patrolling

Site security

Attack OPFOR positions

Detain OPFOR members

Building search

Resupply ops

Checkpoint setup

Mission Structures:

M1: Reconnaissance and patrolling 

M2: Ground Stability and Defensive 
Ops

M3: Search

M4: Security and supplies

M5: Area and site security

 
Figure 8: The Set of BLUE Missions for the Experiment 
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Figure 9: Example of Observed Mission State 

Due to the fact that OPFOR agent does not know the true BLUEFOR’s mission or its state, we can say that 
the mission state is hidden. From the observations about tasks’ states, for each mission plan in the 
hypothesis set the OPFOR agent composes observed mission state (Figure 9). For a specific mission plan, 
the observed mission state may be infeasible due to missing data, errors in task identification, deceptions 
and irrelevant observations. In order to identify what mission plan is in progress and what is its current 
state, we need to find mission plans and their states that not only provide best match to the observed data, 
but also are feasible given the resources of the organization. 

3.4. Probabilistic Inference Model: Mission Plan Recognition 
The Mission State Influence Model. 

Relationship between actual mission state and observations can be represented by the following model. We 
view the task as a random variable  that can take values . Each such random variable 
(task) is not directly observable, and is assumed to have prior probability of being completed equal to 

T
is }1,0{∈= ssT

i
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Because task execution depends on other tasks and on availability of resources, we define the dependencies 
between random variables  in the form of the conditional Markov field, that is a conditional probability 
of a state of a task given the state of its neighbors: 

T
is

 },{},,|{)|( EessEesssspssp jijNjij
T
j

T
iNi ∈=∈===  [2]

where  is a set of states of predecessor tasks for task . In [2] we intentionally included 

only the predecessors of the task , because this probability can be tied to the time task  can be executed 
(i.e., when all predecessors have been completed). Note that the Markov property means that 

. Obviously, probability of a task to have a state 1 
(“completed”) is zero if at least one of the predecessor tasks has not been completed: 

},{ Eess jijN ∈= iT

iT iT

},|{},|{ Eesssspjssssp jij
T
j

T
ij

T
j

T
i ∈===∀==

0)}0{:|1( =∈= NNi sssp , 1)}0{:|0( =∈= NNi sssp  

We then define a probability of task completion when all predecessors have been completed: 

 c
iiNii pssp === )1|1( }{  [3]

 

The Markov assumption can be used to define the joint mission state (prior) probability as: 

 ∏====
i

iNii
T
i sspNisspSp }|{},...,1,{)( )(  [4]

 

The Mission State Observation Model. 

The task can emit the observation about its state – a random variable . The observation process 
is defined using conditional probability  

}1,0{∈T
io

 }|{)|( ssoopsop T
i

T
ii ===  [5]

This probability can be captured based on knowledge of the accuracy and availability of data collection 
resources and the model of the BLUEFOR’s deception. We then define the observation probabilities as: 

Probability of miss: 

 m
iiii psop === )1|0(  [6]

Probability of false alarm: 

 f
iiii psop === )0|1(  [7]

 

Our setup of the observation model is equivalent to an assumption that the observations about mission state 
are modeled as a random field that is conditionally independent, that is: 

 
∏
=
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i
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T
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T
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1
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The Inference Model. 

We identify two problems of mission plan identification: 

Problem 1 (Mission State Identification): For a given mission plan (hypothesis) , find its state  that 
most likely has generated the observations O . One of the possibilities is to use the maximum a-posteriori 
estimator: 

m mŜ

 ),|(maxargˆ mOSpS
S

m =  [9]

Note that conditioning on mission  has been disregarded in the previous section for simplicity. m
The solution in [9] is taken over the set of mission states that are feasible given current observations. This 
means that for tasks indicated as “completed” in the state definition, for which the observation about their 
execution was not available, we must find the asset assignment which does not violate assignment of other 
tasks. 

