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Abstract

There are many circumstances in which a mission revolves around preventing the
deployment of an adversary’s assets. Ballistic/tactical missile defense, blockades, force
protection, checkpoints for controlled area access and air defense applications all fit
this paradigm. In these sorts of problems, uncertainty around the expected behavior
of the adversary can be substantial. In their recent book, Alberts and Hayes distinguish
between complicated and complex endeavors. In a complex situation, causal relations
may no longer be well-understood and directly available for analysis. They may also be
characterized by instability in the sense that small perturbations in initial conditions
or temporal behaviors result in large changes in the resulting mission outcomes. In
response, agility of planning and decision-making systems becomes paramount over
notions of static optimality. A cooperative co-evolutionary computation approach to
planning is derived here that is directed toward achieving agility in the task assignment
configurations of large heterogeneous teams. Architectural context is also discussed in
terms of fitting co-evolutionary computation strategies engaged in complex endeavors
into Service-Oriented Architectures (SOA) and Event-Driven Architectures (EDA).

1 Background

1.1 Mission Planning

As planning is the focus of this analysis, and given that planning may have different interpre-
tations in different fields, the following textbook definition is offered as a starting point [15,

pl]:

“Planning is the reasoning side of acting. It is an abstract, explicit, deliberative
process that chooses and organizes actions by anticipating their expected out-
comes. This deliberation aims at achieving, as best as possible, some prestated
objectives.”

Planning problems are often categorized by whether complete or partial information on the
state of the world is available to the planner, or on whether or not the consquences of
actions on the state of the world are deterministic, or on whether time-dependence both of
a dynamic world and of plan validity are important, or on whether finite resources must be
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managed. Plus, many applications require simultaneous planning for multiple agents, which
introduces a distinction between individual and overall objectives. Multi-agent planning
consists both of simultaneous planning for multiple agents and planning by multiple agents
based on coordination and/or negotiation among those agents [11, 12]. Of interest here is
the subset of multi-agent planning in which a multi-agent plan is a distribution of action
sequences across the set of agents to achieve a common goal within sets of local and global
constraints.

Every planning domain raises its own issues and benefits from suitably matched plan-
ning strategies. Mission planning is an umbrella term that adds, to the standard planning
definition given above, the selection of capabilities to apply, the deployment of platforms car-
rying those capabilities, and the formation and dissolution of organizational units charged
to achieve the mission [18]. For the purposes of the current analysis, three necessary and
distinct stages in the mission planning process are defined

1. Asset selection, deployment and initial tasking (Pre-mission planning)
2. Post-deployment plan refinement (Pre-engagement planning)

3. Reactive adaptation to real-time events

These three phases of this flavor of mission planning are shown in Figure 1. Each stage repre-
sents a different level of commitment of resources and a different decision-making timescale.
Cases of interest here are those in which assets are committed in the first stage prior to
any direct engagement. Decisions in this case are presumed to be made based on acquired
intelligence which may be incomplete or uncertain. For example, in a ballistic missile defense
scenario, the assets may not be very mobile relative to the timescales of the engagement part
of a mission, and so, once deployed, they can’t be significantly re-deployed. Once an en-
gagement scenario begins, the relevant timescale is on the order of minutes [19, p 17] rather
than the days or weeks that might be available in other mission scenarios. This type of
situation, where assets must be selected and coarsely organized prior to engagement, is the
most salient characteristic of the mission planning domain treated in the present analysis.

1.2 Planning and Causality

There are a variety of specific representation schemes for planning problems. Most however,
have some notions of action, observation, world state, information state, and constraint
representations. Examples include state-variable, plan-space, and task network representa-
tions [15]. There are, in some treatments, provisions for autonomous processes, which may
influence plans but are not influenced by plans. An adversary’s actions or dynamic envi-
ronmental elements like weather are examples of autonomous processes [22]. Autonomous
processes are significant not only in that they influence the planning process, but partial
observability into autonomous processes leads to the need to address uncertainty in the
planning process.
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Figure 1: A three-stage model of deliberative processing provides the context for the mission
planning problem definition treated here.




Planning is grounded in the notion of causality. In order for an agent to predict or evaluate
a future step, a causal relation must exist between actions and state variables, between the
autonomous processes and state variables and between state variables, autonomous processes
and observations by an agent. Causal knowledge then either exists a priori or is inferred
from observation. A corpus of causal assertions define optimality or sufficiency conditions for
a plan. Invalidity of one or more of these causal assertions may render a plan invalid. Issues
of plan robustness, therefore, are tied directly to the inviolability of the corpus of causal
assertions that form the foundation of that plan. Classically, causality represents necessity
but not sufficiency. Modern notions of causality do incorporate concepts of uncertainty and
incompleteness and so causality can be modeled probabilistically [28]. Causal with unit
probability generally recovers the classic deterministic notion of causality.

In their recent book, Alberts and Hayes [2] distinguish between complicated and complex
endeavors. The former is defined as a situation in which causal relations are well-defined
and understood. Complication, therefore, can usually be mitigated by direct application
of additional resources to reduce individual task loading. In a complex situation, however,
changes to the situation are uncertain, interdependencies between events may not be well-
understood, and situations may also be characterized by instability in the sense that small
perturbations in initial conditions or temporal behaviors result in large changes in mission
outcomes. Robust planning was a first step to cope with complexity in the sense used
here. Decision-theoretic planning techniques capture uncertainty in the planning domain by
modeling dynamic variables as stochastic processes and planning itself as a Markov decision
process (MDP) [6, 15], as partially observable Markov decision processes (POMDP) and
their approximations and variants [21, 31, 33, 37]. These techniques are nonetheless still
concerned with planning to some mean state variable response with a probability of success
driving the selection of actions. Thus, those techniques still assume that the world is well-
behaved and that causality is mostly intact. The concept of planning for agility in response
to unexpected circumstances is not really captured in a straightforward implementation of
decision-theoretic planning. Alberts and Hayes go on to assert that to maintain plan agility
actions should be pursued that

Minimize the resources which are irretrievably committed
Improve the information position relative to the adversary’s
Shape the adversary’s information position

Monitor the impacts of actions taken

ARl

Place the adversary in a reactive mode

The authors also note that for agility, sets of actions must insure [2, p 131]

“ ... that their approaches are flexible (provide more than one way to achieve
success), robust (are effective across a variety of circumstances in order to allow
for changes in the situation), resilient (permit recovery from missteps or adversity



arising from a lack of full understanding), responsive (able to act within windows
of opportunity), innovative (able to do new things or old things in new ways so
that they have a greater chance of success than taking actions adversaries can
anticipate), and adaptive (permitting changes in both processes and organization
as information is gained about the complex situation).”

The probabilistic representations in decision-theoretic planning approaches can be combined
with dynamic planning techniques like conditional planning (contingencies), plan monitoring
and repair, and continual planning [11] in order to achieve agility in a by providing a planner
mechanisms to deliberatively respond to a dynamic and uncertain situation. In a networked
system of assets, task assignments can be made almost instantaneously relative to mission
timescales and within the capability constraints of the set of assets. An agile system would be
able to take advantage of tasking plasticity and make optimal task assignments in response
to unfolding circumstances in any of these three planning paradigms. However, the spatial
distribution of assets committed to the mission along with the capabilities of individual
assets must be such that choices in tasking configuration are supported.