Problem 2 (Mission Identification): For a given set of mission model plans M  find the mission Mm∈ˆ  
that has most likely generated the observations . One example of the objective function is to use the 
maximum likelihood estimator: 

O

 )|(maxargˆ mOpm
m

=  [10]

3.5. Solution 
To obtain an estimate of the mission’s state, i.e. a solution to [9], we first note that using [4] and [8] and the 

fact that 
)|(

)|(),|(),|(
mOp

mSpmSOpmOSp =  we get: 

 ∏=
i

iNiiiii sspsop
Z

mOSp )|()|(1),|( }{  [11]

where  ∑ ∏∏=
S i

iNii
i

iii sspsopz )|()|( }{

Then, the log-posterior of mission state is: 

 constsspsopmOSp
i

iNii
i

iii ++= ∑∑ )|(log)|(log),|(log }{  [12]

 

Due to setup of mission precedence graph, the second component will only contain a reference to the 
predecessors that all have state “completed”, that is it will contain  and c

iplog ( )c
ip−1log . All other 

components are = 1, and hence 0)|(log }{ =iNii ssp . All we need to make sure is that the mission state is 

feasible – that is, we only consider  if 1=is }{,1 iNjs j ∈= . 

As the result, we will have for a feasible mission state : S
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There are several algorithms to find a solution that maximizes the expression in [13], which include: 

• Enumeration: generate the set of all feasible states of the mission, score each state according to 
[14], and pick the maximum; 

• Greedy search: iteratively update the state of a single mission’s task based on largest improvement 
in the objective function [13]; 

• Stochastic search: update the mission state iteratively (e.g., choose the task to update based on 
soft-max principle) and select a solution based on some strategy (e.g., using simulated annealing, 

which accepts the mission state with probability ( )
⎪⎩

⎪
⎨
⎧

−
≥

=
+

+

+ otherwise
T

ff
ff

Sp
nn

nn

n ,exp

,1

1

1

1 , where 

 and ),|(log mOSpf nn = T  is a decaying temperature). 

• AO* algorithm: search through the state space of mission states and update the utility of task state 
changes during the backtracking.  

To find the estimate of BLUEFOR’s mission plan, i.e. a solution to [10], we note that it is decomposed as: 
 ∑∏∑ ==

S i
iNiiiii

S

sspsopmSpmSOpmOp )|()|()|(),|()|( }{  [14]

The summation in [14] is over all possible mission states, and in case the task graph complexity is high (i.e., 
the number of tasks is large and the precedence constraints are sparse), we find an approximation to this 
function using importance sampling algorithm (Srinivasan, 2002). For the purposes of our simulation results 
(see next section), we have used the full enumeration since the graph complexity in our study example was 
small. 

4. Results: Assessing the Accuracy and Sensitivity of Mission Plan Recognition 
Algorithms 

4.1. ACTOR Prototype Components 
To assess the accuracy of developed predictive models, we have developed a prototype incorporating virtual 
C2 simulation and perception algorithms. The high-level architecture of ACTOR prototype is shown in 
Figure 10. The core of the ACTOR prototype solution is a Simulation Controller implementing a virtual 
battlefield C2 task. The controller was based on the distributed agent-based models of simulated asset 
control, that were able to implement three main actions: (i) move in the environment by routs and zones; (ii) 
engage other assets (simulation entities) in the environment – e.g., BLUEFOR assets can attack other assets; 
and (iii) sense information in the environment – e.g., detect enemy assets, classify assets, observe actions, 
etc. The assets were controlled to move and engage other assets in the environment based on the mission 
plan selected for the corresponding force. In our simulations we have assigned a single mission to 
BLUEFOR. The OPFOR assets were kept stationary in the environment and used only to provide sensed 
data feeds (detected entities and events) for predictions about BLUEFOR. The planning components 
developed by ACTOR in the future will fully automate the OPFOR assets. 

10 
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Figure 10: ACTOR Prototype --- Architecture 

Three visualizations / User Interfaces have been implemented in ACTOR prototype: (a) battlefield 
visualization – which allowed to see the dynamic battlefield state, travels and engagements of opposing 
forces’ assets (Figure 11); (b) organization status visualization – which showed the status of assets and 
commanders of BLUEFOR and OPFOR (e.g., task schedule, number of sensed targets, available resources, 
etc.); and (c) prediction visualization – which showed the likelihood scored of hypothesized BLUEFOR 
mission plans and the status of the plan over time. 