There is also some relationship between a pursuit of task assignment agility and the set
covering problem (SCP) applied to distributing nodes in a sensor network. The set covering
problem is a well-established optimization problem that models many resource selection
situations. The classic set covering problems can be stated abstractly by first defining a
universe U a family, S, of subsets of U. A cover is a subfamily C' C S of sets such that
Uc; = U. For the set covering decision problem, one asks, given (U,S) and an integer
k, if there is a set covering C of size k or less. The set cover optimization problem asks,
given (U, S), for the smallest set cover [8, Sec 35.3]. Cardei [7] has extended the classic
SCP to accommodate heterogeneous elements and applied that extension to the problem
of an energy-constrained optimization of target coverage by a network of heterogeneous
sensors. Dambreville [10] used cross-entropy to perform a similar analysis and maximize
the (space-time) area of tracks under observation. Others have extended these concepts to
minimize the closest distance to any sensor at any point along the object trajectory or to
minimized the integral of the sensor intensity along the trajectory [23, 24]. The idea then is
to distribute resources such that the system will detect arbitrary incursions. Assumptions on
the spatial distribution of an adversary are relaxed relative to traditional optimal resource
allocation problems. The difference between the set covering problems and planning for task
assignment agility lies in the fact that the distribution of assets in the latter case is based on
multiple task capabilities rather than a single task capability (detection), and so what are
being maximized are the number of viable task assignment configurations in this multiple
task scenario.

The goal of this analysis is to capitalize on these concepts for mission planning situations
in which the three-stage model of planning, shown in Figure 1, is relevant. In essence, a loose
coupling between (1) the selection and distribution of assets and (2) the task assignments,
given those assets, drives the approach. These situations tend to be large scale with multiple
timelines. Naval missile defense problems fall into this category as do incursion prevention
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in some homeland defense situations and force protection in asymmetric conflicts. Rather
than optimizing the sequence of actions needed to achieve the mission, the agility of the set
of assets to respond to unexpected as well as expected situations will be optimized.

2 Approach

The basic approach to achieving task assignment agility for mission planning is to define an
optimization technique for defining and deploying teams of assets so that the greatest number
of possible task assignments to that distribution of assets are preserved. Teams of assets may
either be homogeneous, where all members are generalists - able to perform all tasks in the
mission, or heterogeneous teams blending generalists and specialists. Specialization tends to
reduce agility for a fixed number of assets. In cases where the number of assets is limited
and in situations with high uncertainty, generalists may be preferred over specialists in agile
tasking systems.

Evolutionary computation is a family of popular techniques for discrete optimization and
learning problems, especially those characterized by high-dimensional search spaces [14].
Much of the terminology associated with evolutionary computation is derived from its bio-
logical inspiration, but in essence the techniques focus on generating and updating a sam-
pling distribution over the objective (fitness) function. Basic evolutionary approaches to
optimization involve only three operators on a population of candidate solutions: Selec-
tion, cross-over, and mutation. Given a population of candidate solutions, n-ary sequences,
evolutionary computation techniques encourage promising sequences to exchange partial se-
quences, cross-over, then select the next population generation. Occasionally, an element
in a sequence is randomly altered, mutation, in order to expand the coverage of the search
space and prevent premature convergence. This procedure is iterated through multiple gen-
erations until conditions are met that stop the process. That description is, in a nutshell, an
account of a genetic algorithm, one of the variants of evolutionary computation. There are
techniques, though, that explicitly create, and sample from, the joint sampling distribution
over the fitness function, which are called probabilistic model-building genetic algorithms
(PMBGA). It has been shown that PMBGA have convergence rates that scale as o(nlnn) or
as o(n?Inn) compared to standard cross-over techniques that can scale exponentially with
the dimension of the search space [30]. For this study, we’ve primarily relied on a simple PM-
BGA called Probabilistic Incremental Learning (PBIL) [4], which treats genes as statistically
independent. We’ve also done some additional work with a slightly more complicated model,
Mutual Information Maximizing Input Clustering (MIMIC) [5], which models pairwise or-
dering of variables and maximizes the mutual information between adjacent positions in a
chain. There are still other models that can learn even more complex dependencies between
variables [29], but the generally sequential dependencies between part-tasks in many missions
is a good match to pairwise dependencies modeled in the MIMIC technique. Furthermore,
the trade-off between expressibility and complexity reinforces that choice.



Mission planning often targets the actions of multiple heterogeneous assets working to-
ward a common goal. Historically, these organizations tend to be strongly hierarchical with
a centralized approach to planning, command and control. More recently, netcentric opera-
tions have become part and parcel of the re-envisioning of many organizations. Distribution
of a heterogeneous set of asset capabilities provides much more flexibility for the planner than
concentrating that same capability within one or just a few assets. Redundancy provides
failover capability increasing the overall reliability of a given system. Distributed processing
can also be inherently parallel, and so computational efficiencies and scaling advantages may
be gained through distributivity. The planning operation itself can also reap these benefits
when implemented in a distributed fashion. As the number of assets increases or, in an
adversarial situation, the number of threats that must be countered increases, the benefits
of distributing the planning process across the agents themselves become more apparent.
Thus, dense asset distributions in target rich environments favor a decentralized distributed
approach to mission planning. Mali and Kambhampati [20] review a taxonomy for direct
distributed planning systems:

1. Local planning and merging. A supervisor process resolves conflicts then merges indi-
vdidual plans

2. Hierarchical planning. High-level goals are successively decomposed into finer-grained
objectives until a concrete executable plan results

3. Partial global planning. Agents communicate local plans, including interactions, to
build plans that are partially global.

4. Meta-level control-based planning. Local planning constrained by a high-level strategic
plan

Except for the partial global planning strategy, each of these involves some degree of hier-
archical control with a subset of agents specializing in either merging lower level plans or
flowing down higher level plans. There are also indirect approaches to distributed planning
but these are not considered here.

Evolutionary computation techniques are often applied to locally optimize individual
plans within either a local planning and merging approach or within a hierarchical plan-
ning approach. An additional twist to the evolutionary computation approach normally
used is to implement a decentralized distributed version in the same vein as partial global
planning techniques mentioned above. Co-evolutionary computation techniques are a con-
crete instantiation of co-evolutionary concepts that drive netcentric concepts of operation [1].
Co-evolutionary computation can be divided into cooperative and competitive co-evolution
techniques. In competitive co-evolution fitness is determined by direct contests between
agents. The more “victories” the greater the likelihood that that agent’s genetic mater-
ial will contribute to future generations [3, Ch 4]. In cooperative co-evolution, the agents
share the consequences of successes or losses. Starting with the early architectures [32] for a
cooperative co-evolutionary genetic algorithm (CCGA), multiple species are evolved, then in-
dividuals are evaluated in a central domain model which then informs the individual species.
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Figure 2: Iterative factored optimization can be the foundation of a partial global planning
technique.

Building on this early work, both Orgeta [27] and Subbu and Sanderson [34] developed an
approach to CCGA that is completely decentralized. The idea is to factor the search space
into subspaces then distribute the search problems for the set of subspaces to the distributed
set of agents. Periodic communication among all assets updates the current partial solutions
produced by each asset and the process repeats until all searches converge. Each asset then
possesses an optimal global plan without need for a separate supervisory process to merge
plans or control the process. Thus, the process is self-synchronizing. Figure 2 illustrates
this procedure. This approach to iterative conditional optimization is the approach adopted
here, in which to embed a PMBGA, with the intent of producing agile distributions of assets
for mission planning.



3 A Fitness Landscape for Tasking Agility

So, finding optimal plans, at least in a static sense is not of primary concern. The environ-
ment is dynamic. The adversary may do something unexpected. The details of any potential
situation are uncertain. The primary question, given the basic approach already described,
addresses the nature of fitness when optimizing for task assignment agility. In describing a
fitness function both gains and costs associated with actions taken by a set of assets must be
captured. The form of the fitness function is not based on any specific assumptions at this
level of description as to the nature of the mission or of the particular scenarios to which it
may be applied.

Taking advantage of the phased nature of mission planning (Figure 1), the goal is to
address two subproblems. The first is to find a distribution of assets that preserves the
maximum number of different possible distinct tasking assignments. The second subproblem
is, given a distribution of assets, find the tasking assignments that maximize performance as
uncertainty is resolved as the mission plays out.