Battlefield 
Visualization

Forces 
Options

Visualization 
Overlays User Actions

Selected Asset 
Information

Environment 
Sensing Reports

Team Processes 
Reports

Probability of Event 
Detection

 
Figure 11: ACTOR Prototype --- Battlefield Visualization 
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ACTOR perception component was implemented in the prototype as a BLUEFOR’s mission plan 
identification, and was based on hypotheses testing principles. The knowledge of the hypotheses was stored 
in the model and retrieved at the time when prediction algorithm was evoked.  

4.2. The Scenario Story 
To evaluate a sensitivity of ACTOR predictions, we have created a synthetic scenario based on the 
following story. The battlefield was an urban terrain of a 3-rd-world country in which U.S. forces are 
conducting the stability operations and support missions. Continuous fighting with local militia has been 
undermining U.S. efforts in the region to support local government establish rule of law and provide for the 
population. The U.S. forces in the region designated the company-size units to conduct small-scale short-
time operations, including (see Section 2.3 for complete definition of the following missions): 

• Reconnaissance and patrolling 
• Ground Stability and Defensive Ops 
• Search 
• Security and supplies 
• Area and site security 

The BLUE force organization structure (see Figure 12(a)), headed by a Chief Warrant Officer and a captain 
or major, consisted of 4 platoons (25-60 people each; headed by warrant officers and first or second 
lieutenants): 

• Mechanized infantry platoon 
o equipped with four Humwees 
o organized with a platoon headquarters and three rifle squads 
o the platoon leader and his headquarters mounted in one Humwee, and the squads mounted 

in the other three 
• Tank platoon 

o four main battle tanks organized into two sections, with two tanks in each section 
o the platoon leader (Tank 1) and platoon sergeant (Tank 4) are the section leaders. Tank 2 is 

the wingman in the platoon leader's section, and Tank 3 is the wingman in the platoon 
sergeant's section 

• Reconnaissance platoon 
o 1 officer and 18 enlisted soldiers 
o organized into a platoon headquarters and three squads 
o equipped with individual weapons, night vision devices, and communications equipment 
o There are a total of 16 M16A2 rifles and 3 M203 grenade launchers (one per squad) 

• Military Police platoon 
o one officer and 29 enlisted soldiers 
o a headquarters element and four military police squads 

The OPFOR consisted of 5 cells and cell leaders. Each cell possessed mortar and heavy guns and was 
capable of attacking BLUEFOR with IEDs/RPGs. The cell members mixed with local population and 
conducted reconnaissance activities to learn about BLUEFOR.  

(a) BLUEFOR Organization (b) OPFOR Organization
 

Figure 12: Use Case --- OPFOR and BLUEFOR Military Organizations 
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The data collected by OPFOR entities consisted of observed movements of BLUEFOR units (Ex: “Rec 
Squad moved to Building A at 10:03”), observed actions/engagements of individual BLUEFOR units (Ex: 
“Rfl Squad manned site B at 12:54”), and additional information about BLUEFORE units and engagements 
(e.g., type of unit, type of action performed, etc.). It was then quantitatively represented as (i) geo-spatial 
information – indicating the location of activities; (ii) temporal information – indicating the time of 
activities; and (iii) feature information – indicating the type of actions, participating units, resources used, 
etc. This data was fed to ACTOR perception component for predictive inference to enable recognition over 
time which BLUEFOR mission is taking place and what its current state is – so that OPFOR can develop 
actions against BLUEFOR entities of highest impact to BLUE and lowest cost to RED. 