3.1 Subproblem 1 Fitness: Gains

Given a high-level task sequence and a set of assets, one can define an assignment matrix, A,
of binary values that associate an asset to zero or more tasks. For example, for three assets
and three tasks one might have an assignment matrix

01
A=|[ 10 (1)
10

_ o O

where an asset (row) is assigned tasks (columns) as indicated by unit values in the matrix.
If an assignment is executed, then there is some notion of success for each task that might
be written as

0  If the assignment failed at the jth task
1 If the assignment succeeded at the jth task

ga(ag, 7m) :{

given a world state trajectory 7,,. A successful assignment for a given set of assets is one for
which every task is successfully achieved. From this abstract representation of success for
an assignment, we can also define

$a(n) = min g (a5, 7)

so that if s4 = 0, then there is at least one task at which the assignment fails and so the
assignment itself is not successful. It also follows then that for multiple assignments, Ay, if

Sy, = MAX 5 4, (Tm)



then S, = 0 implies that no assignment is successful (i.e., succeeds at all tasks), and if
Sm = 1, then at least one assignment is successful. To support agility in task assignment,
then it is desirable to minimize the likelihood that there are any world states for which no
assignment is successful. If

then @ = 0 implies that there is at least one world state trajectory for which no assignment
succeeds, and hence the condition we seek can be written as

minp(Q = 0] X)

where X denotes the locations of the assets under consideration. This formulation treats all
world state trajectories equally, so it could be the case that rare events could dominate the
minimization process. To accommodate this dependence an alternate formulation using S,,
can replace that using (). In this case,

m}é{iXZp(Sm = 1| 7, X)p(7in) (2)

marginalizes, over the set of world state trajectories, the probability that at least one assign-
ment succeeds in a given world state trajectory weighted by the likelihood of that trajectory.

This formalism does accommodate the uncertainty inherent in this staged approach to
planning. For example, the number of adversaries may not be known a priori, but each
world state trajectory may have different tasking possibilities due to a variable number of
adversaries for a fixed number of assets. The procedure remains the same, to maximize the
likelihood that at least one task configuration for a fixed set of assets succeeds over all world
state trajectories.

3.2 Subproblem 1 Fitness: Costs

Thus far, only the performance of a set of assets has been considered for the first phase
mission planning problem. The role of resource costs is an essential piece leading to a
description of a fitness function for asset distribution. Costs do depend on the distribution
of resources across part-tasks. They also depend on the relations between adversaries and on
the timings of adversary actions. In some domains costs are measured in the same units as
gains. When this is the case a simple ratio of gain to loss is a typical quantity to be maximized
to optimize some process. In the case of mission planning, there may be multiple costs to
consider. For example, a ratio of successful engagements to unsuccessful engagements fits the
gain to loss ratio model. Factoring in actual costs of some notion of the resources (energy)
expended is also desirable. The problem here is that the units of cost are irreconcilable. How
many units of energy are worth one less unsuccessful engagement?

The simplest representation of resource cost is as an inequality constraint. This way
there is no need to try to reconcile different cost units. However, evolutionary computation
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techniques must be adapted in problem-specific ways to handle constrained optimization
problems. Techniques for guaranteeing that only feasible solutions can be obtained by con-
structing specialized operators or data structures. Infeasible solutions can be eliminated
as they arise, but this approach is only effective if a small fraction of the search space is
infeasible. Repair methods essentially transform infeasible solutions into the feasible part
of the search space. Probably the most popular approach makes use of penalty or barrier
functions [26]. A number of authors have surveyed different variants of penalty functions for
optimization by evolutionary computational techniques [9, 17, 26, 36]. In choosing a penalty
function for the purposes here, it is noted that the penalties of interest are static in the sense
that they do not depend on the iterations of the evolutionary process. Only inequality con-
straints with no equality constraints are assumed here, which simplifies the representation of
the fitness function. A main issue with static penalty functions is that there may be several
parameters that must be set, and the performance of the algorithm can be very sensitive
to those set parameter values [25]. Furthermore, there still seems to be some dispute, for
static penalties, whether those techniques based on number of constraint violations perform
better than penalties based on the magnitude of violations. Based on a statistical analysis
of penalty functions [17], a simple static penalty function that is based on the number of
constraint variables [16] has been selected. The fitness function for deployment of assets
which leads to agile tasking thus becomes

F(X) = f(X) +7(X) (3)
where f(X) is defined in Equation 2 and the penalty term is defined as

rog = { KD I e o

with p equal to the number of constraints and s is the number of these which have been
satisfied. The constant K only has the requirement that it be large enough that any non-
feasible individual received a lower fitness than any feasible individual. Kuri-Morales [17]
used a value of 10? in their analysis. It can be seen that if no constraints are satisfied, s = 0,
then the penalty is a maximum.

All the machinery for finding the deployments leading to maximally agile tasking has
now been defined. Specific probabilities of success and corresponding constraint functions
are problem-specific.

3.3 Subproblem 2 Fitness

Given a set of committed assets and their deployment distribution, the second subproblem
is to find the optimal tasking given data on the current situation in which those assets are
embedded. The agility in tasking obtained by an optimal deployment of assets is revealed
in the ability to respond to an unexpected situation.

f(X, Y) = m]axp(s =1 | ijxlyx%x37y17y27y3a7_0b5) (5)
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where T; is a vector representing a task configuration (a column in the matrix in Equation 1).
The quantity 7, is an observed trajectory, which in some sense defines the particular sit-
uation in which the set of assets find themselves. This second subproblem is amenable
to the same decentralized distributed co-evolutionary techniques used to find the optimal
deployment.

4 An Adversary Exclusion Problem

4.1 Problem Statement

There are many circumstances in which a mission revolves around preventing the deployment
of an adversary’s assets. Ballistic/tactical missile defense, force protection, blockades, check-
points for controlled area access and air defense applications all fit this paradigm. In these
sorts of problems, the staged approach to mission planning shown in Figure 1 is appropriate.
In these sorts of problems, uncertainty around the expected behavior of the adversary can
be substantial. An idealized problem is offered here to illustrate cooperative co-evolutionary
computation approach to mission planning in order to maximize task assignment agility.
This idealization is also a small problem so it does not treat scalability issues for which, it
has been asserted, the technique is indeed quite suited, but a small-scale problem is easier
to visualize and interpret. So performance considerations are sacrificed for insight into the
workings of the decentralized co-evolutionary computation technique to planning for agility
in task assignment configurations of a team of assets.

In this idealization, the world is two-dimensional. An adversary has the ability to launch
an assault utilizing at most 3 incursions from any combination of 8 locations originating
from the cardinal points on a circle. Each incursion crosses the interior of the circle and
ends at any non-adjacent cardinal point from its starting point. The choice of starting point
configurations for three incursions is uniformly distributed across all possible combinations
(there is no time-ordering in this problem).

Each defensive asset can perform self-locate, search, and intercept actions. Figure 3a
illustrates the set up. Asset locations can be changed in discrete steps on an 8 x 8 planar
grid wholly contained within the circle. A single search sector constitutes any pair of cells
in the 8-neighborhood of an asset’s location (thus, there are twenty-seven possible search
sector positions that can be selected). The intercept action places a barrier at the location
at which a threat was detected. Each asset can place at most two barriers. For a problem
given three assets, the trio must cooperate in order to contain the maximum number of
possible incursions.
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Figure 3: The set up for the simplified problem is shown in (a). A sequence of discrete
variables defines the genotype for the set of assets is shown in (b).

4.2 Genotypes, Species, and Fitness

The genetic structure for the pair of assets is shown in Figure 3b and takes the form of a
matrix (because the set of assets is homogeneous). This matrix corresponds to the position,
search sector selection and intercept assignment actions that can be taken by the set of
assets. Each row is the genotype of a given asset (species). Within the coevolutionary
process asset-1 will search over the first row of the structure for fixed values of the second
row. Asset-2 searches the second row and asset-3 the third. The fitness evaluation for each,
however, encompasses all rows of the matrix.