Environment Observations of Activities

time

1. Geo-spatial 
information:
Location of 

activities

2. Temporal 
information:
Time of activities

3. Feature 
information:
Who
Type/features of 

actors and action

RED Sensors
Action: search
Duration: 20 min
Location: Village 

residential area
Actors: Rifle Squad  

Figure 13: Use Case --- OPFOR Data Feeds 

4.3. Sensitivity Results 
We have conducted computational experiments with BLUEFOR performing all missions from the set in 
Figure 8 and evaluating the performance of the mission plan recognition algorithm for different levels of 
uncertainty.  

First, we show how the ACTOR prediction works over time. In Figure 14, we show the predictions obtained 
by ACTOR technology at different sampling times from the start of the mission. As we can see, ACTOR 
first cannot recognize the mission correctly, because the observed data does not allow a good 
distinguishability from other mission. Over time, as BLUE continues performing its mission, ACTOR 
makes a correct inference about mission structure while at first not correctly identifying the state of the 
mission. With time, ACTOR predictions are improved. 

Ground Truth

Predictions

time1 time3 END

M1
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Incorrect 
mission plan

time2

M2: Ground Stability and 
Defensive Ops
Site reconnaissance(1)
Attack OPFOR positions(3)
Detain OPFOR members(3)
Site security(1)

Correct 
mission plan, 
wrong state  

Figure 14: Simulation Results --- ACTOR Predictions over time 



13th ICCRTS-2008 “C2 for Complex Endeavors” 

0

0.2

0.4

0.6

0.8

1

1.2

prior time1 time2 END

Reconnaissance
and patrolling 
Ground Stability
and Defensive Ops
Search

Security and
supplies
Area and site
security

• Conclusions:
– High detection accuracy (>=75%) in the middle of the mission
– Detection accuracy data supported by entropy (power of estimator)
– Detection improves towards the end of the mission as more actions are detected
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100

120

average time1 time2 END

Entropy over Time% of correct detections

 
Figure 15: Simulation Results --- effect of time on ACTOR Predictions 

In order to assess performance of ACTOR algorithms, namely the sensitivity to the ground truth, sensitivity 
to probability of event detection, and sensitivity to amount of data ACTOR needs, we conducted simulation 
runs for all 5 types of missions (Figure 8), different levels of event detection probability and different 
sampling times (time when predictions are made). See results and conclusions in Figures 15-16. 

• Conclusions:
– Improved accuracy of event detection increases accuracy of predictions
– Sensitivity to specific mission plan classes is observed

Entropy over Time% of correct detections
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Figure 16: Simulation Results --- effect of event detection on ACTOR Predictions 

As we can see, preliminary results suggest that ACTOR provides a high level of detection accuracy (>75%) 
early in the mission stage. The entropy results, which is inversely proportional to the power of the algorithm 
to provide the correct decisions “not accidentally”, supports the conclusion that ACTOR predictions are 
also robust. 

5. Conclusions and Future Research 
This paper described the novel models and algorithms to conduct mission plan recognition and presented 
the application of this technology to developing intelligent OPFOR agents. Such agents can be used in 
gaming simulations for human training and human-in-loop experiments, and can be enhanced to behave 
based on specific training or experimentation goals (e.g., train against the RED forces with most 
adaptability). In addition, ACTOR capabilities can be used operationally in conducting mission rehearsals 
and intelligence analysis tasks. The results shown in this paper suggest that ACTOR perception capability 
can achieve high accuracy of the mission plan identification under significant information gaps. Further 
research is needed to explore the solution envelope of this technology and compare against human-based 
RED decision making.  
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The algorithms described in this paper are based on parametric models and hypotheses testing principles. 
These parameters and hypotheses can be trained from the historic data. We are currently developing 
algorithms for supervised and unsupervised parameter learning from labeled and partially labeled datasets. 

To be fully successful again opposing forces, predictive capabilities need to be combined with development 
of actions to collect the most critical information and actions to counteract the opposing forces. The 
effectiveness of such actions must be learned over time based on the experiences and interactions with 
opposing forces. The proposed solution can also be generalized to recognize more adaptive plans, where in 
addition to precedence constraints we model the event- and information-based mission changes. The design 
of information collection and disruption actions, model training, and adaptive plan recognition form the 
basis of our continued research in the area of automated synthetic agents. 
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