The gains in fitness are calculated by replacing the probabilities in Equation 2 by simple
counts. The denominator in that equation plays no role in this problem simplifying the
assessment of fitness even further. Some costs have already been captured by limiting the
genotype. Additional costs are upper and lower distances from an asset at which a barrier
can be placed. A requirement that search sector not overlap is another cost that can be put
in a form of Equation 4.

4.3 Results

The deployment and tasking subproblems are separated as per the earlier discussion. The pri-
mary item of interest here is in preserving the maximum number of choices for tasking when
there is great uncertainty predicting an adversary’s tactics. The cooperative co-evolutionary
genetic algorithm is executed on three networked laptop computers corresponding to the
three assets in the problem statement. Local evolution proceeds in parallel, interspersed
with periodic cross-asset updates as conditional optima are achieved.
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Figure 4: The number of possible incursion trajectories is shown in (a). The conditional
optimization from the perspective of asset-1 samples positions for asset-1 with assets-2 and
3 fixed is illustrated in (b). In (c), is a final spatial distribution of the three assets. Fif-
teen out of twenty-three trajectories can be intercepted by several available task assignment
configurations.

Without the costs given above, detection of incursions drives the deployment so that
assets are forced to the center to insure that search sectors can be set so that all possible
incursions can be detected. Unique search sectors force the assets apart so that there is
minimal cost for coverage of possible incursion trajectories near the center of the circle. This
is the set covering problem. If there are range bounds for the placement of a barrier, then
the size of the asset deployment increases again. However, the symmetry of the problem
forces symmetry in the deployment of assets, which is reflected in the outcome of the co-
evolutionary process as shown in Figure 4.

5 Summary

An evolutionary computation approach to the problem of planning for agility in the task
assignment configurations of large heterogeneous teams has been derived. A key point in
achieving self-synchronization as well as tractability for large-scale mission planning problems
is obtained from the decentralized distributed co-evolutionary computing architecture that
is employed. In particular, cooperative co-evolutionary computing algorithms are used to
realize a decentralized distributed approach to planning. Task assignment agility for large
teams is obtained through appropriately defined fitness functions for each of two separated
subproblems:

1. Asset selection and deployment distribution
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2. Task assignment

The fitness function for the first subproblem seeks to maximize the number of successful
tasking choices available for the task assignment part of the problem. The benefit of this
approach increases with increasing team size and under high uncertainty in scenario specifics.
For more certain situations, results from this approach converges to more conventional mis-
sion planning techniques.

A final point can be made as to the compatibility of the cooperative co-evolutionary
genetic algorithm with emerging netcentric computing architectures. In particular, services-
oriented architectures (SOA) and event-driven architectures (EDA) are becoming established
as de facto standard paradigms for networked organizations [13]. The difference between
these two approaches to netcentric computing lies in the underlying communication pat-
tern each employs [35]. SOA rely on a query-response pattern underlying communication
between services in the network. This pattern, while very efficient, nonetheless requires two-
way communication traffic to execute a transaction, which for a densely connected network
may lead to bottlenecks. The publish-subscribe pattern in the EDA, on the other hand,
just broadcasts information based on local subscriptions, so network traffic is less than the
query-response pattern of communications. For mission planning using the decentralized
distributed co-evolutionary genetic algorithm, communication between all assets is essen-
tial, therefore, the EDA’s publish-subscribe is a better fit. The corresponding architecture
is also simpler in the EDA paradigm. Figure 5 shows a pair of high level service models
that compares, at least qualitatively, SOA and EDA architectures supporting cooperative
co-volutionary planning algorithms.
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Figure 5: Mission planning with decentralized distributed co-evolutionary algorithms is com-

patible with netcentric computing architectures, but seems a better fit to the event-driven
paradigm.
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